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ABSTRACT  

Condition-based maintenance (CBM) of critical high-valued machines is a typical Internet of 

Things (IoT) scenario. Key to CBM is monitoring important machine health parameters, such 

that maintenance can be based on the perceived condition of the machine, rather than 

performing preventive maintenance at intervals, where the likelihood of failures between 

repairs is very small, or performing corrective maintenance by running the machine until it 

fails and repairing it. Vibration data analysis is a key tool for understanding the internal 

condition of a machine, often when it is running continuously. This paper illustrates how to 

use the new digital filters, time-frequency analysis tools, machine learning algorithms 

available in SAS® Visual Data Mining and Machine Learning, and SAS® Event Stream 

Processing to monitor the real-time condition of a “live” variable-speed rotating machine by 

analyzing vibration sensor measurements obtained at sampling rates higher than 10,000 

Hz.  

INTRODUCTION  

Measurement and monitoring one or more health parameters is a critical component of 

condition-based maintenance (CBM), the practice of performing maintenance based on the 

perceived health of a machine. It is now generally accepted that CBM, where possible, is 

economically superior to the practices of preventative maintenance—conducting 

maintenance in predetermined, fixed time intervals where the likelihood of failures between 

repairs is very small—and the practice of run-to-failure or corrective maintenance, which 

refers to running the machine until it fails. CBM is particularly more economical in the case 

of high-valued machines that are typical in many IoT scenarios. Understanding the internal 

condition or health of a machine is not trivial, especially when the machine is constantly in 

operation, as is often the case.   

One popular way to monitor machine health is by analyzing vibration data. Vibration 

analysis requires a vibration sensor on the machine that can take multiple readings per 

second. The real-time analysis of such data requires analytical tools that can handle a large 

volume of data and turn this data into actionable insights in seconds to sub-second rates.  

The main purpose of this paper is to investigate the following research questions: 

• Can our more advanced analytical methods handle the large data volume typical of 

streaming sensor data? 

• What SAS tools are best to detect faults using vibration data? 

• Which is more effective: time or frequency domain analysis? 

• If the motor runs at different speeds, do we need different models? 

• Can we detect faults and use these tools in real time with data streaming at very high 

sampling rates?  
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EXPERIMENTAL SETUP 

The importance of vibration data analysis for effective CBM and the data requirements for 

thorough vibrational analysis make this a perfect test case to address our research 

questions. To conduct the research, we use the variable speed, three-phase Induction 

Squirrel Cage Motor equipped with three accelerometer vibration sensors owned by SAS 

(Figure 1). Using this machine, we run three experiments with the motor running at 25, 35, 

and 50 revolutions per minute (RPM), respectively.  

While running each experiment, we collect data from the vibration sensors at 12,800 Hz 

(that is, 12,800 data reads per second). Initially we collect approximately 10 minutes of 

data with the machine running under its current, presumed non-fault “normal” state. After 

approximately 10 minutes, we artificially change the state of the motor from this normal 

condition. To do this, we adjust the black knob on top of the blue plate near sensor Ai1. 

(Figure 1.) This adjustment effectively changes the alignment of the main motor shaft ever 

so slightly from its “balanced” state. To understand what happens as this knob is adjusted, 

see Figure 2. A twist of the knob raises the center rectangular section up slightly, changing 

the alignment of the shaft that runs through the hole illustrated in the center of this piece. 

In this way, we cause the shaft to become unbalanced. We then let the machine run in this 

new state with an artificially induced misalignment.   

 

Figure 2. Knob to Adjust Shaft Balance 

Figure 1. Variable Speed Squirrel Cage Motor 
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TIME DOMAIN ANALYSIS OF VIBRATION DATA 

In this paper, we focus on the first experiment where the motor ran at 25 RPM. We also 

focus on the data from the Ai1 sensor as it is located on the blue plate where we intervened 

and distorted the balance of the motor shaft. Figure 3 shows the time-domain waveform 

from the “normal” state (blue) followed by the data obtained after we adjust the state of the 

motor (red). Time (in minutes) is measured on the horizontal axis, and displacement due to 

vibration, referred to as the amplitude, is measured on the vertical axis. 

