Paper 3137-2019

SAS® Viya® and Kerberos: From the Ground Up
Michael Shealy and Spencer Hayes, Cached Consulting LLC

ABSTRACT

Kerberos is a network authentication protocol commonly found in medium and large
enterprises. It uses strong cryptography to prove the identities of users, hosts, and
services. SAS® has long been able to integrate with Kerberos to not only support its
authentication strengths, but to enable user-friendly features such as Integrated Windows
Authentication (IWA). However, SAS delegates some key configuration and operational
tasks to the Kerberos realm and operating system layers, and their respective
administrators. These include Kerberos principal configurations, ticket requests, ticket cache
management, OS-layer authentication, and more. For this reason, it can be difficult for SAS
administrators to fully see and understand the entire SAS and Kerberos integration picture.

We outline the configuration of a real-world proof-of-concept environment, which includes
SAS® Viya® and Hadoop over CentOS, integrated with Microsoft Active Directory Kerberos
authentication, and with support for IWA from the user's desktop. With a deep
understanding of how this specific environment is configured for Kerberos integration from
the OS layer up through the applications, SAS administrators should be able to better
understand deployment and integration options in their own corporate environment. They
should also be able to improve their troubleshooting capabilities in existing environments
with Kerberos integrations.

Note that the key purpose of this paper is not to show each step of the kerberization
process in explicit detail. Our environment consisted of CentOS 7.6, Cloudera 6.1.1, and
SAS Viya 3.4, and if we took that approach this paper would quickly become stale. Instead
our approach is to systematically walk through the key configurations that are common
across all kerberized application deployments on Linux operating systems, using Hadoop
and SAS Viya as examples, in an effort to keep this paper relevant for years to come.

TABLE OF CONTENTS

e Kerberos Basics

e Linux Operating System Configuration
e SSH Kerberos Configuration

e Kerberos Principals — Deep Dive

e Hadoop Kerberos Configuration

e SAS Viya Kerberos Configuration
e Desktop IWA Configuration

KERBEROS BASICS
OVERVIEW

Kerberos is a network authentication protocol that uses encrypted “tickets” to allow users
and services to securely prove their identity to each other. We'll explain the basics of how
Kerberos uses these tickets to authenticate users in an example shortly, but first a quick
history and a few important definitions.

HISTORY

Kerberos was first developed in the late 1980s at the Massachusetts Institute of Technology
(MIT), and the “MIT Kerberos” distribution maintained by MIT remains a popular distribution
in the marketplace. Beginning with the "Windows 2000” software, Microsoft made Kerberos
its default authentication protocol, and now Microsoft's “Active Directory” (AD) Kerberos
variant is likely the most popular implementation of the Kerberos protocol worldwide.

DEFINITIONS

KDC (Key Distribution Center): The KDC Server is the central “brain” of the Kerberos
infrastructure, and maintains a database of user, host and service identities and their
passwords. The KDC is composed of two components, an Authentication Server (AS) and a
Ticket Granting Server (TGS), which often reside on the same host. A SAS Administrator
normally will not need to worry about the different roles of the AS and TGS, and can simply
refer to the system as the “"KDC"”, but the two components are important for explaining a
few of the core Kerberos communications we cover below.

Kerberos Realm: A Kerberos realm is a defined set of users, hosts and services (e.g.
instances of SAS CAS, http, ssh, or Hadoop hdfs on a network) which are known and
managed by an instance of a KDC. A realm name frequently looks like a DNS domain, but
by convention it consists of uppercase letters. In our paper, our realm name is
CCLLC.INTERNAL. Note that multiple KDC’s in a Master/Secondary configuration may
support a single Kerberos realm for availability and performance reasons, but they will
operate with the replicated contents of the same Kerberos database.

Kerberos Principal: A Kerberos Principal is a user, host or service known to a Kerberos
realm. The name of a Kerberos Principal consists of three parts: the primary, the instance
and the realm in the format primary/instance @REALM.

e The primary can be any ascii string which can represent a user, host or service in a
realm (e.g., “bill” for user Bill, “sascas” for Viya CAS, or “http” for Web Services).

e The instance is an optional ascii string that qualifies the primary, in order to ensure
naming uniqueness across the realm. It is generally the fully-qualified domain name of
a server or a DNS alias, but in MIT Kerberos the instance-string “admin” often defines
the Kerberos administrator accounts as well.

Here are a few examples of principals we’ll use later in this paper:

e bob@CCLLC.INTERNAL: The User Principal for person “bob” in the CCLLC.INTERNAL
realm.

e dilviyasvclayerl$@CCLLC.INTERNAL: The “User-like” Principal for computer
dlviyasvclayerl (one of two Viya service-layer/programming hosts in our environment).
These “machine account” principals are only used in AD, and we'll clarify “user-like” later
in the paper.

e sascas/dlcasprimary.cclic.internal @CCLLC.INTERNAL: The Service Principal which
supports the kerberized CAS service on our primary CAS server,
dlcasprimary.cclic.internal.

KERBEROS AUTHENTICATION EXAMPLE

One of the strongest reasons to use Kerberos is because it does not send passwords over a
network, where they are vulnerable to be stolen. Kerberos can do this by encrypting
communications with secret keys created from a password, instead of sending the password
itself to a server to authenticate. As long as both the user and the server know the user’s

mailto:bob@CCLLC.INTERNAL
mailto:d1viyasvclayer1$@CCLLC.INTERNAL
mailto:sascas/d1casprimary.ccllc.internal@CCLLC.INTERNAL

password, they can send private messages to each other by creating a secret encryption
key with that password via an agreed-upon algorithm.

An example will help explain how this works. Note that we have simplified the Kerberos
communications in this example, to convey the key information necessary to understand the
remainder of the paper. References containing more detailed explanations of the Kerberos
communications are available at the end of the paper.

Imagine we have an environment where user “Bob” wants to access SAS Viya Visual
Analytics in his browser, but SAS is using Kerberos security for authentication. How can
Bob access the system? “klist” is the program used to show which Kerberos credentials a
user has, and at the beginning of our story Bob has none (see Output 1).

Step 1

In order to acquire the Kerberos credentials he needs, Bob will first send a request to the
KDC “Authentication Server” (see Figure 1), and ask for a “Ticket-Granting Ticket” (TGT).
This TGT will be needed to talk to the KDC “Ticket Granting Server”, who will soon help
facilitate access to the SAS Viya Visual Analytics application.

MSG A KDC

[USERMAME: BEOB]

_//

“"Bob

SAS® Viya®
Web Service
(HTTPS)

Figure 1. Initial User Request To The KDC Authentication Server

The process of acquiring a TGT can be started with the “kinit” command, which prompts Bob
for a password, as shown in Output 2.

Ebub@aiﬁrbclieﬁf =jé kinit

Password for bob@CCLLC.INTERNAL: |

Output 2. Kinit Command Line Prompt For A Password

Step 2

MSG B KDC

Bob-to-TGS Session Key]
Bob MSG C

USERNAME: BOB
Bob-to-TGS Session Key

—

SAS® Viya®
Web Service

(HTTPS)

Figure 2. KDC Authentication Server Reply To User (With TGT)

The KDC Authentication Server will send Bob back two messages (see Figure 2), one which
he can decrypt and one which he cannot.

Message B is encrypted with a secret key created with Bob’s password (which the
Authentication Server knows). This message will be decrypted with the password Bob
typed in when he ran “kinit” on his computer. The message contains a second secret
encryption key, which will be used to secure future communications between Bob and the
Ticket Granting Server (the “"Bob-to-TGS Session Key”).

Note that Bob cannot acquire the soon-to-be-necessary second secret key unless he can
decrypt Message B, and Message B can only be decrypted by Bob typing in his correct
password...this is the fundamental way Kerberos can authenticate users without a password
actually traversing the network. If Bob types in an incorrect password and Message B
cannot be decrypted, he'll receive a message saying so (see Output 3).

[bob@dikrbclient ~1$ kinit
Password for bob@CCLLC.INTERMAL :

kinit: Password incorrect while getting initial credentials

Output 3. Kinit Display With Incorrect Password Entry

Message C is encrypted with a secret key created with the password of the Ticket Granting
Server (which the KDC Authentication Server knows, but Bob does not). The message
contains Bob’s username and a copy of the “"Bob-to-TGS Session Key”. It is usually referred
to as the “Ticket Granting Ticket” (TGT) in Kerberos documentation.

When Bob enters his correct password, his klist output will look like Output 4.

[bcb@dlkrbclient ~]1s klist
Ticket cache: FILE:/tmp/krbScc_12081
Default principal: bob@CCLLC.INTERNAL

Valid starting Explres Service principal
R3/23,/2019 19:39:39 83/24/2019 B5:39:39 Firbtgt,"[:i:LL[:.II"JTEF?.I"JAL@[:ZEZLLI:.Il"JTEFil"ML
renew until 83/30/2019 19:39:36

Output 4. Klist Display Showing Ticket Granting Ticket (TGT)

It shows that User Principal “bob” is in possession of a ticket associated with Service
Principal “krbtgt”, which is a Ticket Granting Ticket supporting communications with the
Ticket Granting Server. The output also shows information such as the location where the
ticket is stored, and its expiration date.

Step 3

MSG C KDC

USERNAME: BOB
Bob-to-TGS Session Key

MSG D

Requested Service: SAS]

USERNAME: BOB
TIMESTAMP

SAS® Viya®
Web Service
(HTTPS)

Figure 3. User Request To KDC Ticket Granting Server For A Service Ticket

Bob will then ask the Ticket Granting Server (TGS) for a ticket to talk to the Kerberos-
secured SAS Visual Analytics web application. Bob sends two messages to the TGS (see
Figure 3).

Message D consists of the TGT (which Bob could not decrypt, but the Ticket Granting
Server can), along with the name of the application service that Bob wants to talk to (SAS).

Message E is called an “Authenticator”, and it’s essentially Bob’s name and a timestamp,
encrypted with the “Bob-to-TGS Session Key”, which Bob acquired by decrypting Message
B.

Step 4

The Ticket Granting Server will then decrypt the TGT in Message D using a secret key
created with the Ticket Granting Server’'s own password (which the Authentication Server
used to encrypt it), and acquire Bob’s name and the “Bob-to-TGS Session Key”. With the
“Bob-to-TGS Session Key” it can then decrypt Message E, and if:

e The username in Message E matches the username in Message D, and
e The timestamp in Message E is within a tolerable level (usually 5 minutes)

...then the authentication process will continue forward.

KDC

Bob-to-SAS Session Key

Bob-to-SAS Session Key

SAS® Viya®
Web Service
(HTTPS)

Figure 4. KDC Ticket Granting Server Reply To User (With Client-to-Server Key)

The TGS will return Bob two additional messages (see Figure 4).

