Paper 3144-2019

Process Manager Batch Job Monitoring
Pradeep Ponnusamy, Royal Bank of Scotland

ABSTRACT

The paper explains how one can best use the information stored in a history.log file that
contains information about the jobs running in process manager. A SAS® program can be
written to read the history.log file to identify failed jobs, long-running jobs, CPU
consumption of the jobs, execution time of jobs, and so on.

INTRODUCTION

Being a SAS® administrator or working in a team which supports SAS jobs running in a
production environment, wouldn't it be good to get notified about batch failures before the
customers start complaining about the unavailability of the reports/data? Wouldn't it be
good to get notified about any long running jobs before these actually become a problem?
We will find answers to those problems in this paper.

This paper assumes that you are using Platform Process Manager for scheduling your SAS
jobs and your deployment is on UNIX/Linux platforms.

Process Manager updates information about flows and jobs running in it to a log file named
history.log<index> available under JS_TOP/work/history directory. When you want to check
the history of a finished flow instance, Flow Manager looks up that history in this directory.

By default, this directory holds 15 days of history.log files and it is governed by the
“JS_HISTORY_CLEAN_PERIOD"” parameter defined in js.conf file. Similarly, when the
history log file reaches the maximum size specified in “"JS_HISTORY_SIZE”
(Default=50000 bytes) or the maximum number of hours of data, as specified in
“JS_HISTORY_LIFETIME" (Default=24 hours) in the js.conf file, a new history log file is
created. The numeric suffix of the file increases as each new file is created

CONCEPT

Below is a sample list of log files that will have the information of the jobs
running/completed in Flow Manager and are saved under JS_TOP/work/history.

-rw-r--r-- 1 sas sasusers 500129 Oct 4 05:00 history.log.981
-rw-r--r-- 1 sas sasusers 500028 Oct 4 10:37 history.log.982
-rw-r--r-- 1 sas sasusers 500091 Oct 4 18:30 history.log.983
-rw-r--r-- 1 sas sasusers 500170 Oct 5 05:06 history.log.984

A typical information in the history.log file includes name of the flow, owner of the flow, flow
id, flow start time/end time, flow status, Job name, Job Id, Job start time/end time, host on
which the job was executed and the job status.

Now let us see how to write a SAS program to extract the information from
history.log<index> files to a SAS dataset.The entire SAS program suite can be divided to
four parts

SAS MACRO PROGRAM TO READ THE CONTENT OF HISTORY.LOG<INDEX>
FILES IN TO A SINGLE INPUT FILE

First we will get the list of history.log files. As our aim is to monitor jobs for the day we will
filter out the history.log files that apply for that day. We will then copy the content of each
history.log file to a single file which we use it as our input file to create the SAS datasets.
Note XCMD has to be enabled in your SAS session for you to use PIPE and CALL SYSTEM
routines.

Please read through each comment for better understanding of the code. Below is the SAS
macro program:

$macro read hist();

filename mylist pipe "ls -1ltr
/opt/sas/platform/pm/work/history";

/*please replace /opt/sas/platform/ with the IBM Spectrum LSF
Process Manager Installation directory at your site*/

/*pipe enables you to invoke a program outside of SAS and
redirect the programs output to SAS */

/*get todays date*/

data null ;
call symput ('run dt',day(today()));
run;

sput &run dt.;

/*get the file listing of JS TOP/work/history directory in to a
SAS dataset*/
data myfiles;

infile mylist lrecl=400 truncover;

length permis $10 filelink $1 owner $20 group $20 size $8 month
$3 day $2 time $20 filename $200;

input permis $ filelink $ owner $ group $ size $ month $ day $
time $ filename $;
run;

/*get the filenames for today */
data myfiles (keep=filename);
set myfiles nobs=o0bs;
if day=&run dt. then output;

run;
data null ;
set myfiles end=last;
call symput ('hist file nm' || trim(left(put(n ,8.))),filename);
/*as you read each filename assign it to variable*/
if last then call symput('total',trim(left(put(n ,8.))));

/*get the total count of history.log files that you
need to read for the day*/
run;
put &total;

/*--—-copy the content of all the history files to one single
file-——-*/

$let hist path=/opt/sas/platform/pm/work/history/; /*replace this
with the PM install directory at your site*/

%global op path;

$let op path=/tmp/; /*your output location*/

o

do i=

o
1

$to &total;
&i=1 %then
sdo;
data null ;
call system("rm &&op path.hist append.txt");
/*create a new file, every time the program runs*/
call system("cp &hist path.&&hist file nmé&i
&op path.hist append.txt");
/*copy the content to that new file*/
run;
send;
selse
$do;
data null ;
call system("cat shist path.s&shist file nmsi >>
&op path.hist append.txt");
/*append the content of further history.log files */
run;
send;