 

Figure 3. Raw Sensor Data from Ai1 over Time 

As evident in Figure 3, in the normal state the amplitude of the time waveform is relatively 

stable. Once the new state is introduced (red), the pattern slowly changes. By minute 11, 

the change of state appears obvious to the eye.  

We start our vibration data analysis by first focusing on the signal waveform, performing 

analysis in the time domain. When monitoring vibration, the root mean square amplitude 

(RMSA) of the signal is often tracked. If we let 𝑥𝑖 denote the 𝑖𝑡ℎ vibration sensor 

measurement, then RMSA is defined as:  𝑅𝑀𝑆𝐴 =
1

𝑁
 √∑ 𝑥𝑖

2𝑁
𝑖=1 , where N is the total number of 

measurements.  

The data in Figure 3 suggests that in addition to tracking RMSA, we might also want to track 

the kurtosis of the vibration data. Kurtosis, the fourth moment of a distribution, measures 

the thickness/thinness of the distribution tails (the proportion of the observations away from 

the mean of the series). In Figure 3, for example, we can observe the tails getting fatter the 

longer the machine runs in the altered state. Here, we use the standard formula to calculate 

kurtosis.  

To track both the kurtosis and RMSA over time, we calculate both statistics within a one-

second window of the signal (N = 12800 observations), and then recalculate their values by 

sliding the window half a second (window overlap ratio = 0.5).  The windowed estimates of 

RMSA and kurtosis over time are shown in Figure 4. To determine where an alert might be 

thrown, we use the first 75% of the “normal” data to estimate the standard deviation of 

each series.  We then draw the +/- 3-sigma boundaries on the respective graphs. (See red 

lines in Figure 4.) Based on the 3-sigma thresholds, an alert would likely be thrown at 10.78 

minutes as illustrated by the vertical black line in Figure 4.  
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If we overlay the time domain alert on the original data (Figure 5) we can see that the alert 

happens just before our eye would have noticed a problem.  

MONITORING SPECIFIC FREQUENCIES USING DIGITAL FILTERS 

Some signals are better understood in the frequency, rather than time, domain. Vibration 

signals from rotating equipment are a perfect example. Rhythmicity or cycles arise from 

components or parts that rotate. While an in-depth discussion of the relationship between 

the time and frequency domain is beyond the scope of this paper, Figure 6 provides the 

intuition that is needed to understand the analysis that follows. Thus far, we have focused 

on analyzing the amplitude of the waveform in time-domain as seen in Figure 6. As 

illustrated in this same figure, the time waveform can be decomposed into the frequencies 

that it consists of to obtain its spectrum.  

The (discrete) Fourier spectrum describes the magnitude of the various frequencies 

comprising the signal. The frequencies that one expects to see in the data depend on the 

characteristics of the machine being monitored. Motor characteristics like the speed of 

rotation or RPM, the diameter of the rotating components such as the shaft, and the size 

and number of ball bearings all affect what frequencies will be seen in the data. For 

example, to monitor the state of the inner-race that the ball bearings of our squirrel cage 

motor ride on, you should monitor frequencies around 53 Hz (assuming that the motor is 

running at 25 RPM). This frequency is derived based on the fact that the machine has seven 

ball-bearings that are 12mm in diameter, with a pitch diameter of 32mm, and a contact 

angle of 15 degrees. Similarly, you can use the motor design and specifications to derive 

which frequencies need to be monitored to verify that other components are working 

Figure 4. Root Mean Square Amplitude and Kurtosis over Time with 3 Sigma Bounds 

Figure 5. Time Domain Alert 
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properly. Once the frequencies of interest are identified, they can be monitored using a 

digital filter.    

 

Figure 6. The Relationship between the Time and Frequency Domains 

A digital filter takes a signal (input data), selectively chooses certain frequency components 

from the input, and produces a new filtered output series. The Butterworth and Chebyshev 

Type I and II digital filters are currently available in SAS. For our shaft imbalance 

experiment, we use a highpass Butterworth filter. The highpass filter we implement is 

designed to capture the frequencies 3840 Hz and higher from our original raw sensor data 

(𝑥𝑡).  The new filtered data is denoted 𝑦𝑡.   