Message F will be a "Bob-to-SAS Session Key” that Bob can use to talk securely to the SAS
application, encrypted with the “"Bob-to-TGS Session Key”. Bob is able to decrypt this
message immediately.

Message G is encrypted with a secret key created with the password of the SAS Application
(which the KDC Ticket Granting Server knows, but Bob does not). The message contains
Bob’s username and a copy of the “"Bob-to-SAS Session Key”. This is known as the “Client-
to-Server” ticket in Kerberos documentation.

Bob’s klist will now look like Output 5.

[bobédlkrbclient ~1% klist
Ticket cache: FILE:/tm Scc_1201
Default principal: @c C.INTERNAL

valid starting Service principal

03/23/2019 20:58:31 krbtgt/CCLLC. INTERNAL@CCLLC. INTERNAL
renew until @: g ; ;

03/23/2019 21:08:28 ¢ 9 € i HTTP/d1lviyasvclayerl.ccllc.internal@
renew until @: g : :

@3/23/2019 21: 3 g HTTP/dlviyasvclayerl.ccllc.internal@CCLLC. INTERNAL
renew

Output 5. Klist Display Showing HTTP Service Tickets

It will show that User Principal “bob” is in possession not only of the Ticket Granting Ticket
acquired earlier, but also “Client-to-Server” service tickets for the SAS application. Since
the SAS Visual Analytics application is web-based, the service’s name begins with “http”.

Step 5

KDC

Bob-to-SAS Session Key

)

——_ SAS® Viya®

= Web Service
[MSGI] (HTTPS)

~“Bob

USERNAME: EOB
TIMESTAMP

Figure 5. User Request To Kerberized Application Server For Access

Bob will then send two messages to the SAS Application (see Figure 5).

Message H is simply passing Message G (the Client-to-Server ticket) over to SAS, which is
encrypted with the SAS Application’s password (which Bob didn’t know).

Message I is another “Authenticator”: Bob’s name and a timestamp, but this time
encrypted with the “"Bob-to-SAS Session Key”, which Bob acquired by decrypting Message F.

The SAS Application Server will then decrypt the Client-to-Server ticket in Message H, using
the secret key created with the SAS Application’s own password (which the Ticket Granting
Server used to encrypt the message), and acquire Bob’s name and the “Bob-to-SAS Session
Key”. With the "Bob-to-SAS Session Key” it can then decrypt Message I, and if:

e The username in Message H matches the username in Message I, and
e The timestamp in Message I is within a tolerable level (usually 5 minutes)

...then the SAS Application will consider Bob “authenticated”, and Bob will be allowed to
access his SAS applications.

Success!

KEYTABS

With our Kerberos authentication example complete, we need to cover one more basic
Kerberos topic. Message B above was encrypted with a secret key based on Bob’s
password, and it was decrypted by having Bob type his password in at the command line
when he ran “kinit”. The Ticket Granting Server is part of the KDC, and so it can always
access its password to decrypt the TGT in Message D. But how did the SAS Application
know its password, to decrypt the Client-to-Server ticket in Message H?

Kerberos uses a file called a “keytab” to help application services with this issue. A keytab
stores pairs of principals and encrypted passwords in a non-human-readable form in a file
on a filesystem, and these principal/password pairs can be used to encrypt and decrypt
messages without being prompted for the password. When a kerberized service starts on
Linux, it references its private keytab to acquire what it needs to encrypt/decrypt messages.
We'll discuss keytabs in more detail later in the paper, but for now just be aware that
kerberized services such as ssh, SAS, http, and others need a keytab file on Linux in order
to perform their function in Step 5 above.

LINUX OPERATING SYSTEM CONFIGURATION
BASIC PREREQUISITES

We'll need a few prerequisites configured before we can move forward with our Kerberos-
enabled host setup:

1. The fully-qualified domain name (FQDN) of each of our servers must be registered and
at least forward-resolvable in DNS, as Kerberos uses DNS extensively during processing
and communication. Depending on your organization, this may require a request to
your “"DNS Team”, or it may be handled automatically during your server’s registration
to an AD domain (below).

2. NTP (Network Time Protocol) must be installed and running on the server, in order to
ensure an accurate server clock. This is critical in order to ensure that the timestamps
on the Kerberos communications we discussed above are within allowed tolerances,
which Kerberos uses to protect against replay-attacks. The ntp package can be installed
with yum:

yum install ntp

3. Where any installations of Java are involved during the Hadoop and SAS deployment
process, if a version lower than 1.8ul61 is used, the Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files must be installed. These are necessary to
support AES-256 encryption by Kerberos. From version 1.8u161 onward, Java includes
the Policy Files in its software distribution.

KRB5-WORKSTATION

Next, we need our server to be able to “speak” Kerberos. This functionality is provided by
the krb5-workstation and krb5-libs rpm packages. Install the packages with yum:

yum install krb5-workstation krb5-1ibs

These two packages provide key Kerberos tools such as kinit (to obtain and store TGTSs),
klist (to show acquired TGTs and service tickets), ktutil (to create and manage keytabs),
and kdestroy (to remove TGTs and service tickets), as well as critical shared libraries and
configuration files needed to support Kerberos functionality on the server.

Note that even with a missing master Kerberos configuration file (/etc/krb5.conf, which we'll
discuss shortly), the toolkit loaded by krb5-workstation and krb5-libs allows our server to
communicate with a Kerberos realm. Assuming our Kerberos realm has DNS “SRV” records
in place to help clients find the KDC (automatically set up with AD Kerberos, common in
enterprise deployments of MIT Kerberos), we could acquire a TGT for a user (see Output 6).

[root@dlkrbclient ~]#|cat fetc/krb5.conf

cat: fetc/krb5.conf: No such f or directory
[root@dlkrbclient ~ <1n1t bob@CCLLC.INTERNAL
Password for bobg@ INTERNAL :
[root@dlkrbclient 15

Ticket cache: FILE:/tmp SCC|
Default principal: bob@CCLLC.INTERNAL

Valid starting Expires Service principal
03/23/2019 21:15:14 @: 819 14 krbtgt/CCLLC. INTERNAL@CCLLC . INTERNAL
renew untal 8 20 s1e]

Output 6. User Acquiring A TGT With A Minimal Kerberos Configuration

/ETC/KRB5.CONF

The /etc/krb5.conf file is the main Kerberos configuration file. While the file can be long
and confusing in some environments, Output 7 displays a simple version which covers the
requirements for our paper’s SAS/Hadoop environment.

[root@dikrbclient etcl# cat setc/krb5.conf
[libdefaults]

default_realm = CCLLC.INTERNAL

rdns = false

forwardable = true

ticket lafetime = 24h

renew Lifetime = 7d

default_ccache_name = FILE:/tmp/krb5cc_%{uid}

[realms]
CCLLC.INTERNAL = {
<dc = deBl.ccllc.internal
admin_server = dcBl.ccllc.internal

Output 7. Kerberos Master Configuration File Contents (/fetc/krb5.conf)

Entries:

e default realm: When a specific " @REALM” is not specified in a Kerberos command,
this realm will be assumed. CCLLC.INTERNAL is the realm name of our AD domain in
this paper.

e rdns: Enterprises generally have control of their "Forward DNS” (resolving a hostname
into an IP address), but they frequently do not control their "Reverse DNS” (resolving IP
addresses back to hostnames). Setting rdns=false allows Kerberos to function in such

environments, where the Forward DNS and Reverse DNS entries are not in-sync.

o forwardable: Allows the KDC to automatically issue a new TGT for a different host,
based on an original “forwardable” TGT. See the discussion of our ssh configuration
below for how this feature will be used.

o ticket lifetime/renew lifetime: Attempts to acquire TGTs with a longer
active/renewable lifetime than the general (short) KDC defaults, in order to ease TGT
management for users. Maximum values can be set at the KDC, however, and so there
is no guarantee that the requested values will be honored.

o default ccache name: A pattern for the name of the file that will store acquired TGTs
and service tickets. Although the value above is generally the default, it is good practice
to explicitly set the value as we’ll need to sync it with the pam_krb5/SSSD configuration
later.

e [Jrealms] section: Establishes various properties for each Kerberos realm, such as
where the Realm KDC and Admin Server are located on the network.

JOINING A REALM/DOMAIN

The simple configuration above could be leveraged to provide access to a remote kerberized
Hadoop instance from an unkerberized SAS environment, because we are able to acquire a
valid TGT which could be used downstream to authenticate to the Hadoop instance.

In this paper’s environment, however, we will have a fully-kerberized SAS and Hadoop stack
local on the servers. In order to support this, we will want to “register” the server in the
Kerberos realm, known as “joining the domain” to Active Directory, or “adding the host” to
an MIT realm. Once the server is added to the Kerberos realm, it can serve as a platform
for hosting kerberized OS-layer services that we’ll need later, such as local passwordless ssh
logins using Kerberos tickets.

The easiest way to join an AD domain on CentOS or RedHat is to use the “realmd” rpm
package, available via yum. In one step, it can join the domain as well as implement the
SSSD configuration we’ll cover later. However, using realmd as an “easy button” for our
paper will make it more difficult to truly understand how our Kerberos configuration works,
and so we'll instead use the individual commands that realmd uses under the covers.

We start with the “adcli” (AD Command Line Interface) tool to join the domain, available via
yum:

yum install adcli

The adcli command can acquire some basic information about our “ccllc.internal” AD domain
before we even join (see Output 8).

[root@dlkrbclient etcl# adcli info CCLLC.INTERNAL
[doma1in]

domain-name = ccllc.internal

domain-short = CCLLC

domain-forest = ccllc.internal

domain-controller = decBl.ccllc.internal

domain-controller-site = Default-First-Site-Name

domain-controller-flags = pdc gc ldap ds kdc timeserv closest writable full-secret ads-web
domain-controller-usable = yes

domain-controllers = dec@l.ccllec.1internal

[computer]

computer-site = Default-First-51te-Name

Output 8. Using adcli To Acquire Information About An AD Domain

10

Then it can be used to register our host in AD, using AD’s Administrator password (see
Output 9).

[root@dlkrbclient etcl# adcli join CCLLC.INTERNAL

Password for Administrator@CCLLC.
[root@dlkrbclient etcl# I

Output 9. Using adcli To Join An AD Domain

After registration, our host will appear in our AD domain (see Display 1).

B Active Directory Users and Computers \;‘i-
File Action View Help
N EEIEEENE RS Y R &5
] Active Directory Users and Computers | Mame - Pre-Windows 2000... Type Description
I [Saved Queries 1L D1KRBCLIENT D1KRBCLIENTS Computer
4 34 ccllcinternal

> || Builtin

I 2 cloudera

| Computers

- (2| Domain Controllers

[|| ForeignSecurityPrincipals

- || LostAndFound

> || Managed Service Accounts

I .| Program Data

[|| System

B | Users

Display 1. A Host After Joining An AD Domain

HOST KEYTAB

Joining the domain above automatically places a keytab file at /etc/krb5.keytab on a Linux
host and protects it with root-only access (see Output 10).

