
1

Paper 3127-2019

Data Modelling for a Better Analytical Environment

Linus Hjorth, Infotrek

ABSTRACT

Developing and maintaining an analytical environment can be hard—especially if your area

of interest is complex, involves more than one subject area, and has several source systems

that needs to be integrated. There are several tools available to us when developing and

maintaining such an environment, usually a data warehouse; examples are data and

analytical processes, and documentation. One of the neatest parts of documentation (and

communication) is the use of information and data models. In this paper, I discuss how to

use information models and some of the data modeling techniques that can be used in a

data warehouse. I also show how to exchange data models between data modeling tools

and SAS® metadata, and tools like the ETL tool in SAS® Data Integration Studio.

INTRODUCTION

So, in what ways can data models contribute to a better analytics environment, and at the

end, better analytics? If we look from the perspective – the one goal to support business

needs, one prime tool to help understand and communicate those is information models.

With information models we can both capture direct business report and analysis

requirements, as well document the business landscape. Information models is hard to

strictly define. Also, they tend to be used when needed.

To give business value over time, we need a functioning IT infrastructure and governance.

In IT, physical data models have been used as long there have been databases. A physical

data model shows how a system is, or should be, implemented in a database.

Logical data models haven’t been regarded as mandatory. A logical data model defines the

data, their relationships and other constraints. Naming in the logical model could be in

business terms, to ease verification by subject matter experts.

To conclude, if your concern is

• Communication – use information models

• Data integrity – use logical data models

• Performance – use physical data models

INFORMATION MODELLING

Information models are usually not seen as mandatory, and therefore not used very often.

This fact makes it an underused and undervalued resource. Consider that the failure of

many analytical and BI projects can be related to the lack of communication. And by

communication, we usually relate to communication between business stakeholders, subject

matter experts, and the development teams. Here information models can play an

important part.

There are several names for information models, some being:

• Subject Model

• Logical Business Model

• Conceptual Model

• Domain Model

2

A subject model is usually on a

high level, where you document

the main entities, relationships

and only crucial attributes. But

still it will give you crucial infor-

mation about your business.

Like in the diagram, you can

observe that a customer can

hold several accounts and must

hold at least one. From this we

can conclude you cannot be

considered a customer unless

you hold an account. A subject

model is perfect to use in the

assessment phase of a project.

When you go to the implemen-

tation phases you want to detail

the models, as outlined below.

There are typically two areas of use for information models: analytical requirements and

domain modelling.

MODELLING ANALYTICAL REQUIREMENTS

You usually start off documenting what the business wants to achieve with the analytical

initiatives. This boils down to what information is required, the level of detail (granularity)

and the information structure. In many scenarios, this will result in a dimensional model.

The reason for this is that most analytical requirements can be described with measures

(facts) and categories (dimensions). Even if your application would be somewhat different,

like an analytical base table, you can still use a dimensional model as base for defining the

requirements.

Figure 2: Example dimensional model

Figure 1: Example subject model

3

DOMAIN MODELLING

If we wish to source data and build the foundation of our analytical environment for multi-

purpose, and reusability, we need to understand the details about the data that we wish to

store.

A domain model (or a Business Logical Model) tells us how the business works. This

comprises identifying business entities, relationships and rules how different information

relates to each other. It should be source system independent. But you can use source

systems as one input to build such a model. These models tend to look like logical data

models using standard third normal form (in non-data warehouse environments where data

temporality is implemented).

Figure 3: Example domain model

A domain model is a great starting point when building your data model for your data

warehouse detail layer.

If the domain model is developed driven by specific business requirements (e.g. analytical

initiatives), it has a higher probability to succeed. Without this driver, domain modelling can

be perceived as an academic exercise with little or no business value. Some sites are trying

to create an enterprise information model, which of course can beneficial for many use

cases. However, this is quite rare, probably because this requires a quite high effort, both in

terms of competence and the amount of work that need to be invested. And any develop-

ment processed must be aligned with such model, or else it will become quickly obsolete.

THE CASE FOR INFORMATION MODELLING

As you might already have sensed, because information models are for communication, its

main value is to bring different perspectives together. That can be represented in different

user cases, data from disparate systems, and different applications using the same

analytical environment.

4

This will lower the risk of misunderstandings, which could lead to failed, if not projects, at

least sprints. An information model is also good to visualize complexity in different areas –

which is something that can be helpful when prioritizing and estimating development

efforts.