Why did we choose this frequency band for our experiment? Because we did not know the 

exact consequences of our intervention on the state of the machine, we first analyzed the 

raw sensor data (in Figure 3) using Short-Time Fourier Transform (STFT) available in the 

Time Frequency Analysis (TFA) package in the SAS® Visual Forecasting product on SAS® 

Viya®. STFT takes a window of data (hence short-time) and computes the discrete Fourier 

transform of the windowed signal, which tells us which frequencies are most dominant in 

the data in that window of time. Then the window slides in time, and the Fourier spectrum 

of the next window of data is computed. For our analysis, we used a window size of 4096 

observations and then advance 2048 observations before computing the next STFT.  The 

results of the STFT are shown in Figure 7.  

The colors in the figure indicate the power/magnitude of the various frequencies (vertical 

axis) versus time (horizontal axis). The brighter the yellow color, the higher the 

power/magnitude. The blue vertical line in Figure 7 indicates where we intervened to change 

the state of the motor. The horizontal line indicates the cutoff frequency for our highpass 

filter (3840 Hz or 0.6 normalized frequency).  A significant change in the magnitude of the 

higher frequencies after our intervention is clear in Figure 7.  We chose our filter cutoff 

frequency based on this observation. The output series from the digital filter (𝑦𝑡, in yellow) 

and the original sensor data (𝑥𝑡, in green) are shown in Figure 8.  The stability of both the 

original sensor data and the filtered series before the intervention are evident. The change 

in model state following our intervention is evident almost immediately.   

To compare the change in the filtered (high frequency) series relative to the original series, 

we calculate the ratio (R) of their relative root mean square amplitude as: 
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𝑹 =

𝟏

𝑵
√∑ 𝒚𝒊

𝟐𝑵
𝒊=𝟏

𝟏

𝑵
√∑ 𝒙𝒊

𝟐𝑵
𝒊=𝟏

 using windows of size N= 512 observations.  See Figure 9 for the full ratio series 

and Figure 10 for a zoomed view of the series, where we show where a likely fault would 

have been thrown. Figure 10 illustrates how the alert based on the ratio RMS amplitude is 

much earlier than the alert based solely on the time domain analysis (kurtosis and RMSA).  

Both the STFT results (Figure 7) and the results based on the filtered series (Figure 8 and 

Figure 10) indicate that considering the frequency domain can be very fruitful, especially if 

you know what frequency range should be monitored.  

 

Figure 7. Short-time Fourier Transform on Raw Sensor Data (Ai1) 

  

 
Figure 8. Raw Sensor Data (Green) and Filtered Series (Yellow) 
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Figure 9. Ratio of RMS Amplitude: Filtered to Original Series 

 
Figure 10. Likely Alert Based on Ratio of RMS Amplitude 

REAL-TIME ANALYSIS USING SAS EVENT STREAM PROCESSING 

Analysis of the window estimates of both RMS amplitude and kurtosis is possible in SAS 

Event Stream Processing even when data is streaming at very high frequency such as 

12,800 Hz.  While it is impossible to show a demonstration of this happening in real time 

here, Display 1 (left panel) shows a screen capture of a working Streamviewer window. 

Streamviewer is a graphical user interface that allows the user to visualize streaming 

events.   

You can easily add threshold values and program SAS Event Stream Processing to throw an 

alert if the threshold is exceeded. Note though that the Streamviewer window statistics are 

not calculated using overlapping windows. Consider the case here where we use a window 

size of 12800 observations.  In this case, 12800 observations are collected as the data are 

streaming in, the statistic is calculated, and the data discarded. The next 12800 

observations are then collected, and the statistics recalculated. As Display 1 (left panel) 

shows, the graph is not much different from the overlapping window statistics calculated in 

SAS Viya (see Figure 4). 

The Butterworth digital filter is available in SAS Event Stream Processing, so we also 

implement the highpass filter described above. We then calculate and display the ratio of 

RMS amplitude of the filtered to unfiltered series on streaming data in Streamviewer. (See 

Display 1 right panel.) In SAS Event Stream Processing, it is easy to have an alert triggered 

once the ratio exceeds a specified threshold. In both cases, demonstrated in Display 1, the 

high data streaming rate is easily handled. 
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MONITORING THE WHOLE FOURIER SPECTRUM 

Instead of, or in addition to, monitoring a frequency band, you can monitor the whole 

Fourier spectrum to look for any changes in the spectrum. To do this, observe the motor 

operating in a normal or fault-free state, compute a “normal” or reference Fourier spectrum, 

and then compute the spectrum for incoming data and look for differences from the 

reference.  