[root@dlkrbclient etcl# ls -al Jfetc/krb5. keytab

Jetc/krbs . keytab

Output 10. Host Keytab Location And Permissions

As discussed above, a keytab is used by services to be able to decrypt messages created by
the KDC, shown in Step 5 of our Kerberos Authentication Example above. This particular
keytab is called the “"Host Keytab”, and it is used to validate kerberized access to specific
OS-layer services such as ssh that run as root on our Linux server.

A keytab’s contents can be examined using the klist command. In Output 11 we can see
that Kerberos Services with primary name “host” and an instance name referring to host
dlkrbclient in our environment are among those which can be decrypted and validated with
our Host Keytab.

11

[root@dlkrbclient etcl# klist -ke fetcfkrbS.kéytab
Keytab name: FILE:/etc/krb5.keytab

KVNO Principal

(des-cbhc-crc)
(des-cbc-mds)
(arcfour-hmac)
.INTERNAL (aesl28-cts-hmac-shal-96)
.INTERNAL (ae -cts-hmac-shal-g96)
C.INTERMAL (des-cbc-crc)
INTERNAL (des-cbc-mds)
INTERNAL (arcfour-hmac)
INTERNAL (a 8-cts-hmac
INTERNAL 5256-cts-hmac 1-96)
.internal@ INTERNAL (des-cbc-crc)
.internal@ INTERNAL (des-cbc-mds)
internal@ INTERNAL
1nterna1@ INTERNAL |
INTERNAL

. INTERNAL
. INTERNAL
. INTERNAL

al-96)
KRBCLIEMNT(
dikrbclient.
dikrbclient.
dikrbclient.
dikrbclient.
dlLrbc]lent

ccllc
cclle.
cclle.
cclle.

s-hmac-shal-96)
6-cts-hmac-shal-96)

strictedKrbHo
strictedKrbHo
rictedKrbHo
rictedKrbHo
rictedKrbHo
strictedKrbHo
strictedKrbHo

1KREBCLIENT!
dlkrbclient.
dlkrbclient.
dikrbclient.

.INTERNAL (des-cbhc-mds)
.INTERNAL (:
.INTERNAL (:

cfour-hmac)

INTERI"ML
INTERNAL
INTERNAL

cbc-mds)

{arcfour-hmac)
; 28-cts-hmac
56-cts-hmac

rictedkrbHost/dlkrbclient.
REHtFlCtEthbHOHt;dlLrbc]lent.

Output 11. Host Keytab Contents

INTERNAL (
C . INTERNAL

[SO SR S B R S R SR S S SIS SIS IS S SIS ST S O SIS S N

.interna

IDENTIFICATION AND AUTHORIZATION

Even though we've added our computer to the AD domain, and we have a host keytab that
could be used by ssh to validate Kerberos tickets, our server still can’t “see” the users and
groups in the AD domain as needed for them to actually log in (see Output 12).

froot@dlkrbclient etcl# getent passwd bob

[root@dikrbclient etcl#

Output 12. Failed Check For A User's Existence At The Host Level

In order to enable logins with AD usernames and passwords, we still need to configure our
server to identify the members of the AD domain and their Unix attributes (uid, gid, home
directory, shell), and to authenticate them using Kerberos.

There are a number of systems available which can contain users and their attributes for
identification on a Linux host, but LDAP is by far the most common central repository for
enterprise environments. LDAP also happens to be a hard-requirement for full deployments
of Viya software, and therefore we will be using it for user identification in our
implementation. Note that there are a number of different LDAP variants on the market,
including OpenLDAP, Apache Directory Server, Oracle Directory Server, and Microsoft Active
Directory.

There are also a number of Kerberos variants on the market, including MIT Kerberos,
Heimdal Kerberos, and the Kerberos that comes built-in with Microsoft Active Directory. As
Active Directory is able to provide both LDAP and Kerberos services to our environment and
is a very popular deployment choice in enterprise environments, we will be using it in this
paper. Your company may use a different mix (e.g., OpenLDAP and MIT Kerberos), but the
principles of the implementation will remain the same.

12

NSS AND PAM

While applications can use their own custom methods for identification and authentication,
software running on Unix/Linux frequently takes advantage of a pair of subsystems that
provide a common toolkit for identification and authentication. These are:

e The Name Service Switch (NSS) subsystem which provides a common set of APIs for
identifying users and groups, and is primarily configured with the nsswitch.conf file.

e The Pluggable Authentication Module (PAM) subsystem which provides a standard
framework for user authentication, and is configured with various files in the /etc/pam.d
directory.

During a standard Viya install, one of the first tasks after the software is installed is to
configure a direct connection to an LDAP provider in Environment Manager, which bypasses
NSS and PAM for identification and authentication into the Viya visual interfaces. However,
many of the popular SAS Viya-based product offerings require certain operating system
processes to be launched as the ID of the requesting SAS user, such SAS Studio 4.x and
5.x, SAS Visual Data Mining and Machine Learning, SAS Model Manager, SAS Visual
Forecasting, and SAS Decision Manager. NSS and PAM need to be configured properly in
order to support this functionality, and adding Kerberos authentication brings specific
requirements to the NSS/PAM configurations. Note that we’ll also cover how to configure
Kerberos authentication into the visual interfaces (via IWA) later in the paper.

To show an example configuration of NSS and PAM, Output 13 and Output 14 show selected
contents of the key NSS and PAM configuration files on a CentOS system with no enterprise
integration at all.

required pam_env.so

required pam_faildelay.so delay=20008000

sufficient pam_unix.so nullok try_first_pass

requisite pam_succeed_if.so uld >= 1080 quiet_success
required pam_deny.so

Output 14. Selected Contents Of The /etc/pam.d/password-auth File After OS Installation

e The nsswitch.conf file, which controls the user identification process, refers all
identification requests to “files”. This means that it looks only to the local /etc/passwd,
/etc/shadow, and /etc/group files for information.

e While understanding PAM files can be its own art, the key line above is the
“pam_unix.so” entry. The pam_unix library is the standard Unix authentication module,
and it looks as well to local files such as /etc/passwd and /etc/shadow for authentication
information.

Combining our new understanding of the roles of NSS and PAM with our need for LDAP
identification and Kerberos authentication, we can state the following:

e We need to configure the nsswitch.conf so that NSS can talk to an LDAP, either directly
or via a system that communicates with LDAP on NSS’s behalf.

e We need to configure PAM so that it can talk to a Kerberos realm, either directly or via a
system that communicates with a Kerberos realm on PAM’s behalf.

13

We outline three different options for configuring NSS and PAM below. At the end of each,
we should be able to “see” bob as an available ID on the system (see Output 15).

[root@dlkrbclient pam.d]# getent passwd bob

bob:*:1201:1008:Bob Uecker: /home/bob: /bin/bash

Output 15. Successful Check For A User's Existence At The Host Level

Bob should also be able to log in to the server using his AD username and password, have a
home directory created if he needs one, and have a Kerberos TGT created automatically
which he can use to gain access to kerberized applications such as Hadoop in his enterprise
environment (see Output 16).

[bob@ccllcadm ~] dlkrbclient
pob@dlkrbclient's password:

Creating home directory for bob.

Last login: Sat Mar 23 zl 48:10 2019
[bob@dlkrbclient ~

Ticket cache: FILE:/tmp/krb5cc_ 1201
Default principal: bob@CCLLC.INTERNAL

starting Explres Service principal
f2019 21:48:42 8: 019 07:48:42 krbtgt/CCLLC. INTERNAL@CCLLC. INTERNAL
renew until 83/ 019 21:48:42

Output 16. User Accessing A Server Via SSH With NSS/PAM Configured For AD Authentication

NSS/PAM OPTION 1: NSS_LDAP AND PAM_KRB5

In order to have direct connections to LDAP and Kerberos from NSS and PAM, we’ll load a
specific pair of NSS/PAM rpm packages, along with a companion “oddjob-mkhomedir”
package:

yum install nss-pam-ldapd pam krb5 oddjob-mkhomedir

The oddjob-mkhomedir package will be used to automatically create a home directory for
our users upon first access, if they do not already have one.

With our krb5.conf file already in place for Kerberos, if we have a valid CA certificate for our
KDC’s TLS-secured LDAP configured on our host in /etc/openldap/certs, we can simply
uncomment the “Mappings for Active Directory” section of the default /etc/nslcd.conf file
(which configures the local LDAP Name Service Daemon: nslcd) and update just a few other
lines to tell the daemon how to connect to our AD LDAP (see Output 17).

uri ldabs:ffdc@l.ccllc.internal
base CN=Users,DC=ccllec,DC=1nternal

binddn cn=AD LDAP Bind Account,CN=Users,DC=ccllc,DC=1internal
bindpw password

Output 17. Selected Contents Of /etc/nslcd.conf For Access To AD LDAP

Then we can run a few commands to enable our nss_Ildap/pam_krb5 configuration:
systemctl enable nslcd
systemctl start nslcd

authconfig --enableldap --enablekrb5 --enablemkhomedir --update

After running these commands, our nsswitch.conf will now include “ldap” as a target for
passwd/shadow/group queries (identification), as shown in Output 18.

14

passwd: files ldap

shadow: files ldap
group: files ldap

Output 18. Selected Contents Of The /etc/nsswitch.conf File After Authconfig Enableldap/krb5

Additionally, a number of files in the pam.d directory will be updated to support Kerberos
authentication with pam_krb5. Looking at just the top of the /etc/pam.d/password_auth file
in Output 19, for example, we can now see that the “pam_krb5.s0” module has been added
to our system’s authorization “stack”.

auth required pam_env.so

auth required pam_faildelay.so delay=2000000
auth sufficient pam_unix.so nullok try_first_pass

auth requisite pam_succeed 1f.so uid 1800 guiet_success

auth sufficient pam_krb5.so use_first_pass
auth required pam_dery.so

Output 19. Selected Contents Of The password_auth PAM File After Authconfig Enableldap/krb5

NSS/PAM OPTION 2: SSSD

While using nss_ldap and pam_krb5 remains a common configuration to implement LDAP
identification and Kerberos authentication in enterprise environments, RedHat deprecated
pam_krb5 with the RedHat Enterprise Linux 7.4 (RHEL) release and does not plan to include
pam_krb5 with RHEL 8. The target replacement for pam_krb5, which is already available in
both RHEL 6 and RHEL 7, is the System Security Service Daemon (SSSD). SSSD
implements features which are not available in a standard nss_ldap/pam_krb5
configuration, such as authentication when AD is offline, better performance and LDAP ID-
mapping (discussed later).

Its architecture is to reside between NSS/PAM and the LDAP/Kerberos systems, and to
make requests to LDAP/Kerberos on behalf of NSS/PAM as shown in Figure 6.