Another powerful use is mapping analysis requirements towards the domain model, and

then towards source systems, so you can quickly verify if the requirements can be fulfilled

with existing data or requires further sourcing.

INFORMATION MODEL CONSIDERATIONS

Abstraction

In most modelling (data and

information) you will frequently decide

the level of abstraction. Let’s say that

you model case management. Then

you might have different kind of cases,

like incident, change request, request

for information etc. Will you model

them as separate entities, or by a

Case Type attribute? If the set of

attributes for these differ significantly,

you might go with separate entities.

Another situation could be

classifications that might change over

time, like status. Here you can either

model with a set of different

attributes, or perhaps as status and

status time attributes. The former is

clearer for the reader, whereas it will make the model more vulnerable for change (i.e. if we

add more statuses, or if a status can reoccur).

Some flexible modelling tools adds the possibility to display domain values as enumerations.

This will give god visibility of the model, still give the flexibility to add new domain values

without changing entity structures.

Homo- and Synonyms

Homonyms can be quite “dangerous”. You think you are talking about the same thing, when

you’re not. Something that can be discovered way into a project, and can be costly and lead

to failures, and distrust.

Synonyms might not be as damaging as homonyms but adds to confusion and depressing

efficiency both system wise and in the line of business.

Class vs Instance

Class is another word for keeping taxonomies, like abstract structures. Instances refer to an

actual “real”. Domestic cat is a class, my cat Max is my instance of a domestic cat.

Especially in verbal communication I have often found that we are not sure if we refer to a

class or instance. This seems to occur especially when talking about products, like a

telephone model, vs the phone our customer buy/use. But when implementing this in the

information model, it is usually not difficult, but you need to consider this distinction when

naming entities.

Figure 4: Abstractions: classification vs
attribufication

5

Figure 5: Class vs instance - naming distinction

Aggregations and Calculations

One key feature of analytical and BI systems is the ability to create aggregations and

calculations. This is true in many of the layers in our systems. I have noticed a reflexive

behavior to include the information that a term is aggregated in its name. But the problem

is that you could aggregate your measures in tons of ways, and in many applications

dynamically. The term “Total sales” doesn’t really tell you total of what? My suggestion is

that you leave this naming either to be obvious by the context (i.e. a star schema with

customer and date as granular levels for sales) or managed by the report layer.

Calculations on the other hand enriches and transforms data in not always obvious ways. So

the term should include a notion of the definition/result of the calculation. Here is the

challenge to come up with crisp names.

GETTING STARTED - MODELLING METHODOLOGIES

Understanding models and being able to edit one is one thing. But where to start, and get

your models accurate? If you need help with the process, there are some methodologies

that can guide.

ENHANCING THE SAS ANALYTICS LIFE CYCLE

The SAS Analytics Life cycle was

created mainly to deal with the

80-20-0 situation: a lot of work

spent on preparing data, some

on statistical modelling, none in

deploying them. The framework

itself has no clear data/

information modelling

guidelines, but I think they

come in handy in this process.

When doing the Ask phase, you

should be able to do an infor-

mation model that corresponds

to the question you are asking.

Also, a preliminary data model

can be produced here. In the

Prepare phase, refine the phy-

sical model. And finally based on the

Exploration phase you should able to

set a final model.

Figure 6: Data models and Analytics Life Cycle

6

BUSINESS EVENT ANALYSIS & MODELLING – BEAM

This methodology is public domain and documented in the book “Agile Data Warehouse

Design – Collaborative Dimensional Modeling, from Whiteboard to Star Schema”. As the title

implies, the method is directed towards dimensional modelling.

One of the core concepts is the “7 W’s”: Who, What, When, Where, hoW (many/much),

Why, hoW (did it happen), six of them inspired by journalistic methods. In workshops the

audience will answer these questions applied to the area of interest. The hoW (many/much)

will be modelled as facts/measures. The other W’s will result in dimensions. In the process

there are many more deliverables than a dimensional model, like hierarchical ontologies,

measure/categorical matrix and example data sheets.

ENSEMBLE LOGICAL MODELLING – ELM

This method is based on BEAM,

but one major difference – the

result is a logical ensemble

model. Ensemble here refers to a

logical grouping of entities that as

whole describes a core business

concept: the identifier(s),

attributes, and relationships to

other core business concepts.

