
1

Paper 3125-2019

HASH Beyond Lookups – Take Another Look

 Elizabeth Axelrod, Abt Associates Inc.

ABSTRACT

Using the hash object in SAS® – beyond table lookup and data retrieval – enables you to do

some pretty cool stuff, solving complicated problems with code that runs efficiently and

flows intuitively. And… it’s easy to maintain and modify. What’s not to like? This is an

updated and expanded version of my original paper “Hash Beyond Lookups - Your Code Will

Never Be the Same”. It provides a further exploration of some useful Hash techniques, and

offers more situations that can be elegantly solved using Hash. The main message? Don’t

be afraid of Hash!

INTRODUCTION

Most SAS users who learn about the hash object first learn how to do lookups with a hash

object (table). This paper assumes that you already have some familiarity with this

technique. But did you know that in addition to looking up data in a hash table, you can

also:

 build tables in memory during program execution,

 traverse tables,

 aggregate data,

 sort data, and

 save the contents of a table to a file.

Hash tables are well suited to solve a variety of problems that can also be solved by other

more traditional methods. But once you get a taste of the power, efficiency, and elegance

of these techniques, you’ll be hooked. Perhaps because it has its own nomenclature –

object.dot syntax – so different from the standard DATA step, many programmers do not

venture beyond using hash tables for lookup or retrieval of data. But if you’re already using

hash tables to do lookups and data retrieval, you’re almost there - the trick is just to look at

your problems in a new way, and recognize the opportunity to use hash as a solution. This

paper is intended to introduce you to some of these other fabulous and surprisingly simple-

to-code things that hash objects can do. At the end of this paper you will find references

and suggested readings which provide extensive details and more technical explanations.

GETTING STARTED

Using hash methods to build tables in memory enables you to solve complex problems –

often in a single DATA step, which otherwise might require multiple DATA and PROC steps.

This paper uses fairly simple examples, so we can focus on the basic techniques.

In this first example, we’ll create several summary tables from very a large non-sorted file –

all in a single DATA step, with no pre-sorting. Let’s say you have a large file of inpatient

hospital claims (CLAIMS), and a list of hospital IDs (HOSPITALS). In this example it doesn’t

matter how the input files are sorted, but I present the input data in a sorted fashion, so

you can more easily see what the output files should look like.

2

Here are the input files:

Table 1. Input Data Sets

Your mission is to create two output files:

1) Summarized measures at the hospital level. This file will contain one record for every

hospital encountered in the CLAIMS file, with these variables:

 HOSPID Hospital ID

 HOSPTYPE Type of hospital, found in the HOSPITALS data set

 N_CLMS Number of records found in the CLAIMS data set for each hospital

 TOT_PAY The sum of payments found in CLAIMS for each hospital

2) Summarized measures at the patient/hospital level. This file will have one record for

each unique patient/hospital combination, with these variables:

 PATID Patient ID

 HOSPID Hospital ID

 MIN_ADMIT Earliest admission date for this Patient/Hospital

 MAX_DISCH Latest discharge date for this Patient/Hospital

Here are the desired output files:

Table 2. Desired Output Data Sets

CLAIMS

PATID ADMIT DISCH HOSPID PAYMENT

P1 03/05/15 03/08/15 H111 1111.11

P1 01/03/16 01/09/16 H333 222.22

P1 10/12/16 10/15/16 H333 333.33

P2 05/05/15 05/06/15 H222 444.44

P2 09/16/15 10/01/15 H222 11.11

P2 12/01/15 12/15/15 H555 5555.55

P2 04/04/16 05/06/16 H111 7777.77

P2 06/06/16 06/08/16 H444 111.11

HOSPITALS

HOSPID HOSPTYPE

H111 ACUTE

H222 ACUTE

H333 REHAB

H444 PSYCH

HOSPITAL SUMMARY (HSUM)

HOSPID HOSPTYPE TOT_PAY N_CLMS

H111 ACUTE 8888.88 2

H222 ACUTE 455.55 2

H333 REHAB 555.55 2

H444 PSYCH 111.11 1

H555 ? 5555.55 1

PATIENT/HOSPITAL SUMMARY (PSUM)

PATID HOSPID MIN_ADMIT MAX_DISCH

P1 H111 03/05/15 03/08/15

P1 H333 01/03/16 10/15/16

P2 H111 04/04/16 05/06/16

P2 H222 05/05/15 10/01/15

P2 H444 06/06/16 06/08/16

P2 H555 12/01/15 12/15/15

3

SOLUTION

You could certainly solve this without using hash objects, but you’d have to do some sorting

or use some PROC steps, and if the specifications were more complicated than this, you

might even need to pass through your data multiple times. By using hash tables, we can do

the whole thing in a single DATA step…and we don’t have to do any sorting!