A " 3 3)
[NSS L Active Directory]

555D

[PAM » , Kerberos 1
| S— \ /

LDAP

L

Figure 6. SSSD Integration Architecture With NSS/PAM and AD

15

For configuration of SSSD in non-AD Kerberos environments, the “sssd-ldap” and “sssd-
krb5” rpm packages can be installed with yum and then configured. However, SSSD offers
a dedicated “sssd-ad” rpm package for Active Directory environments, which includes
specific optimizations for communicating with AD infrastructure. We'll install sssd-ad for our
paper’s environment, along with a companion “oddjob-mkhomedir” package:

yum install sssd-ad oddjob-mkhomedir

The oddjob-mkhomedir package will be used to automatically create a home directory for
our users upon first access, if they do not already have one.

Like the krb5.conf, sssd’s main configuration file at /etc/sssd/sssd.conf can be long and
confusing in some environments. However, only a few core lines are actually needed in our
paper’s environment, as shown in Output 20.

[sssd]
d s = cclle.internal
services = nss, pam

[domain/ccllc.internall
1d_provider = ad
auth_provider = ad

ad_domain = ccllec.internal

ldap_1d mapping = False
use_ fully qualaified names = False

krb5 ccachedir = /tmp
krb5_ccname_template = FILE:%d/krb5cc_%U

Output 20. SSSD Master Configuration File Contents (/etc/sssd/sssd.conf)

Entries:

o [sssd] section: Configures ccllc.internal as one available domain to use for user
identification and authorization (sssd can support multiple user repositories), and also
sets up sssd to service both nss and pam system calls.

¢ [domain/ccllc.internal] section: Configuration specific to the ccllc.internal domain.

e id provider/auth provider: Sets SSSD to use our AD domain for both identification
and authorization purposes.

o Idap id mapping: Supports automatic translation of Active Directory User/Group SIDs
into Unix UIDs/GIDs. Kerberos will function properly with this setting true or false. In
our paper's environment, we manually managed uids/gids/shells from each user’s
“Attribute Editor” tab in the Windows “Active Directory Users and Computers”
application, so that the uids/gids would match in both the nss_ldap/pam_krb5 and the
SSSD configurations (nss_ldap does not support LDAP ID mapping). But most
enterprise environments with Active Directory will have Idap_id_mapping set to true.

o krb5 ccachedir/krb5 cchame template: These settings sync the location where
Kerberos TGT and service tickets will be stored, with the krb5.conf file which we
configured earlier. Having the two files in-sync is important for SAS, so that when a
Kerberos TGT is acquired by authenticating through PAM/SSSD and stored on the
filesystem, SAS applications (who look in the default_ccache_name location we defined
in the krb5.conf file) are able to “find” the TGT.

16

With our /etc/sssd/sssd.conf file in-place, we can now enable SSSD to service NSS
identification requests, Kerberos authorization requests, and create home directories for
new users with the following:

systemctl enable sssd
systemctl start sssd

authconfig --enablesssd --enablesssdauth --enablemkhomedir -update

After running these commands, our nsswitch.conf will now include “sss” as a target for
passwd/shadow/group queries (identification), as shown in Output 21.

g

Output 21. Selected Contents Of The /etc/nsswitch.conf File After Authconfig Enablesssd

Also, a number of files in the pam.d directory will be updated to support Kerberos
authentication managed by SSSD. Looking at just the top of the /etc/pam.d/password_auth
file in Output 22, for example, we can now see that the “pam_sss.so” module has been
added to our system’s authorization “stack”.

required pam_env.so

required pam_faildelay.so delay=20000080

[default=1 i1gnore=ignore success=ok] pam_succeed_1f.so uid == 1000 guiet
[default=1 i1gnore=ignore succ <] pam_localuser.so

sufficient pam_unix.so nullok try_first_pass

requisite pam_succeed if.so uid >= 1000 quiet success
sufficient pam_sss.so forward_pass

required pam_deny.so

Output 22. Selected Contents Of The password_auth PAM File After Authconfig Enablesssd

NSS/PAM OPTION 3: VAS, WINBIND, CENTRIFY

There are a number of other products on the market for integrating Linux systems with
Active Directory domains, including VAS, Winbind, and Centrify. These all work in a similar
fashion to SSSD, in that NSS and PAM make calls to the product when they need
identification or authorization support, and the product contacts AD on NSS/PAM’s behalf.
Many offer similar features to SSSD, such as authentication when AD is offline, better
performance and LDAP ID-mapping.

The principles remain the same as SSSD for configuration as well. For example, VAS uses
its own command called “vastool” instead of “authconfig” to enable VAS, but after running
the vastool command there will be updates to /etc/nsswitch.conf for user identification as in
Output 23.

files vas3

files sss
files vas3

Output 23. Selected Contents Of The /etc/nsswitch.conf File After Vastool Execution

There will also be updates to various files in /etc/pam.d for user authorization, for example
the update to /etc/pam.d/password_auth shown in Output 24.

17

required pam_listfile.so item—user sense=deny file=/etc/security/login.deny onerr=succeed
required pam_env.so

required pam_tally2.so deny=5 onerr=fail even_deny_root unlock_time=1200

sufficient pam_vas3.so create_homedir get_nonvas_pass realm_prompt

requisite pam_vas3.so0_echo_return

sufficient pam_uniix.so nullok try_first_pass use_first_pass
requisite pam_succeed_if.so uid >= 1000 quiet_success
required pam_deny.so

Output 24. Selected Contents Of The password_auth PAM File After Vastool Execution

SSH KERBEROS CONFIGURATION

At this point, Bob is able to log into our server successfully using his username and
password, and he has a Kerberos TGT created for him upon initial login. However, we are
not able to use that Kerberos TGT to log in passwordless to the server itself, and we’ll need
to enable that functionality in order to access and use our kerberized Hadoop cluster. To do
that, we’ll change a group of “GSSAPI” settings in the /etc/sshd/sshd_config and
/etc/sshd/ssh_config files.

What is GSSAPI? GSSAPI can be used as a common programming interface for applications
to make calls to Kerberos, and ensures the same application code can be used no matter
which flavor or revision of Kerberos is actually being used in an environment. A SAS
Administrator does not normally need to worry about the specifics of GSSAPI, and it's
generally easier to figure out what a particular GSSAPI setting does by imagining the word
“Kerberos” swapped for the word “"GSSAPI”, e.g. when you see "GSSAPIAuthentication” in a
configuration file, think “this really means KerberosAuthentication”.

We'll update our /etc/ssh/sshd_config file (which controls the ssh server for inbound
connections) with the settings outlined in Output 25.

GSSAPIAuthentication yes

GSSAPIKeyExchange yes
GS5S5APIStrictAcceptorCheck no

Output 25. Selected Contents Of The /etc/ssh/sshd_config File Enabling Kerberos Support

Entries:

¢ GSSAPIAuthentication yes: Allows the server to accept Kerberos credentials for ssh
logins

¢ GSSAPIKeyExchange yes: Uses Kerberos to validate hosts instead of ssh host-keys,
which means users will not need to worry about host-authentication prompts like the
one shown in Output 26 each time they log into a server for the first time.

[bob@dikrbclient ~1$ ssh dilcasprimary
The authenticity of h 'dlcasprimary (10.8.8.181)' can't be established.
ECDSA key fingerprint 1s SHA256:xtjqwhhzQloyo8czHx1XGopEWEPUZEP1jmrEIahGRBI.

ECDSA key fingerprint is MD5:be:7b:b8:6:8b:67:73:e7:f0:e2:69:fb:ac:01:2d:1c.
Are you sure you want to continue connecting (yes/na)? ||

Output 26. An SSH Host Authenticity Check

e GSSAPIStrictAcceptorCheck no: In enterprise environments, hosts often have
aliases in addition to their real hostnames (e.g., server *g7236039.example.org” might
have an easy-to-remember alias “sascasprimary.appl.example.org” registered in DNS).

18

Setting the StrictAcceptorCheck to “no” allows users to ssh to alias names instead of just
the real hostname, and still successfully use Kerberos tickets to authenticate.

We'll also update the /etc/ssh/ssh_config file (which controls the ssh client on outbound
connections) with the settings shown in Output 27.

GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes
GSSAPIKeyExchange yes

Output 27. Selected Contents Of The /etc/ssh/ssh_config File Enabling Kerberos Support

Two of the entries are the same as in our sshd_config file. The new entry is:

¢ GSSAPIDelegateCredentials yes: Configures the ssh client to forward Kerberos
credentials to the target server, if possible.

What does forwarding credentials mean, and why do we need it? Forwarding with ssh
means that after you acquire a TGT on one server, that when you log in to another server a
TGT will be automatically created for you there.

Notice in the example in Output 28 that Bob acquired his original TGT on host dikrbclient,
that he then ssh’ed (passwordless) to host dlcasprimary where a TGT was automatically
created for him, which he then used to ssh (also passwordless) into host dlcasworkerl,
where another TGT was automatically created for him. He only needed to kinit once at the
beginning of the process.

[bob@dlkrbclient <

password for bob@ T

[bob@dlkrbclient dlcasprimary

ast login: Tue Mar 19 81:38:080 2019 from dlkrbclient2.ccllc.internal

[bob@dlcasprimary ~
1cket cache:

starting S /
/2819 22:32:23 3/24,/2019 B88:32: 3 C.INTERNAL

renew until
bob@dlcasprimary ~
ast login: Sun Mar 17 14:44 2019 from dlcasprimary.ccllc.internal
[bob@dlcasworkerl ~1% t
icket cache: FILE:/tm bscc_1201
Jefault principal: bob@CCLLC.INTERNAL

valid starting Explres Service principal
93/23/2019 22:32:33 : : krbtgt/CCLLC.INTERNAL@CCLLC. INTERNAL

Output 28. Multi-Server Passwordless SSH Access With Forwarded Kerberos Credentials

In order to fully implement forwarding we also included “forwardable = true” in our
krb5.conf above, as “forwardable” is a TGT attribute that has to be specifically requested
from the KDC.

This forwarding capability is also needed in order to support Kerberos TGT delegation for
SAS and Hadoop, and will be discussed in greater detail later in the paper.

A few notes about Kerberos Principals before we proceed with our kerberization of Hadoop
and SAS. The SAS Administrator will not normally need to remember this information in-
depth during day-to-day support of an environment, but it is used when an environment is

19

initially configured, and therefore it will help clarify some of the configurations we’ll discuss
later in the paper.

Service Principals such as sascas/d1casprimary.cclic.internal @CCLLC.INTERNAL (CAS on
host dlcasprimary) and host/d1casworkerl.ccllc.internal @ CCLLC.INTERNAL (OS services
on dlcasworkerl) are “Standalone Kerberos Principals” in MIT Kerberos. All principals
are the same as one another in MIT, whether they represent a user, a host, or a service
on the network. All principals are also able to acquire TGTs, provided the password is
known or a valid keytab is available.