The process of determining the reference spectrum is outlined in Figure 11. The reference 

spectrum will be computed offline by analyzing vibration sensor data under “normal” 

conditions. 

 

Figure 11. Estimating a Reference Spectrum 

Display 1. SAS® ESP Streamviewer: Streaming RMS Amplitude and Kurtosis (Left), Ratio 
RMS Amplitude Filtered to Non-Filtered (Right) 
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For our experiments, we used the first minute of data under normal operation at each speed 

to derive a reference spectrum. For the 25 RPM data, we calculate the STFTs as described 

earlier (windows of length 4096, with overlap 2048). We then average the STFTs computed 

over one minute (375 windows) to get the average Fourier spectrum. We follow by 

smoothing this spectrum using a median filter. The result is our 25 RPM reference spectrum. 

The averaged and final reference spectrum are shown in Figure 12. 

 

Figure 12. Average and Reference (Smoothed) Fourier Spectrum 

A procedure very similar to that outlined in Figure 11 is performed as the data streams in.  

The only difference is that we average Fourier spectrums over 20 seconds rather than a 

minute.  These average spectrums are then smoothed with a median filter and compared to 

the reference spectrum.   

 

Figure 13. Averaged Fourier Spectrum (20 secs.) Versus Reference (Blue=Normal, 
Red=Intervention) 

All the averaged spectrums of the streaming data are shown, along with the reference 

spectrum in Figure 13. Note that the reference spectrum is shown in green, all the 

spectrums computed during the normal operation are shown in blue, and those computed 

after the intervention are shown in red.  The reference spectrum is quite hard to see 
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because so many of the normal data spectrums lie directly on top of it. Note also that only 

one normal (blue) spectrum lies away from the reference, whereas most if not all the red 

non-normal spectrums lie clearly away from the reference.   

To effectively monitor the differences in spectrum on streaming data, we need a useful 

measure of distance from the reference spectrum.  Here we introduce two measures: 

• Mean Absolute Distance: 𝑫𝒎𝒆𝒂𝒏 = 𝑴𝒆𝒂𝒏(|𝑺𝒊𝒏 − 𝑺𝒓𝒆𝒇|) 

• Hausdorff Distance: 𝑫𝑯𝒂𝒖𝒔𝒅𝒐𝒓𝒇𝒇 = 𝑫𝑯 (𝑺𝒊𝒏, 𝑺𝒓𝒆𝒇) where 𝑫𝑯(𝑿,  𝒀) =

𝒎𝒂𝒙 (s𝑢𝑝
𝒙∈𝑿

inf
𝑦∈𝑌

𝒅(𝒙, 𝒚) , s𝑢𝑝
𝒚∈𝒀

inf
𝑥∈𝑿

𝒅(𝒙, 𝒚))  

where 𝑺𝒊𝒏 and 𝑺𝒓𝒆𝒇 are points on a streaming spectrum and the reference spectrum, at a 

given frequency, respectively. (See Figure 14.) Note that the Hausdorff distance is simply 

the largest of all the distances from a point on one spectrum to the closest point on the 

other.  

 

Figure 14. Calculating Distance from Reference Spectrum 

 

Figure 15. Distance Measure Results 

Figure 15 shows the results of the distance measures for all the 25 RPM data. The Hausdorff 

distance is shown in green and the mean absolute distance in black. Both distance measures 

detect the change in model state only a half a second after the intervention! As with the 

time domain analysis and the digital filter, we successfully implemented the entire workflow 

just outlined on SAS Event Stream Processing. Because the streaming version shows a 

figure identical to Figure 15, we do not show it here. 
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MONITORING THE WHOLE FOURIER SPECTRUM BY SEGMENTS 

In practice, once a change in the spectrum is flagged, the machine operator would likely 

want to investigate further to figure out which frequencies or frequency bands were the 

likely source of the shift in the spectrum. Rather than whole-spectrum monitoring at once as 

we did above, they might be interested in segment-by-segment monitoring of the whole 

spectrum. We illustrate how this can be done.  