1
£

%end;

smend read hist;
sread hist;

After the execution of the program, a file named hist_append.txt will be created under the
/tmp/directory.

rw-r----- 1 sas sasusers 1172833 Feb 16 11:19 /tmp/hist_append.txt

DATA STEP TO CREATE A SAS DATASET THAT HAS INFORMATION ABOUT
THE FINISHED JOBS

The following is an excerpt from /tmp/hist_append.txt file:
"FLOW" "sas" "1538052600" "117507:sas:DPAI_PM_Monitoring" "Start flow" " "

"JOB" "sas" "1538052600" "117507:sas:DPAI_PM_Monitoring:PM_Monitoring"
llStart jobll nmn

"JOB" "sas" "1538052603" "117507:sas:DPAI_PM_Monitoring:PM_Monitoring"
"Started job" "JobId=5139"

"JOB" "sas" "1538052608" "117507:sas:DPAI_PM_Monitoring:PM_Monitoring"
"Execute job" "Jobld=5139|Host=gridcompute06.server.domain.com"

"JOB" "sas" "1538052608" "117507:sas:DPAI_PM_Monitoring:PM_Monitoring"
"Finished job"
Jobld=5139|State=Done|Status=0|StartTime=1538052603|FinishTime=153805260
8|CPUUsage=0.192000 sec"

"FLOW" "sas" "1538052608" "117507:sas:DPAI_PM_Monitoring" "Finished flow"
"State=Done|Status=0|StartTime=1538052600|FinishTime=1538052608"

In this section we will use /tmp/hist_append.txt as our input file to create a SAS dataset
that contains information about the finished jobs.

user_id flow_run_id job_name

time_stamp job_flow status

"JOB" "sas" "1538052608" "117507:sas:DPAI_PM_Monitoring:PM_Monitoring" "Finished
jobll
"Jobld=5139|State=Done|Status=0|StartTime=1538052603|FinishTime=1538052608|CPU
Usage=0.192000 sec"

For easy reference, I have mapped the column names against their values. Have used
LENGTH=, in combination with the $VARYING. informat, to read a file that contains
variable-length records. As SAS executes the first INPUT statement, SAS determines the
line length of the record and assign that value to the variable linelen. The single trailing @
holds the record in the input buffer for the next INPUT statement. The second INPUT
statement uses the varlen value with the informat $VARYING1500. to read the second
variable named rec.

I have extracted the values for other variables using the value of rec column. Also please
note that the time values in the history.log files are stored as UNIX epoch time which is the
number of seconds from Jan 1, 1970. SAS calculates time value as the number of seconds
from Jan 1, 1960. I have therefore converted the UNIX epoch time to SAS time by adding
315619200 to the time. The humber 315619200 is the humber of seconds between Jan 1,
1970 and Jan 1, 1960.

Below is the DATA STEP:

filename fnam "&op path./hist append.txt";
data finished jobs(drop= rec firstvar varlen);

infile fnam length=linelen lrecl=5000;

length user id $20. flow run id $10. job flow $40. job name $100.
status $15. job id $20. job state $10. job status cd 8. start time 8.
time stamp 8. finish time 8. cpu usage sec 8.;

format start time datetimel8. time stamp datetimel8. finish time
datetimel8.;

input firstvar $ 1-1 @;
varlen=linelen-1;
input @2 rec $varyingl500. varlen;
/* convert UNIX epoch time to SAS time */
time stamp=input (scan(rec,5,'""'),20.)+315619200;
status=translate(scan(rec,9,'""),"'","'""");
if status='Finished job' and (datepart (time stamp)=today()) then
do;
user_id=translate(scan(rec,Z," L, Y
flow_run_id=translate(scan(scan(rec,4," "y,L, vy, vy
job flow=translate(scan(scan(rec,4," "),3,':'),",'"');
job name=translate(scan(scan(rec,4," "),4,":"),""','""");
job state=scan(scan(scan(rec,11,'""), 2, 'l') 2 !
job:id=scan(Scan(scan(rec,ll,'"'),1,'|') =');
job status cd=input (scan(scan(scan(rec, 11, '"'),3,'!'),2, ="
start time=input(scan(scan(scan(rec,11,'"'),4,"'|"), ="
+315619200; /* convert UNIX epoch time to SAS tlme*/
finish time=input (scan(scan(scan(rec,11,'""),5,"|"),2,'="),20.)
+315619200;
cpu usage sec=input (scan(scan(scan(rec,11,'"'),5,'["),2,'="),20.)
+315619200;
output;
end;
run;