In Active Directory, however, Service Principals are an attribute of either a User Principal
(e.qg. bob@CCLLC.INTERNAL) or a Machine Principal (e.qg.
D1CASPRIMARY$@CCLLC.INTERNAL). Only User and Machine Principals can acquire
TGTs. Service Principals cannot.

“Machine Principal” is not the commonly used term in Active Directory documentation. A
host in AD is normally referred to as a “Computer Object” or a “Machine Account”.
However it is important to understand that computers in an Active Directory domain are
Kerberos Principals, and that they are very “User-Like” in that they can have Service
Principals as attributes, and can acquire TGTs.

In Active Directory Kerberos, all User and Machine Principal Names must be unique, and
all Service Principal Names must be unique. However, a User or Machine Principal can
be the same name as a Service Principal. Machine Principals traditionally end in a “$”,
which helps reduce naming conflicts with User Principals. In MIT Kerberos, where all
User/Host/Service Principals are equal, all Principal names must be unique across all
types.

In Active Directory, a User or Machine Principal is allowed to have more than one Service
Principal as an attribute. However, a Service Principal cannot be an attribute to multiple
Users or Machines, as this breaks the uniqueness requirement above.

On Windows servers in Active Directory environments, Service Principals associated with
User Principals represent services that run as that User Principal account on a Windows
server.

On Linux servers in Active Directory environments, Service Principals associated with
User Principals do not need to run as the User Principal account. As long as the Linux
service is in possession of a valid keytab for the User Principal, the service can run under
any account on the Linux host.

On Windows servers in Active Directory environments, Service Principals associated with
Machine Principals represent services that run as the LocalSystem account on the
Windows server.

On Linux servers in Active Directory environments, Service Principals associated with
Machine Principals represent OS services that run as root on the Linux server and
validate using the host/<fgdn>@REALM Service Principal (e.q.
host/d1casworkerl.ccllc.internal @CCLLC.INTERNAL). These services use the
/etc/krb5.keytab file that gets created when a host joins an AD domain.

HADOOP KERBEROS CONFIGURATION

We’'ve now reached the point where we will configure kerberized applications on our Linux
hosts which are not part of the operating system distribution. These configurations will
support Step 4 (where the TGS sends tickets to a user to enable communication with an
application service) and Step 5 (where a user authenticates to the application service) of
the Kerberos Authentication Example earlier in the paper.

20

mailto:sascas/d1casprimary.ccllc.internal@CCLLC.INTERNAL
mailto:host/d1casworker1.ccllc.internal@CCLLC.INTERNAL
mailto:D1CASPRIMARY$@CCLLC.INTERNAL
mailto:host/d1casworker1.ccllc.internal@CCLLC.INTERNAL

The fundamental requirements to configure a kerberized application are:

1. A uniquely-named Kerberos Service Principal Name (SPN) for each service, including
location information (e.g., hdfs/dlcasprimary.cclic.internal @CCLLC.INTERNAL, the SPN
for the hdfs service on host dicasprimary.cclic.internal).

2. In Active Directory (only), a User Principal (generally a service account) which the SPN
above will be an attribute of. A dedicated User Principal is not needed with MIT
Kerberos.

The keytab above stored locally on the application server.

4. The configuration of the application to activate Kerberos authentication, identify the
application’s Service Principal, and find its keytab.

Cloudera 6.x Hadoop offers an “Easy Button” to kerberize an instance. After setting up a
single user account in AD with the privileges to create new User Principals (or an equivalent
admin account in MIT Kerberos), “Enable Kerberos” can be chosen from a pull-down menu
in the Cloudera Manager Admin GUI (see Display 2).

Cloudera Manager Clusters ~ Hosts - Diagnostics ~ Audits Charts ~ Backup ~ Administration ~

& CCLLC Cluster 1 Actions = Status Health |ssues Configuration -

Add Service
Status Add Hosts
© =5Hosts
Start
& HOFS
Stop
@ g Hive
Restart
@ #hHue
@ & oozie
Deploy Client Configuration
@ I YARN (MR2In...
@ & ZooKeeper

Upgrade Cluster Cluster Network 10

Refresh Dynamic Resource Pools

Inspect Hosts in Cluster | ; \
« ftes Read 1b/s Tetal Bytes Writ... 2.8b/s Total Bytes Re... 99.9K/s Total Bytes Ti 93.3K/s
Détete-Ketleras Credentials

Set up HDFS Data At Rest Encryption k10 Cluster CPU

Refresh Cluster ' 2

View Client Configuration URLs

percent

Rename Cluster \

Display 2. Cloudera Manager "Enable Kerberos" Option

The wizard will ask a few relevant questions, and then kerberize and restart the cluster.

Once the kerberization is complete, we can see that the wizard created about 20 User
Principals in AD for us (see Display 3), which can be used to associate SPNs with. This
satisfies the AD-Specific Requirement #2 above (this would not be necessary in MIT
Kerberos).

21

mailto:hdfs/d1casprimary.ccllc.internal@CCLLC.INTERNAL

-] Active Directory Users and Computers == -
File Action View Help
TN EEREEEL EEY YR 2
] Active Directory Users and Computers || User Logon Mame - Type
b [Saved Queries hdfs/d1casprimary.ccllc.internal @ CCLLC.INTERMAL User
4 (3 cclicintemal helfs/d1casworkerl.ccllcinternal @CCLLC.INTERMAL User
b [Builtin hdfs/d1casworker2.ccllcinternal @CCLLCINTERNAL User
B clouder hdfs/d1 casworker3.ccllc.internal @CCLLCINTERNAL User
b [Computers helfs/d1 clouderautil.cellc.internal @ CCLLCINTERNAL User
b (& Domain Controllers hive/d1clouderautil.ccllc.internal @CCLLCINTERNAL User
b [ForeignSecurityPrincipals HTTP/d1 casprimary.ccllc.internal @CCLLCINTERNAL User
b L] LostAndFound HTTP/d1 caswarkerl.cellcintemal @ CCLLCINTERNAL User
I | Managed Service Accounts)
b [Program Data H'ITPIMcaswurkerZ.chIc.!ntemal@CCLLC.INTERNAL User
b [System HTTP/d1casworker3.ccllcinternal @ CCLLCINTERMNAL User
b [Users HTTP/d1clouderautil.ccllc.internal @ CCLLCINTERNAL User
» [NTDS Quotas httpfs/d1casprimary.ccllcinternal @ CCLLC.INTERMAL User
51 TPM Devices hue/d1clouderautil.ccllc.internal @ CCLLC.INTERMAL User
mapred/d1casprimary.ccllc.internal @CCLLC.INTERMAL User
oozie/d1clouderautil.cclleinternal @ CCLLCINTERNAL User
yarn/d1casprimary.ccllc.internal @ CCLLCINTERMAL User
yarn/d1casworkerl.ccllcinternal @CCLLC.INTERNAL User
yarn/d1casworker2.ccllc.internal @CCLLC.INTERNAL User
yarn/d1casworker3.ccllcinternal @CCLLC.INTERNAL User
yarn/d1clouderautil.ccllc.internal @ CCLLC.INTERNAL User
zookeeper/d1casprimary.ccllc.internal @ CCLLCINTERMNAL User

Display 3. AD Service Account Users After Cloudera Kerberization

We can also see in AD that SPN’s have been created and assigned as attributes of the new
User Principals (see Display 4). (With MIT Kerberos, standalone Service Principals would be
created.) This satisfies Requirement #1 above.

E Active Directory Users and Computers = [=] 2=
File Action View Help
s # 4B XEdZ HE 3 aETE%R
] Active Directory Users and Computers || User Logon Name - Type
P[] Saved Queries hdfs/d1casprimary.ccllc.internal @ CCLLC.INTERNAL User
4 F3 celleinternal T X T ser
» [Builtin Multi-valued String Editor - cer
o cloudera
H- Attribute: service PrincipalMame er
I [Computers cer
[:: Dum.ain CUI’]t.rU”ErS . Value to add 7 Properties 2 x
> || ForeignSecurityPrincipals || | | add |
b J LnstAndFounc{ v Member Of I Password R ion
I || Managed Service Accounts ,El““"—._._____-“\ I Environment I Sessions
= hdfs/d1casprimary collc intemal
b ‘J Program Data w Profile Telephanes Delegation
b] System ices Profile Atribute Editor
b] Users
I | NTDS Quotas
I | TPM Devices ~
Z
{MORMAL_USER_ACCOUNT
ervice Princip hdfs/d1 y cclle intemal
shadowExpire <not set>
shadowFlag <not set>
shadowlInactive <not set> -
< m >
< w < >

Display 4. Hadoop Service Principal Attributes in AD

22

When the “Easy Button” path is chosen for Cloudera kerberization, the Cloudera Manager
manages the keytabs on each Hadoop host. Output 29 shows the keytabs on the running
Hadoop Namenode server right after kerberization. This satisfies Requirement #3 above.

[root@dlcasprimary ~1# find ,xar,rurf name "*keytab"

Jvar/run/clouder cm-agent/proces : rn-JOBHISTORY/mapred.keytab

i ‘runy/clouder cm-agent/proc 2 rn-RESOURCEMANAGER /
‘'run/cloudera-scm-agent/proc 28-hdfs -NAMENODE - nnRpch 1t,hdf~ Fevtab

‘run/clouder cm-agent/proc -hdfs-NFSGATEWAY /hdfs

‘run/clouder cm-agent/process -hdfs- HTTPFb,httpfw.
‘'run/cloudera-scm-agent/proc 27-hdfs-NAMENODE /hdfs . ke
frun/cloudera-scm-agent/process,/219-zookeeper- server/zookeeper.keytab

Output 29. Cloudera Hadoop Keytab Files

Finally, the application itself needs to be configured to support Kerberos. In the selected
contents of the Hadoop *-site.xml configuration files shown in Output 30, we can see that
Kerberos is enabled as the authentication method, and the Service Principal Names (SPNs)
are identified. This satisfies the final Requirement #4 for a kerberized application.

beros.internal .spnego.principal</name:

s.principal
LC.INTERNA

Output 30. Selected Entries From Cloudera Hadoop *-site.xml Files Enabling Kerberos Support

One note from the screenshot above: you’ll often see the word “spnego” when configuring
kerberized applications accessible through a browser. SPNEGO stands for “Simple and
Protected GSSAPI Negotiation Mechanism”, but a SAS Administrator generally only needs to
be aware that SPNEGO is used to support Kerberos over HTTP. In the screenshot above, for
example, you can see that the Service Principal that will be used to support SPNEGO
communications with the namenode will be "HTTP/_HOST@CCLLC.INTERNAL"” (*_HOST” is a
wildcard that will be replaced with a server’s FQDN).