ELM springs out from the data

vault community (see later in this

paper). In nature this is directed

to model domain model rather

than end user report require-

ments. ELM is not public domain

– apart from YouTube clips docu-

mentation is available by taking a

course.

Figure 7: Sample ELM postit model

7

BIP: BUSINESS NEEDS – INFORMATION MODEL – PROTOTYPE

This method (crated by the consultancy Infotrek) is also based on BEAM. But with major

extension of the mandatory step of building a prototype. Going all the way from business

requirements, mapping towards sources and present the result in one sprint, boosts

stakeholder engagement. Also, you get direct feedback if the requirement was properly

defined, and the data to support it is sufficient.

Figure 8: The BIP cycles, from analyzing business requirements, to information model and build
prototype

DATA MODELLING

Data Modelling describes what to do and how to implement it. Data models can be used

throughout the analytical environment and the analytical process. Sometimes it’s not

necessary to maintain graphical models separately; especially physical data models are

quite simple to generate from a data base schema directly. Usually in the beginning of an

analytical system life cycle, data models are being worked upon the mostly in the beginning.

Depending on the nature of the solution, you may not need data models in every layer.

Also, some solution includes semantic layers in the architecture – these can usually replace

or act as an information or logical data model.

DATA MODEL PARADIGMS

Different layers of the analytical environment serve different purposes. Therefore, different

modelling approaches are typically used.

The analytical layer is usually designed as star schemas. Other pattern exists (especially

physically) like analytic base tables, de-normalized information marts, or OLAP cubes. Even

if not all your end user will not use the star schema, it’s still often created. It will support

multi-use-cases, and reusability of data structures and ETL logic. The down side is that you

implement another physical data layer that adds data latency to your ETL process.

8

Third Normal Form – 3NF

For the detail layer, historically Bill Inmon inspired 3rd Normal Form (3NF) models with

added temporality, has been widely used and earlier seen as a de-facto standard.

Introducing data temporality usually means that the physical data model cannot be

implemented using standard referential constraints. This because the prime key (PK) of a

table consists both business key (surrogate or natural) and a timestamp for temporality. A

foreign key (FK) to another table should comprise the whole PK, but this is awkward, this

will lead to unnecessary inserts and complicated joins. The solution is often that you just

skip the timestamp in FK and turn off referential integrity in the data base.

Figure 9: 3NF PK - FK without temporal date column

3NF is also considered somewhat inflexible. Changes in business rules can drive structural

change in existing tables and ETL process which makes maintenance hard. Examples that

drive changes in the schema, and ETL jobs are adding new attributes, or change a 1-M

relationship to M-M.

Dimensional Modelling and Star Schemas

Star Schemas has its strength in simplicity. Most experienced data user can understand the

concept of facts and dimensions. But it is not ideal for all situations. For instance, it can be

hard to design N-occurrences (an example if a doctor’s visit results in multiple diagnosis). In

those situations, you need to compromise, or use a different pattern than a strictly

dimensional model.

Also, there are problems when trying to implement dimensional models for multi-use-case

detail data. The world is much more complex than just facts and dimensions (with

hierarchies with 1-M relationships between each level). Such detail data layer introduces

bridge tables and snow flaking (normalization of dimensions), which eventually will make

this kind of model as hard to understand and use as 3NF model.

EMPLOYEE

POSITION

Employee_IdPK

Employee_Name

Date_Hired

Position_IdPK

Position_Start_Date

Position_End_Date

Job_Code

Employee_IdFK

Valid_From_DatePK

Valid_From_DatePK

Valid_To_Date

Valid_To_Date

Employee_No
Position_No

9

Figure 10: Non-standard relationships and design for detail data adds complexity to dimensional
models

DATA VAULT

One emerging data modelling approach is data vault and is nowadays almost de-facto

standard for new data warehouse implementations. Its main characteristic is that you

separate the concepts of business keys (“Hub”), relationships (“Link”) and attributes

(“Satellite”) into separate tables. Any temporality is applied only to attributes (satellites), so

you don’t have to consider that when creating relationships (FK’s). Also, since relationships

are in separate tables, its PK is always the combination of the FK from the hubs that are

involved. In 3NF when modelling a relation as 1-M, and M-M you’ll get different structures.

In data vault both cases are implemented with the same construct as a link table. If the

business rule change (let’s say from 1-M to M-M) the data vault model doesn’t need to

change, and chances are, no or few to the ETL.