To monitor the entire Fourier spectrum by frequency band segments, our first task is to 

determine the frequency segments. There are several ways this can be done. First, the 

segmentation can be done based on frequencies most relevant given the motor design. 

Second, we could look at the average spectrum under “normal” or fault-free, stable 

conditions and segment it based on common sense.  Because we are not vibration or 

machine experts, we decided to use statistics to help us come up with the segments.  

We tried segmenting the “normal” Fourier spectrum based on several different 

representations of it (such as power, magnitude, cumulative power over frequency, and 

cumulative magnitude over frequency). The segmentation based on cumulative magnitude 

gave us what seemed to be the most logical segmentation results. First, sections of the 

spectrum with higher power were largely in the same segment.  Further, the segmentation 

results were quite similar across the three different speed experiments. Lastly, our ability to 

detect the change in model state was similar no matter which experiment’s segmentation 

results were used. Thus, we segment cumulative (over frequency) magnitude.  

To segment the cumulative magnitude, we used the SEGMENTATION function in the Time 

Series Analysis (TSA) package in the TSMODEL procedure (Leonard and Trovero 2014). We 

approximated the cumulative magnitude curve for the 50 RPM experiment using thirteen 

linear segments. Figure 16 shows these 13 segments on both the cumulative magnitude and 

power of the normal spectrum for the 25 RPM experiment. 

 

Figure 16. Frequency Segments of Cumulative Magnitude (dB) 25 RPM Experiment 
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Once the frequency segments to monitor were identified, we began our offline training. The 

offline training here begins like the offline training for monitoring the whole spectrum at 

once. (See Figure 17.)   

1. We begin by performing STFT on the “normal” data using a window size of 4096 

observations and then skipping ahead 2048 observations.   

2. We then calculate a moving average of 125 STFT windows (20 seconds). For each of 

these 20 second average spectrums, we calculate the average spectrum magnitude 

in each of the 13 frequency segments.   

3. Finally, we evaluate how the magnitude in each segment varies across time under 

the “normal” condition.   

 

Figure 17. Offline Training: Monitoring Frequency Segments 

 

Figure 18. Average Magnitude in 13 Frequency Segments over Time 
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Figure 19. Average Magnitude in 5170-5852 Hz Segment with +/- 3 Sigma Bounds 

The bottom-right small graph in Figure 17 shows the relative stability of the magnitude of 

the averaged spectrums in the 13 segments over time under the “normal” condition.  Upper 

and lower bounds are easy to establish, using, for example, a +/- 3-sigma rule for each 

segment. Figure 18 illustrates how the magnitude in these segments varies over the whole 

25 RPM experiment. Changes in many of the segments immediately following the 

intervention are obvious. Note that the transition from blue (normal) to red is gradual as the 

samples in between will initially (20 seconds) have a mix of the “normal” and post 

intervention data. Figure 19 shows monitoring results from segment 11 (5170-5852 Hz) 

using the +/- 3-sigma rule.  An alert is triggered in just over 7 seconds following the 

intervention.  

Is there a way to monitor all the segments together? Yes, we did this when we 

monitored the whole spectrum earlier!  

What happens if we run the motor at another speed? Will the whole spectrum and spectrum 

segment monitoring approaches change?  Clearly, as we change the rotational speed of the 

motor, we expect the Fourier spectrum to change. Thus, the average magnitude in the 

various segments will also change. This does not render the approaches invalid. It just 

means that you have to compute a new reference spectrum and/or determine new bounds 

on the frequency segments.  This is a relatively simple thing to do.    

Is there any way we can avoid having to change reference spectrum and/or 

bounds as the machine conditions change? One possible approach is Support Vector 

Data Description (SVDD) (Tax and Duin 2004).  SVDD can theoretically handle multiple 

“operating modes”.  Briefly, SVDD is a one class classifier.  In our case, the one class is the 

“normal” operating condition and in our experiments, normal includes running the machine 

at 25, 35, and 50 RPM (multiple operating modes) when everything is “normal”.  Intuitively, 

SVDD finds a minimum radius boundary around the data characterizing the normal 

condition(s).   