Before we kerberized our Hadoop cluster, anyone with a valid username on the server was
able to execute Hadoop commands, as shown in Output 31.
[bob@d1c1ouderaut11 klist

st: No credentials cache tound (filename: /tmp/krbScc_1281)
[b @dlclouderautil fs dfs -ls /tmp

Found 3 1tems
- hdfs supergroup 0 2019-83-23 23:44 /tmp/.cloudera_health_monitoring_canary_files
- hive supergroup 0 20 -85 @ Jtmp/hive

druxrwxrwt - mapred_hadoop 0 2019-03-87 00:54 /tmp/logs

Output 31. HDFS Access Before Cloudera Hadoop Kerberization

23

But after kerberization, a valid Kerberos ticket is needed to access the Hadoop instance (see
Output 32).

[bob@diclouderautil list
klist: Mo credentials cache found (filename: /tmp/krbScc_1201)
1c1ouderaut11 hdfs dfs -1s /tmp
14 8 WARN 1pc.Client: Exception encountered while connecting to the server : org.apache.hadoo
ontrolExceptio 1ent cannot authenticate via:[TOKEN, KERBEROS]

1 exception: 10.I0Exception: org.apache.hadoop.security.AccessControlException: Cli
ent cannot authenticate via: [TOKEN, KERBEROS]; Host Details : local host 1s: "dlclouderautil.ccllc.interna
1/10.0.0.185"; destination host 1s: "dlcasprimary.ccllec.internal”:8020;

[bob@diclouderautil kinit
Password for bob C.INTERNAL :
[bob@dlclouderautil g |hdfs dfs -ls /tmp
Found 3 1tems
- hdfs supergroup
¢ - hive supergroup
drwxrwxrwt - mapred hadoop ; 9 ;tmp,]oga

Output 32. HDFS Access Only With Kerberos Credentials After Cloudera Hadoop Kerberization

SAS VIYA KERBEROS CONFIGURATION

There is no “easy button” yet in SAS Viya for configuring end-to-end Kerberos support
including Single Sign-On through Integrated Windows Authentication (IWA), and therefore a
number of manual steps will be needed for its implementation. However, it is important to
realize that our system as-is can connect to downstream kerberized Hadoop instances with
SAS Studio 4.x, and with very little additional configuration can connect to kerberized
Hadoop with SAS Studio 5.x and CAS.

Our key reference material for the various Viya 3.4 authentication options below is Stuart
Roger’s excellent blog post “"SAS Viya 3.4 Authentication Overview”. In it and a group of
follow-on blog posts related to Viya 3.4, he covers numerous possible SAS Viya
authentication configurations in detail both with and without IWA support. We begin with
SAS Viya without IWA support.

SAS VIYA WITHOUT IWA

If we do not need to implement IWA inbound to our SAS Viya environment, then with just a
few changes we can enable comprehensive outbound connectivity to kerberized downstream
datasources such as Hadoop from our SAS Viya environment.

SAS STUDIO 4.X

Upon login to SAS Studio 4.x, a SAS Object Spawner uses the host’'s PAM configuration to
validate the username and password, as shown in Figure 7.

24

https://communities.sas.com/t5/SAS-Communities-Library/SAS-Viya-3-4-Authentication-Overview/ta-p/523244

Eob

_ _ SASE |
S%S?ﬁllg?ﬂ PAM Workspace
p Server P
&
KRE TGT

Figure 7. SAS Object Spawner PAM-Based Authentication

Since our environment’s PAM configuration includes Kerberos authentication, a TGT will
automatically be acquired for us upon SAS Studio 4.x login, as shown in Output 33.

frootédlviitas\.-'cl.a:\.rerl ~1# L /tmp | grep bob | grep. krbscc

us Mar 23 20:21 kr

Output 33. Filesystem Location Of The User's TGT After SASStudio 4.x Login

This TGT can then be used to access our kerberized Hadoop instance in our SAS Studio 4.x
session without any additional changes, as shown in Display 5.

G SAS Studio x |+
&« ¢ o @ dlviyasvclayerl.cclic.intemal/SASStudio/main?locale=en_US&zone=GMT%252B00%253A0 Qo n @ =
SAS® Studio (£
~ Server Files and Folders [# *Program1 %
- o CODE LOG RESULTS
& B3 Folder Shortcuts BB & 43
&> [Files (/) 4 Errors, Warnings, Notes
b (%) Errors
b A\ Warnings
b (i) Notes (1)
1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
72
73 options set=SAS _HADOOP_CONFIG_PATH="/opt/sas/viya/config/data/hadoop/conf";
74 options set=SAS_HADOOP_JAR_PATH="/opt/sas/viya/config/data/hadoop/lib";
75
76 proc hadoop verbose;
77 hdfs mkdir="/user/bob/testdir’;
78 hdfs copyfromlocal='/etc/hosts' out="/user/bob/testdir/etchosts' overwrite;
79 run;

NOTE: PROCEDURE HADOOP used (Total process time):
real time 4.27 seconds
cpu time 0.25 seconds

Display 5. Successful Access to Kerberized Hadoop In SASStudio 4.x

25

SAS STUDIO 5.X

SAS Studio 5.x follows a different instantiation and authentication path than SAS Studio 4.x.
SAS Studio 5.x users authenticate against the SAS Logon Manager (instead of a SAS Object
Spawner), and then the SAS Launcher Microservice and Server work together to launch an
instance of a SAS Compute Server to host the SAS Studio 5.x session.

The critical piece of the flow for us to access downstream kerberized applications in IWA-
less environments, is that the SAS Launcher Microservice will attempt to pull a user’s stored
credentials from the Credentials Microservice and use them in the process of launching the
Compute Server. If it finds a set of credentials, the SAS Launcher Server will validate them
through PAM, which will cause a Kerberos TGT to be created that can be used in our SAS
Studio 5.x session (see Figure 8).

SASE Viya® SASE Viya® SASE Viya®
Launcher Launcher PAM Compute
Microservice Server

Server

A KRB TGT
Fetch

Credentials

Y

SASE Viya®
Credentials
Microservice

Figure 8. SAS Viya Launcher Server PAM-Based Authentication

How do users store credentials in the Credentials Service in SAS Viya 3.4? Each user can
log into SAS Viya Environment Manager as their own account, and choose the “My
Credentials” key icon from the left-side menu. There they can add their username and
password to the “DefaultAuth” domain, as shown in Display 6.

x

New Credential
Domain: *
Defaultauth v

beb

Confirm password: *

Save Cancel

Display 6. Storing User Credentials In SAS Viya Environment Manager

26

With our credentials stored in Environment Manager, we will then be able to have a
Kerberos TGT available in our SAS Studio 5.x session, which can be used to access our
kerberized Hadoop instance, as shown in Display 7.

G SAS® Studio x |+
e

G @ @ dlviyasvclayerl.ccllcinternal/Sasstudiov/main?locale=en_US& e @ 1y I o =
Studio - Develop SAS Code Searc D @® O @ BobUecker v
New Options View ‘w Open &l Save All
Open Files [£3 *Program.sas x
gl Save all 1 unsaved 2 Submit D Hisoy v | B B Mar 24, 2019, 12:50:40 AM
4 * Program.sas [temp] Cede Log
N & Errors (0) /A Warnings (0) (@ Notes(1)
; NOTE: PROCEDURE HADOOP used (Total process time):
S

1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;

75
5 76 |options set=5AS_HADOOP_CONFIG_PATH="/opt/sas/viya/config/data/hadoop/conf";
=1 77 |options set=5AS HADOOP JAR _PATH="fopt/sas/viya/config/data/hadoop/lib";

78

79 |proc hadoop verbose;
80 | hdfs mkdir='"fuser/bob/testdir2';

i 81 hdfs copyfromlocal="/etc/hosts' out="/user/bob/testdir2/etchosts' overwrite;
82 |[run;

NOTE: PROCEDURE HADOOP used (Total process time)
real time 4.21 seconds
cpu time 0.39 seconds

84 OPTIONS NOMOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
97

Display 7. Successful Access to Kerberized Hadoop In SASStudio 5.x

SAS CLOUD ANALYTIC SERVICES (CAS)

CAS authenticates and instantiates in a similar fashion to our SAS Studio 5.x flow. Users
authenticate against the SAS Logon Manager, but this time the SAS CAS Controller launches
a SAS CAS Session for the user.

The critical piece of the flow for us to access downstream kerberized applications in IWA-
less environments, is that the SAS CAS Controller will attempt to pull a user’'s stored
credentials from the Credentials Microservice and use them in the process of launching a
SAS CAS Session for the user when the user is a member of the "CASHostAccountRequired”
group. (Members of the “CASHostAccountRequired” group have their CAS sessions
launched as their user account, instead of as the “cas” service account.) If it finds a set of
credentials, the SAS CAS Controller will validate them through PAM, which will cause a
Kerberos TGT to be created that can be used in our SAS CAS session (see Figure 9).

27

SASE Viya® BAM SASE Viya®
CAS Controller CAS Session ﬁ?
)
KRE TGT
Fetch
Credentials

SASE Viya®
Credentials
Microservice

Figure 9. SAS Viya CAS Server PAM-Based Authentication

If our credentials are stored in Environment Manager as described above, we will have a
Kerberos TGT available in our CAS session, as shown in Output 34.

[bob@dlcasprimary /1$ 1s -al stmp | grep bob | grep krbs

users 1424 Mar 23 23:08 krb5cc_12601

Output 34. Filesystem Location Of The User's TGT After CAS Login

SAS VIYA WITH IWA

Fundamentals

Integrated Windows Authentication (IWA) is a technology on Windows platforms which
allows users to access secured applications without a password prompt after their initial
login to their workstation or laptop. IWA can use Kerberos authentication as one way to
enable this seamless-access functionality. Because Microsoft implemented Kerberos as its
default authentication method beginning with Windows 2000, when a user logs in to a
computer which is a member of an AD Domain, a Kerberos TGT is automatically requested
for the user (see Display 8). This TGT can then be used to access SAS Viya in a
passwordless manner.

28

e sy sbemd2) omnd. exe

All rights reserwved.

& H:@=HddF?

pre _authent n

Display 8. Kinit Output From An AD Domain Member Computer Immediately After Login

In order to implement full end-to-end Kerberos functionality in our SAS Viya environment,
from front-end authentication inbound via IWA to back-end connectivity outbound to
kerberized data sources like Hadoop, we need to kerberize a group of individual services in
the SAS Viya architecture:

e SAS Logon Manager: To accept Kerberos credentials from the end-user’s desktop
e SAS Launcher Server: To propagate Kerberos credentials into SAS Compute sessions

e SAS CAS Server Controller: To propagate Kerberos credentials into SAS CAS sessions

A key component of this functionality will be TGT delegation. In our SSH configuration
above, we showed how Bob’s TGT could be forwarded to another server upon login by
setting the parameters “forwardable = true ” and “GSSAPIDelegateCredentials on” in our
/etc/krb5.conf and /etc/ssh/ssh_config, respectively. In our SAS Viya architecture, we are
now going to allow our TGT to be delegated to the SAS Viya Logon Manager, for further
delegation across the Viya ecosystem.