Data vault also allows to group attributes into separate satellite tables, based on the

characteristics of the solution and data sources. This design is pro maintainability and help

ETL deployment work smoothly over time.

10

Figure 11: Sample data vault model. Note the grey table which is in 3NF - you can migrate in steps
from 3NF to data vault

MODELLING FOR ANALYSIS

Usually we think of analytical base tables when designing for analysis. Even if different

types of analysis have different requirement on table structures, some characteristics are

more common than others. These includes:

• Converting continues values to low granularity buckets. This is done through

grouping using intervals or ranking.

• One individual per row – transposing data from long to wide.

• Flags – apply sets of business rule to generate Boolean vales, and preferable stored

as numeric.

• Trends – transpose the time dimension with your measures. Amt_Jan, Amt_Feb etc

But for time series analysis, you want data in a long format, one record per time unit.

WHAT ABOUT BIG DATA?

Big Data and data science drive the analytic space at the moment. But the area is not very

well defined. If you have a Big Data platform strategy, it is what you make it. Ranging for

just raw data dumps with little or no governance, to fully documented data warehouse

applications.

Since many sites struggle with maintenance of big data environments, a good base line

would be to keep a data dictionary, secondly a naming convention for derived data. In these

environments un- or semi structured data is common. This information is quite hard to

model, especially since common modelling tools are focused on relational data. You can

start model this kind of data on entity level.

11

USING DATA MODELS WITH SAS

Now you have created some nice data models and want to use them when creating

databases. You could either have the tool generating your data base (forward engineering)

or import the model as metadata.

FORWARD ENGINEERING

Forward engineering can be done in two ways, connect to the data base and create/update

the schema, or generate DDL (Data Description Language) code which you could execute

yourself from SAS. For the later, your model tool needs to be able to connect to SAS (or any

database of your choice) using e.g. ODBC. For DDL, you need your modelling tool to

generate SQL that is compatible for your data base. For Base SAS libraries specifically Erwin

has that support, most other tools don’t.

Forward engineering is usually feasible in new systems, or when you implement new areas

in your system. For updating existing entities its’s usually quite cumbersome – so usually

the maintenance organization write scripts on their own to enforce model changes.

METADATA INTEGRATION

For the below discussion I refer to SAS 9.4 Intelligence Platform. For Viya, full data

management capability isn’t yet available.

SAS has some addon licenses for Data Integration and Data Management Server called SAS

Metabridges. Literarily hundreds of formats are available. With Metabridges interface you

have wizards that lets you compare and analyze changes down to column level and chose

what to. But, don’t expect that everything that you specify in the modelling will be

translated correctly to SAS metadata. The version of your modelling tool, and capability of

the Metabridge for your specific tool have impact on the result.

Display 1. Examining differences during metadata import & compare

12

CONCLUSION

Creating and updating documentation is task that is seldom at an usable level. It’s either too detailed –
which can lead to mismatch with reality over time. Or it’s to scarce. Data models can act as a center
piece in your documentation. It can reveal your most important resource in your system – your data!
And this in level of detail that’s required.
The use of information models can reduce risk and give more business value during

development. Also, data models are useful suing maintenance to protect the consistency

and quality of your system.

REFERENCES

Inmon, W.H. 2005. Building the Data Warehouse. 4th ed.: Wiley

Kimball, R. and Ross, M. 2013. The Data Warehouse Toolkit. 3rd ed.: Wiley

Linstedt, D. 2011. Supercharge Your Data Warehouse: CreateSpace Independent Publishing

Platform

Hultgren, H. 2012. Modeling the Agile Data Warehouse with Data Vault (Volume 1):

Brighton Hamilton

Cuba, P. 2018. “Integrating SAS and Data Vault.”Proceedings of the SAS Global Forum

2018, 1898-2018. Denver, CO: SAS Institute.

ACKNOWLEDGMENTS

Ylva Andersson, Siavoush Mohammadi and Saiam Mufti for valuable feed-back throughout

the process of writing this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Linus Hjorth

Infotrek

+46 705651833

linus.hjorth@infotrek.se

infotrek.se

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1898-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1898-2018.pdf
mailto:linus.hjorth@infotrek.se
mailto:linus.hjorth@infotrek.se
http://infotrek.se/
http://infotrek.se/