The output SAS dataset then would look like that in Figure 1.
Figure 1: FINISHED_JOBS Dataset

FINISHED_JOBS ~
€3 | 93 Fitter and Sort. E}g Query Builder P Where | Data v Describe + Graph v Analyze v | Export + SendTo +

& user_id A fownnid 4 job_flow A ibrame A saus A jbid A jobstete @5- @ sttme [tmeswmp [@ fishtme @ cuusagesec
1 mm DPAL_PM_Moritoring PM Monitoing Finshedjcb 64206 Dore 0 200CTI8000010 200CTIB000010 200CTIB000010 1855612810

DATA STEP TO CREATE A SAS DATASET THAT HAS INFORMATION ABOUT
THE STARTED JOBS

In this section we will use /tmp/hist_append.txt as our input file to create a SAS dataset
that contains information about the jobs that have started execution.

"JOB" "sas" "1538052608" "117507: sas:DPAI_PM_Monitoring:PM_Monitoring" "Execute
job" "JobId=5139|Host=gridcompute06.server.domain.com"

We can create a dataset following a similar logic to what we used in the above DATA step.
Below is the DATA STEP:

filename fnam "&op path./hist append.txt";
data scheduled jobs (drop= rec firstvar varlen status);
infile fnam length=linelen lrecl=5000;

length user id $20. flow run id $10. job flow $40. job name $100.
job id $20. exec start time 8. exec host $30.;
format exec start time datetimel8.;

input firstvar $ 1-1 @;

varlen=linelen-1;

input @2 rec $varyingl500. varlen;

exec start time=input (scan(rec,5,'""),20.)+315619200;
status=translate(scan(rec,9,'""),"'","'""");

if status='Execute job' and (datepart (exec start time)=today()) then
do;

user id=translate(scan(rec,2," "),"'','"");
flow run id=translate(scan(scan(rec,4," "),1,":"),""','""");
job flow=translate(scan(scan(rec,4," "),3,':"),"",'""");
job name=translate(scan(scan(rec,4," "),4,':"),"'",'"")
job id=scan(scan(scan(rec,11,'""),1,'|"),2,'=");
exeg_host=scan(scan(Scan(rec,ll,'"'),2,'['),2,':'),
output;

end;

run;

The output SAS dataset then would look like that in Figure 2.
Figure 2: SCHEDULED_JOBS Dataset

SCHEDULED_JOBS »
V) | Fterand Sort S Query Builder P Where | Data + Dgscrive = Gragh « Anahge + | Expot + SeadTo ~ | B
; user_id Bowraid & 1b_flow & b _rave b d : oxec_start pme

COMBINE THE DATASETS CREATED TO CREATE A FINAL DATASET WHICH
WILL HAVE ALL THE INFORMATION ABOUT THE JOBS

In this section, we will use PROC SQL to join the datasets finished_jobs and scheduled_jobs.

The output dataset job_details will have the start_time, finish_time, run_time, execution
host, status and many more information about the jobs.

proc sql noprint;
create table job details

as
select

datepart (exec start time) as run date format=dateS8.,
a.x,

b.finish time,

b.job state,

b.job status cd,

(b.finish time - a.exec start time)/60 as run time
from scheduled jobs a

left outer join

finished jobs b
on a.flow run id=b.flow run id and a.job_id=b.job id

order by exec start time;
run;

The resulting output SAS dataset would look like that in Figure 3.
Figure 3: JOB_DETAILS Dataset

J08 DETALS
() | 33 Pt and Sot By Qumy Bulder Y Where | Dt » Dgscade » fraph « Aadge « | Eipost» SendTo» | B

wed [lwned § b fow

%

job_rame Brod 3 exsie § exkat n

v

DPA_PY Mondonsg PY Mondoreg

e UVE D logDeanp LIVE_DASH LogCleanp Goffalchl

MONITORING THE JOBS

Our aim is to identify failed and long running jobs. We will schedule the above SAS program
to run every 30 minutes and will add the below codes to identify the failed and long running
jobs.

As you know, jobs that have run successfully will have an exit code of 0 and a job which has
ran successfully but with some warnings will have an exit code of 1. So, in order to capture
only the failed jobs we will search for all finished jobs that have an exit code of 2 and
above.