~— Anan;he HTTPD " SASE Viya®
wWww —L—r Server ugun Marlagsr
I I KRB

S T T TGT

Store
Credenuals :

s Fe‘ch

: SASE Viya® SASEH Viyam SASE Viyam SASH \nyan)
. Credentials Wisual Analytics CAS Controller CAS ‘iesslvn
: Microservice Web App :

................ I A KRBTGT'

Launcher
Microservice

SASE Viya®
Launcher
Senver

Figure 10. SAS Viya 3.4 Kerberos TGT Delegation Flows

SASEViya® |
Compute
Sener &
i

KRBTGT .

29

The flows are as follows (shown in Figure 10):
A.

Bob uses the Kerberos credentials on his Windows workstation to login passwordless to
the SAS Logon Manager (this is Integrated Windows Authentication). Because Bob has a
forwardable TGT and the SAS Logon Manager is “Trusted for Delegation” (see later in
the paper), Bob’s TGT will be forwarded to the SAS Logon Manager. The SAS Logon
Manager will then store the Kerberos credentials in the Credentials Microservice.

When Bob wants to access CAS from an application such as Visual Analytics, VA will
fetch Bob’s Kerberos TGT from the Credentials Microservice, and use it to acquire a
Service Ticket to communicate with the SAS CAS Controller (Step 3 in our earlier
Kerberos Authentication Example). After authenticating to the SAS CAS Controller (Step
5 in the example), his TGT will be delegated again to the SAS CAS Controller, and then
added to the credentials cache in the SAS CAS Session running under his own ID.

When Bob logs into SAS Studio 5.x and needs a Compute Server, the Launcher
Microservice will fetch Bob’s Kerberos TGT from the Credentials Microservice, and use it
to acquire a Service Ticket to communicate with the SAS Launcher Server (Step 3 in our
earlier Kerberos Authentication Example). After authenticating to the SAS Launcher
Server (Step 5 in the example), his TGT will be delegated again to the SAS Launcher
Server, and then added to the credentials cache in the SAS Compute Server running
under his own ID.

Service Kerberization

Recall the four fundamentals of kerberizing a service from our earlier Hadoop kerberization
exercise:

1.

2
3.
4

. The configuration of the application to accept Kerberos authentication, identify the

A uniquely-named Kerberos Service Principal Name (SPN).
In Active Directory, a User Principal which the SPN above will be an attribute of.

A keytab stored locally on the application server.

application’s Service Principal, and find its keytab.

We'll walk through the kerberization of the SAS Logon Manager.

First we create a User Principal in Active Directory, as shown in Display 9. This satisfies AD-
specific Requirement #2 (this would not be necessary in MIT Kerberos).

File Action View Help

e zF o Bz HR 3aiETEah

Active Directory Users and Computers \;‘i-

I»
4 i celleinternal

Active Directory Users and Computers || Name Pre-Windows 2000 Logon Name Type Description
| Saved Queries _}J- SASHTTP Account sashttp User 5A5 Viya Legon Manager HTTP Account

_| Builtin
2| cloudera
| Computers
2| Domain Controllers
| ForeignSecurityPrincipals
| LostAndFound
| Managed Service Accounts
| Program Data
| System
1 Users

A

Display 9. The SAS Logon User Principal In AD

30

Then we need to add Service Principal Names as attributes of our User Principal (see Display
10). We add SPNs for our service (http, as SAS Logon Manager is accessed through a
browser), with instance-names representing each server which runs the SAS Logon
Manager, in both short-hosthame and FQDN formats. (With MIT Kerberos, standalone
Service Principals would be created.) This satisfies Requirement #1.

E Active Directory Users and Computers = | Bl =
File Action View Help

eszE FO/XBER LRETAR

] Active Directory Users and Computers || Name Pre-Windows 2000 Logon Name Type Description
b [Saved Queries ?) SASHTTP Account sashttp User SAS Viya Logon Manager HTTP Account
4 i celleinternal a > x
» 7 Builtin SAS HTTP Account Properties :
b @ cloudera e
» B Computers Multi-valued String Editor pesntliGhona
— . fit I Sessions
= 2| Domain Controllers Deloadti
N Lo Attribute: servicePrincipalName LEE g
» & Eor:fn;:cun;yPnnclpals [| Attibute Editor
v — -ostndroun Value to add:
I+ [Managed Service Accounts
B Pro Dat: “ | ‘ Add |
-l gram Data N
b [System Val
~ Users http/d Iviyasvelayer Hemare
http./d Tviyasvelayerl.celic.intemal
http./d Tviyasvelayer2
oy http./d Tviyasvclayer2. celic intemal
pBcec2beaba

o

Display 10. The SAS Logon User Principal’s Service Principal Attributes In AD

After we create our SPNs, we also need to enable “Trusted For Delegation” on the SAS
Logon User Account (see Display 11), in order to support the SAS Viya TGT-delegation flow
outlined above. Without this setting, Bob may authenticate to the Logon Manager, but his
TGT will not be forwarded to the Logon Manager for storage in the Credentials Microservice.

SAS HTTP Account Properties _

Crganization I Published Certfficates I Member Of I Password Replication
Remaote control I Remate Deshiop Services Profile I COM= I Attribute Editor
Dial+n I Object I Security I Environmert I Sessions
General IMdress I Account I Profile I Telephones | Delegation

Delegation is a security-sensitive operation, which allows services to act on
behalf of ancther user.

() Do not trust this user for delegation

(®) Trust this user for delegation to any service (Kerberos only)

() Trust this user for delegation to specified services only
Use Kerberos only

Use any authentication protocal

Display 11. Trusted For Delegation Enablement In AD

31

We then need to create a keytab, and store it on the filesystem. On Linux, we can use the
ktutil command to create the keytab. Before we run it, we need to determine the “kvno”
(Key Version Number) of the User Principal which we will be creating a keytab for: this
number is incremented each time a User Principal’s password is changed. Acquire a TGT in
order to be able to communicate with the KDC, and then run “kvno <username>", as shown
in Output 35.

[bob@d1lkrbclient ~1$ kvno sashttp@CCLLC.INTERNAL

sashttp@CCLLC.INTERNAL: kvno = 14

Output 35. Determining A User Principal's Key Version Number With Kvno

With the kvno in-hand, we will build a keytab using the following pattern:

ktutil
addent password -p <UserPrincipal> -k <kvno> -e <encryption-type>
addent password —-p <ServicePrincipal> -k <kvno> -e <encryption-type>
repeat for each UserPrincipal/ServicePrincipal/EncryptionType combo
wkt <output-file>
quit

Notes:

e After each “addent” command, you will be prompted for a password. The password for
the User Principle associated with the keytab needs to be carefully entered. (With MIT
Kerberos, the password for the Service Principal itself would be used.) The password is
not being checked against the KDC, and an incorrect entry will cause the application
service to not be able to decrypt the contents of Message H in Step 5 of our Kerberos
Authorization Example, which will prevent users from being able to access the service.

e If you are unsure of the encryption types being used in your Kerberos environment, the
most common three are RC4-HMAC, aes128-cts-hmac-shal-96 and aes256-cts-hmac-
shal-96. Create entries for all three for each of the User and Service Principals.

The ktutil command sequence to create our SAS Logon Service keytab is shown in Output
36.

32

/bin/sktutil
p http -k 14 -e
for sashttp(C.INTERNAL :
addent - ord -p http/dlviyasvclayerl. lc.internal -k 14 -e RC4-HMAC
for httpy aauc]averl cc11c 1) LLC. INTERNAL :
addent -p: ; laye .internal -k 14 -e RC4-HMAC
for http/div ayerz. . @cc INTERNAL
addent -
for http/
addent -p
for http/d
Ftutl] addent -pa
Password for sashttpg
ktutil: addent -p / aye cc11c internal -k 14 -e aesl28-cts-hmac-shal-96
Password for http/
Ftut11 addent - ord p http,dl ayer2.ccllc.internal -k 14 -e aes128-cts-hmac-shal-96
for http/ yasveclayer2.cc .1 @ INTERNA
addent - aye 14 -e aesl28-cts-hmac-shal-96
for http/ svclayerl . INTERNAL :
addent -p / clayer2 -k 14 -e aesl28-cts-hmac-shal-96
for http/ 4 sV 3 . INTERMNAL
addent -p p < 14 -e aes256-cts-hmac-shal-g96
for sashtt
addent -p: / aye .internal -k 14 -e aes256-cts-hmac-shal-96
for httpy .1nter al
addent - ord p http,dl xr2.ccllc.internal -k 14 -e aes25¢ -hmac-shal-96
for http/ asvclayerz cclle 1nter al (
addent -p: / vclay . » aes256-cts-hmac-shal-96
for http/diviyasvclayerld .INTERNAL :
addent - 1yasvclayer2 -k 14 -e aes256-cts-hmac-shal-96
for http/ aye C.INTERNAL :
wkt /opt/sas/ http. kevtab
Ftutll. quit

Output 36. Creating A Keytab With Ktutil

Once the keytab has been created, the contents can be listed for validation with klist, as
shown in Output 37.

3 shttp.keytab
FILE: /opt
hVNO Principal

http/dlviyasvcl: . ll .1nterna1 . INTERNAL (arcfour-hmac)

httpsdl 2. .internal INTERNAL (arcfour-hmac)
' 1 .INTERNAL (arcfour-hmac)

http/dl 5 : .INTEPNAL (arcfour-hmac)

sashttp@CC 2 I shal-96)

http/d1lvi Ta .eclle. . INTERNAL

http/dl ; 2 lc.internal (

http/div .INTEPNAL

http/divi :

shttp@ 5 i

http/dlviyasveclay 1nternal INTERNAL

http/divi . .internal INTERNAL

http/d1 1 .INTERNAL (aes25 : shi

http/dlviy ayer: .INTERNAL (aes256-cts-hmac-shal-96)

Output 37. Displaying The Contents Of A Keytab With Klist

The keytab’s ability to acquire a TGT without needing a password prompt can then be tested
for the User Principal in AD (or the Service Principal in MIT Kerberos), as shown in Output
38.

33

shttp.keytab sashttp@ C.INTERNAL

Using principal:
Using keytab: /fop
1 ed to Kerbero

; sveclayerl s
Ticket cache: FILE:/

alid starting Xplres Service principal
2019 03:09:43 © 919 13: 4; krbtgt LC.INTERNAL@! C.INTERNAL
renew until 83/31/2019 03:09:43

Output 38. Acquiring A TGT Passwordless Using A Keytab

By storing the keytab on the local filesystem and making it readable only by the sas account
which runs the SAS Logon Manager process, Requirement #3 above is met.