Then as additional data are generated, the model assesses whether the new data are close 

enough to the “normal” operating condition description.  SVDD can handle multivariate data 

and the boundaries around the data can be very flexible if a kernel function is used. To see 

this, consider Figure 20, where we illustrate SVDD results for a system that is assumed to 

have three different operating modes and only two sensors.   

• The normal operating data are shown in the left graph.   

• The SVDD results are shown in the right graph.   
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• The areas of normal operation as characterized by the SVDD model are shaded in 

dark gray.  Any new data streaming in that lie outside these gray areas would be 

considered NOT “normal”.  

In theory, a single SVDD model could capture the normal condition of our motor running at 

multiple speeds.  How well the model works in practice depends on whether the non-normal 

modes at the different speeds are also outside all the normal modes (at all speeds).  

 

Figure 20. SVDD Under Multiple Modes of Normal Operation    

To train an SVDD model for our three experiments, we use 75% of the normal data for each 

speed. The value of Gaussian bandwidth parameter plays an important role in getting a 

good training data description. We used the SVDD procedure available in SAS Visual Data 

Mining and Machine Learning. The SVDD procedure supports Mean (Chaudhuri et.al 2017), 

Mean2 (Liao et.al 2018) and Trace (Chaudhuri et.al 2018) criterion for bandwidth selection. 

We use the Trace bandwidth selection criterion in this analysis. We then score the model on 

all three data sets to assess model performance to see how quickly it can find where we 

intervened at each speed. Note that since we model all three experiments together, we just 

have one critical value for all the speed experiments.   

 

Figure 21. SVDD Results 25 RPM Experiment 
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Figure 21 shows the performance of our SVDD model for the 25 RPM experiment.  It alerts 

that there is a change from the normal condition 7.6 seconds after the intervention.  Notice 

that the alert comes when the spectrums being averaged contain a mix of the “normal” and 

“changed” condition!  

 

Figure 22. SVDD Results 35 RPM (Left) and 50 RPM (Right) 

The SVDD results for the other two experiments are shown in Figure 22.  The results are 

like those in the 25 RPM experiment—quite impressive.  These results suggest that if you 

train an SVDD model using normal conditions from all speeds at which the motor is to be 

run, the model should be able to detect changes in normal conditions.  Whether the model 

remains successful for other non-normal conditions depends on how different from the 

normal operation at any speed these non-normal conditions are. How could one assess 

whether this was true or not (presuming other fault data are available)? ALL we need to do 

is to visualize our 13-dimensional data!  

Fortunately, there have been some interesting developments in tools designed to help 

visualize multidimensional data. The TSNE procedure in SAS VDMML implements t-

distributed Stochastic Neighbor Embedding—one such method of visualizing 

multidimensional data (Van der Maaten and Hinton 2008). Looking at the 13 variables used 

to train and score our SVDD model will help understand the performance of the SVDD model 

shown above.  Recall these 13 variables describe the average magnitude of the Fourier 

spectrum in the different frequency segments.  We use TSNE procedure to visualize these 

13 variables in 2 dimensions. The results are shown in Figure 23. 
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Figure 23. t-SNE Results by RPM (25 Blue, 35 Red, 50 Green) on Left; Normal (Blue)/Not (Red) on Right 

The left panel in Figure 23 shows the 2-D visualization of our data by speed: Blue = 25 

RPM, Red=35 RPM, and Green=50 RPM.  Interestingly, most of the data from each of the 

RPM experiments lie in an almost circular data cloud. But then there are some odd tails!  A 

look at the right panel shows exactly what the tails are about. They are the data points post 

intervention! Although the data points are not completely visible, you can see that some of 

the post intervention data for the 35 and 50 RPM experiment do lie in the “normal” data 

cloud—explaining the slightly worse SVDD results for these experiments. Although we 

cannot show an animation here, if you animate the above graphs by time, you can see an 

almost circular motion in the dense circles. Then once the intervention happens, the data 

shoots away from the “normal” area.  The TSNE procedure provides valuable insight into 

what the normal or stable, fault-free motor conditions look like for different motor speeds 

and why the SVDD model works well for the intervention in these experiments.   