Below PROC SQL statement will gather information about all the failed jobs in the last 30
minutes:

proc sql noprint;
create table failed jobs
as
select
user id,
flow run id,
job flow,
job name,
status,
job_ id,
job state,
job status cd,
start time,
finish time,
Cpu_usage_ sec
from finished jobs
where job status cd >= 2 and timepart(finish time)> time()- 1800;
run,;

Similarly, we will use the job_details dataset to identify long running jobs. Below PROC SQL
statement will identify the jobs that are running for more than 2 hours:

proc sql noprint;
create table long run jobs
as
select

user 1id,
flow run id,
job flow,
job name,
job id,
exec start time,
(time () -timepart (exec_start time))/60 as run time min
from job details

where finish time is null and timepart (exec start time)< time()-

7200;

run;

You can then include a SAS code to email you or your team with the details of failed and
long running jobs. In this paper, I have not included the code for sending email; however I

have given the sample emails that we get from our job.

Result 1: Sample email output that lists long running jobs

Subject:

§5G 94 Genie - Batch Jobs running for mare than 2 hours

SSG 94 Genie - Batch Jobs running for more than 2 hours

- 300CT2018 20:00

user_id | flow_run_id | job_flow job_name job_id | exec_start_time | run_time_min
harring | 140434 PEGA_PRIVATE | D05_-_Courrs_investment_incomplets [88593 | 300CT18:13:45:15 374867
horring | 140434 PEGA_PRIVATE | 062_-_Transootion_Primary 38604 | 300CT18:13:4620 373783
harrind | 140434 PEGA_PRIVATE | 062_-_Transoction_Primary 88608 | 300CT18:14:06:04 354,050
harring | 140434 PEGA_PRIVATE | D66_-_Transactions_SQ_-_ML 98815 | 300CT18:14:5839 301467
harrind | 140434 PEGA_PRIVATE | 066_-_Tronsactions_SQ_-_ML 88899 | 300CT18:15:19:07 281.000
Result 2: Sample email output that lists failed jobs
From: - - Sent: Mon01/10/2018
To e ———
Ce C——————
Subject: S5G 94 Genie - Failed Batch Jobs in the last hour
SSG 94 Genie - Failed Batch Jobs in the last hour - 010CT2018 05:00
user_id flow_run_id | job_flow job_name status job_id | job_state | job_status_cd start_time finish_time | cpu_usage_sec
op | 119281 FS_PAYLIO_FPS_P2_FLOW_747 Paylio_FPS_Flow_P2_747 Finiched job | 10414 | Exit 1853985733
rigf 119483 ! CMF_Jo61_CC_DD Finished job [10398 | Exit 1853986150
royare 119493 RIOI7_1_MIKRA J_CPOM_MIKRA_L Finished job | 10480 | Exit 1853987505
kumannd 119497 EXPL_FLOW_FIN_FCM_MIC310 EXPL_JOB_FIN_FCM_RES_MI0310 Finiched job | 10499 | Exit 1853988980
mukhesb 119510 FIN_PAYOPS_CHAPS_SCHEDULING_FLOW | FIN_PAYOPS_CHAPS_P1_PPY_SCHEDULING_2 | Finished job | O Exit 1853989222
mukhesh 119510 FIN_PAYOPS_CHAPS_SCHEDULING_FLOW | FIN_PAYOPS_CHAPS_P1_PUM_SCHEDULING_! | Firished job | 0 Exit 1853989223
shorhiz 119517 FSA_FATF FSA_FATF_DAILY Finished job | 10568 | Exit 1853989236

CONCLUSION

By having the above code running in your scheduler, you will be able to save lot of time and
will get notified well in advance about the failed and long running jobs. You can also create
a DataMart which contains information about all of the jobs running in Process Manager for
all days; which you can use later for any batch job performance analysis you may require.

RECOMMENDED READING

SAS® 9.4 Language Reference: Concepts, Sixth Edition

SAS® 9.4 DATA Step Statements: Reference

SAS® Note available at http://support.sas.com/kb/31/756.html

More information about history.log file is available at
https://www.ibm.com/support/knowledgecenter/en/SSZSHQ 10.1.0/source/history.log.n.5.
html

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Pradeep Ponnusamy

Royal Bank of Scotland Group
Gogarburn, Edinburgh EH12 9BH
United Kingdom

+44 7741036734
pradeep.ponnusamy@rbs.co.uk

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/kb/31/756.html
http://www.ibm.com/support/knowledgecenter/en/SSZSHQ_10.1.0/source/history.log.n.5
mailto:pradeep.ponnusamy@rbs.co.uk