Finally, we need to configure the application to support Kerberos authentication, identify the
application’s Service Principal, and find its keytab. This will allow us to meet kerberization
Requirement #4 above. We'll do that on a pair of screens in SAS Viya 3.4’s Environment
Manager as an Administrator.

One screen looks like Display 12.

SAS Logon Manager

file://fopti/sas/sashitp keytab

Display 12. SAS Logon Manager Kerberos Configuration In SAS Environment Manager

34

Two non-intuitive entries:

e holdOnToGSSContext: Tells the SAS Logon Manager to store the delegated user TGT
in the Credentials Microservice, for later use with the CAS Controller and Launcher
Servers

o stripRealmForGSS: Removes the "@REALM” from the end of usernames for OS-layer
activities

The other Environment Manager screen simply adds Kerberos as an available authentication
option under the “spring” settings of the SAS Logon Manager (see Display 13).

ldap pDStgreSql@

Display 13. SAS Logon Manager Kerberos Enablement In SAS Environment Manager

With a restart of the SAS Logon Manager, it will now be kerberized and able to validate
Kerberos service tickets for authentication. The kerberization of the SAS CAS Controller and
SAS Launcher Server follow the same fundamentals, but with slightly different steps as
outlined in the SAS Viya 3.4 Administration Guide.

Load Balancers

You may have noticed above that our environment has two servers hosting SAS Logon
Services (dlviyasvclayerl and dlviyasvclayer2). If we have a load balancer in front of our
multiple SAS Viya Service Layer servers, support for Kerberos through the load balancer is
very straightforward: we just need a Service Principal Name for our Load Balancer address,
as shown in Display 14.

E| Active Directory Users and Computers = | =] 22
File Action View Help

e pE o XEd= Bm 2eETE%R

: Active Directory Users and Computers || Name Pre-Windows 2000 Logon Name Type Description

I [Saved Queries a, SASHTTP Account sashttp User SAS Viya Logon Manager HTTP Account
a 35 ccllcintemal - - ”
p [Builtin SAS HTTP Account Properties E
I 2 cloudera —
| Computers Multi-valued String Editor esword Replcation
- . fit | Sessions
2| Domain Controllers Delegati
| ForeignSecurityPrincipals Attribute: service PrincipalMName nes elegation

- |+ | Attribute Edtor
LostAndFound

. . Value to add:
Managed Service Accounts

3
3
I
I
I
3
3

| Program Data ‘ | | Add | N
| System Values:
| Users | hitp/D'1ViyaLoadBalancer-7d138cec26eataTl eb. D Remove
0

http./d Tviyasvelayer].cellc.intemal

http./d Twiyasvelayer2

http./d Tviyasvelayer2 cellc.intemal hcec?6eaba

< m >

ST

Display 14. Adding A Load Balancer Address As Service Principal Attribute In AD

We can then add the SPN to our Kerberos keytab with ktutil, as shown in Output 39.

35

. p/D1Viyal oadBalancer-7d138cec26eaba77.elb.us 5 onaws.com -k 14 -e RC4-HMAC
1Viyal oadBalancer-7d138cec26e: lb.us t ; (C.INTERNAL :
ord -p http/D1ViyaloadB 38cec26e lb. > mazonaws .com -k 14 -e aesl28-cts-hmac-shal-96

1Viyal oadBalancer-7d138cec a6a77.elb. aws (INTERNAL :
addent -password -p http/D1Viyal cadBalancer-7d138cec26e: lb. ast-1.amazonaws.com -k 14 -e aes256-cts-hmac-shal-96
=F LoadBalancer-7d138cec26eaba77.elb.us- . amaz onaws (INTERNAL :
ktutil: > _| / ttp.keytab
ktutil:

Output 39. Adding A Load Balancer Address To A Keytab With Ktutil

We can then validate that our entries are available in our klist, as shown in Output 40.

vclayerl sasls klist -ke /fopt/ http.keytab

Keytab name: FILE:/opt/ shttp.keytab
KVNO Principal
14
14 http/dlvi y .cclle. 2 C.INTERNAL (arcfour-hmac)
14 http/d1l rclayers: llc.1intern: C.INTERNAL (arcfour-hmac)

4 http/dlvy ¥ @ .INTERNAL (arcfour-hmac)

4 http/dl v .INTERNAL (ur-hmac)

al-96)
4 http/dl relay .ecll] INTERNAL (z 28-cts-hmac-shal-96)

4 http/dlvy 2. lc. C INTERNAL s-hmac-s 96)
4 http/d1l relay (. ! 8-cts-hmac-s 36)
4 http/dlv

al-96)

5 C.INTERNAL (: s-hmac-shal-96)
http/divi rclayerz2. . rnal TERNAL s-hmac-shal-96)
http/dl (s

d @CCLLC.INTERNAL
ncer-7d138cec26
ncer-7dl38cec

Output 40. Displaying The Contents Of A Keytab With A Load Balancer Using Klist

DESKTOP IWA CONFIGURATION

Each major browser has a bit different configuration to enable IWA. We'll use Firefox as an
example.

In about:config there are two Kerberos-related settings that need the hostnames and/or
aliases of the SAS Logon webservers added, as shown in Display 15.

. S D x

&« = C @ |\. about:config ﬁ|

Search: network.neg

Preference Name - Status Type Value

network. negotiate-auth. allow-non-fgdn default boolean false

network, negotiate-auth, allow-proxies default boolean true

network.negotiate-auth.delegation-uris modified string http://D1¥ivaloadBalancer-7d138cec2beaba?.elb.us-east-1.amazonaws.comn
nietwork, negotiste-auth. gssiib default string

network.negotiate-auth.trusted-uris modified string http://D1¥iyaloadBalancer-7d138cec26eaba77.elb.us-east-1.amazonaws.com
network, negotiate-auth,using-native-gsslib default boolean true

Display 15. Firefox Configuration For IWA Access To The Load Balancer URL

¢ network.negotiate-auth.trusted-urls: The list of hosts that Firefox will attempt to
authenticate with using Kerberos

¢ network.negotiate-auth.delegation-urls: The list of hosts that Firefox will delegate
our TGT to if asked

Once these two settings are in-place, and our SAS/Hadoop environments are fully
kerberized, we can use Firefox to log in to our SAS Viya visual applications (e.g., Visual

36

Analytics, SAS Studio 5.x) without a password check, and have full outbound access to
kerberized downstream datasources also without a password check (see Display 16).

G SAS® Studio X |+
&« G @ aloadbalancer-7d138cec26eaba77.elb.us-east-1.amazonaws.comShsstudioV/main?locale=e - O Y I 0 =
: O @ O @ BobUecker v
New Options View = Open
Snippets [} Program.sas x
2 .
* : 2 Submit H & [E Add as Snippet
Ie) Code Log
E —
> E My Snippets
. 4 @8 5AS Snippets
R LN] Catalogs
b B8 Data
E LN] Descriptive
LN] Graph
> B8 IML
E’ b B8 Macro
4 @8 5AS Viya Cloud Analytic Services

Display 16. SASStudio 5.x Access Through A Load Balancer With IWA

CONCLUSION

Kerberos is an enterprise-grade network authentication protocol which can significantly
improve application and data security in a corporate environment. However the complexity
of the protocol, along with the variety of ways it can be implemented and configured, can
make it difficult for SAS administrators to fully understand the entire SAS and Kerberos
integration picture.

We hope that this paper, where we took the approach of systematically explaining the key
configurations that are common across all kerberized application deployments instead of
focusing on the granular steps tied to a particular revision of the OS or application, has been
helpful towards better understanding the deployment and integration options in your own
corporate environment, and improving your Kerberos troubleshooting skills.

REFERENCES

Rogers, Stuart. "SAS Viya 3.4 Authentication Overview.” Available at
https://communities.sas.com/t5/SAS-Communities-Library/SAS-Viya-3-4-Authentication-
Overview/ta-p/523244.

Pal, Dmitri. “"Overview of Direct Integration Options.” Available at
https://rhelblog.redhat.com/2015/02/04/overview-of-direct-integration-options/.

Microsoft. “"How the Kerberos Version 5 Authentication Protocol Works.” Available at
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-
2003/cc772815(v%3dws.10).

RedHat. “Red Hat Enterprise Linux 7 System-Level Authentication Guide.” Available at
https://access.redhat.com/documentation/en-us/red hat enterprise linux/7/html-
single/system-level authentication guide/index.

Cloudera. “Enabling Kerberos Authentication for CDH.” Available at
https://www.cloudera.com/documentation/enterprise/6/6.1/topics/cm sqg intro kerb.html.

37

https://communities.sas.com/t5/SAS-Communities-Library/SAS-Viya-3-4-Authentication-Overview/ta-p/523244
https://communities.sas.com/t5/SAS-Communities-Library/SAS-Viya-3-4-Authentication-Overview/ta-p/523244
https://rhelblog.redhat.com/2015/02/04/overview-of-direct-integration-options/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772815(v%3dws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772815(v%3dws.10)
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system-level_authentication_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system-level_authentication_guide/index
https://www.cloudera.com/documentation/enterprise/6/6.1/topics/cm_sg_intro_kerb.html

SAS. “SAS Viya 3.4 Administration Guide.” Available at
https://documentation.sas.com/?cdcld=calcdc&cdcVersion=3.4&docsetld=calchkcfg&docset
Target=n00004saschecklist0000config.htm&locale=en.

SAS. "SAS Viya 3.4 for Linux: Deployment Guide.” Available at
https://documentation.sas.com/?docsetld=dplymlOphy0Olax&docsetTarget=titlepage.htm&do
csetVersion=3.4&locale=en.

ACKNOWLEDGMENTS

We would like to thank Stuart Rogers for his excellent work in developing best practices and
documentation in the area of SAS, Hadoop and Kerberos integrations. It has been
invaluable in supporting our SAS clients with kerberized environments.

We would also like to thank Carlos Phillips, Don Hayes, and Rebecca Hayes for reviewing
this paper and offering valuable suggestions.
RECOMMENDED READING

Root, Lynn. “Explain like I'm 5 Kerberos.” Available at
http://www.roguelynn.com/words/explain-like-im-5-kerberos.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Michael Shealy
Cached Consulting LLC
michael.shealy@cachedconsulting.com

Spencer Hayes
Cached Consulting LLC
spencer.hayes@cachedconsulting.com

www.cachedconsulting.com

38

https://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calchkcfg&docsetTarget=n00004saschecklist0000config.htm&locale=en
https://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calchkcfg&docsetTarget=n00004saschecklist0000config.htm&locale=en
https://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetTarget=titlepage.htm&docsetVersion=3.4&locale=en
https://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetTarget=titlepage.htm&docsetVersion=3.4&locale=en
http://www.roguelynn.com/words/explain-like-im-5-kerberos
mailto:michael.shealy@cachedconsulting.com
mailto:spencer.hayes@cachedconsulting.com
http://www.cachedconsulting.com/