Once again, we can do all the above real-time analysis using the SAS Event Stream 

Processing with data streaming at 12800 reads per second.  Display 2 is a screen capture of 

the Streamviewer of the Frequency Segment Monitoring and the SVDD model scoring 

results as the data stream in.  The SVDD model is trained offline and the incoming data 

scored using an ASTORE. 

 

Display 2. ESP Streamviewer:  Frequency Segment Monitoring and SVDD Score Results 
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CONCLUSION 

This paper explores the effectiveness of some of the more advanced SAS analytical tools to 

analyze sensor data streaming at high sampling rates.  Given the large volume of data 

needed to study machine vibrations and the importance of vibration analysis in assessing 

the health of high-valued machines for condition-based maintenance, we focused on 

vibration data. We used a variable speed, three-phase Induction Squirrel Cage Motor 

equipped with three accelerometer vibration sensors. Using this machine, we ran three 

experiments with the motor running at 25, 35, and 50 revolutions per minute (RPM). First, 

the motor was run in its usual stable state or under “normal” conditions, and then we 

intervened to slightly change the adjustment on the motor shaft.  We then proposed several 

methods to analyze the vibration data with the goal of early detection of the changed state 

due to the intervention.  

Initially we focused on time domain analysis and monitored the Root Mean Square of the 

Amplitude (RMSA) and the kurtosis of the raw vibration sensor series using moving windows 

of data over time.  We detected the change in motor state just over one minute after the 

intervention in real time using SAS Event Stream Processing. Next, we illustrated how we 

could detect the change in model state much faster with a combination of frequency and 

time domain analysis.  We demonstrated how to isolate the frequency band of interest using 

the new Butterworth digital filter and then used the ratio of RMS amplitude of the filtered 

time series relative to the original signal to detect change. This ratio was able to detect the 

machine change of state in under eight seconds. This vibration analysis technique, 

demonstrated in real time in SAS Event Stream Processing, will be very useful in those 

cases where analysts know exactly which frequencies need to be monitored based on the 

machine design and its operating parameters.  

Next, we switched entirely to the frequency domain.  Here we proposed a method of 

monitoring changes in the entire Fourier spectrum using Short-Time Fourier Transform 

(STFT) and a novel, relatively simple distance measure (Hausdorff). Both STFT and the 

distance measures were easy to implement on streaming data in SAS Event Stream 

Processing, and this method detected the change in model state under one second after the 

intervention. This method has the slight inconvenience of requiring recalibration of the 

reference spectrum whenever the motor condition (speed or otherwise) changes.   

To help analysts understand the specific frequency segments that seem to be changing, we 

propose another method of monitoring the full Fourier spectrum, but now we monitor the 

spectrum in frequency segments.  We propose several techniques for segmenting the 

spectrum, including using the SEGMENTATION function in the Time Series Analysis (TSA) 

package in the TSMODEL procedure. Once the segments are determined, the monitoring 

technique uses STFT.  The results from STFT are aggregated by segment to greatly reduce 

the data required in analysis.  We demonstrate how to monitor the average magnitude of 

the frequency in each segment using simple threshold limits and/or train an SVDD model 

using the “normal” operation data and then score on incoming data. We show how both the 

individual segment monitoring and SVDD model can be implemented in real time in SAS 

Event Stream Processing and how they both detect the change in motor state very quickly. 

A nice advantage of the SVDD model is that the same model can be used to monitor the 

motor running at multiple speeds if normal operating data at each of these speeds are used 

in training.  

The surprisingly effective performance of the SVDD model at all motor speeds examined in 

this study made us curious about how disparate the normal-state data clouds were at the 

different speeds and where the data from the altered model state were relative to the 

normal states. To help us understand what was happening in the 13-dimensional space 

occupied by our data, we used a new TSNE procedure at SAS that allows you to look at 
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high-dimensional data in two or three dimensions. The results showed clearly why SVDD 

worked so well.  An obvious extension of this work is to expand the experiments to include 

more speeds and include various load conditions and other faults to see if the success of the 

current analysis generalizes under more scenarios.   

The clear conclusion of this paper is that some very advanced analytical techniques can be 

used with SAS Event Stream Processing to successfully monitor machine health with data 

streaming online at high sampling rates.   
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