We will be using three hash tables – one will be a lookup table of hospitals so we can

retrieve HOSPTYPE, and the other two are the summary tables.

Here is the logic of what we’ll be doing:

1. Define all the variables in our hash tables for the PDV (more about this later).

2. Declare (create) a hash table (hash object) for the hospital lookup table.

3. Declare an ordered hash table to hold the hospital summary table.

4. Declare an ordered hash table to hold the patient/hospital summary table.

5. Read each record from the CLAIMS data set.

6. Look for HOSPID in the hospital hash table, in order to retrieve its HOSPTYPE.

7. Accumulate info from the current claim into the hospital summary table (HSUM).

8. Accumulate info from the current claim into the patient/hospital summary table

(PSUM).

9. If we’re done reading all the claims, write out the two summary tables.

Done!

One of the things I love about hash is that your code flows through your DATA step in a

logical progression that reflects the simplest path in solving a problem.

The code is below, followed by a brief explanation of each numbered section.

4

CODE

data HOSP_SUM (keep=HOSPID HOSPTYPE N_CLMS TOT_PAY)

 PAT_SUM (keep=PATID HOSPID MIN_ADMIT MAX_DISCH);

 **;

 * Define all vars used in hash tables for the PDV,

 * using LENGTH and SET statements.

 **;

 attrib MIN_ADMIT length=4 format=MMDDYY8.

 MAX_DISCH length=4 format=MMDDYY8.

 N_CLMS length=4

 TOT_PAY length=8;

 if 0 then

 set CLAIMS

 HOSPITALS;

 **;

 * Declare all hash tables.

 **;

 if _n_=1 then do;

 **;

 * HID: HOSPITAL ID TABLE, FOR LOOKUP AND DATA RETRIEVAL.

 **;

 declare hash HID(DATASET:'HOSPITALS');

 HID.definekey('HOSPID');

 HID.definedata('HOSPTYPE');

 HID.definedone();

 **;

 * HSUM: HOSPITAL SUMMARY TABLE.

 **;

 declare hash HSUM(ORDERED:'A');

 declare hiter HIX('HSUM');

 HSUM.definekey('HOSPID');

 HSUM.definedata('HOSPID','HOSPTYPE','N_CLMS','TOT_PAY');

 HSUM.definedone();

 **;

 * PSUM: PATIENT/HOSPITAL SUMMARY TABLE.

 **;

 declare hash PSUM(ordered:'A');

 declare hiter PIX('PSUM');

 PSUM.definekey('PATID','HOSPID');

 PSUM.definedata('PATID','HOSPID','MIN_ADMIT','MAX_DISCH');

 PSUM.definedone();

 end;

 set CLAIMS end=EOF;

 **;

 * Is the hopsital ID from the claim in the

 * list of hospital IDs in the HID hash table?

 **;

 RC=HID.find();

 found=(RC=0);

 if not(FOUND) then

 HOSPTYPE='?';

❶

❷









5

 **;

 * Now see if this HOSPID is already in the HSUM

 * hash table. If not, initialize the vars and add

 * a new entry in the HSUM hash table.

 **;

 RC=HSUM.find();

 found=(RC=0);

 if not(FOUND) then do;

 * This HOSPID is not yet in the hsum hash table... Initialize

 * the summary vars, then add a new entry in the HSUM hash table;

 N_CLMS = 0;

 TOT_PAY = 0;

 HSUM.add();

 end;

 * In all cases, sum the vars, then replace the data in the hash table;

 N_CLMS = sum(N_CLMS,1);

 TOT_PAY = sum(TOT_PAY,PAYMENT);

 HSUM.replace();

 **;

 * Is this patient/hospital combo already in

 * the PSUM hash table? If not, initialize the

 * vars and add a new entry in the PSUM hash table.

 **;

 RC=PSUM.find();

 FOUND=(RC=0);

 if not(FOUND) then do;

 * This patid/hospid combo is not yet in the PSUM hash table.

 * Initialize the summary vars and add a new entry for this

 * PATID/HOSPID to the PSUM hash table;

 MIN_ADMIT=.;

 MAX_DISCH=.;

 PSUM.add();

 end;

 * Hold onto the earliest ADMIT and the latest DISCH dates for this

 * PATID/HOSPID combo, then replace these values in the table;

 MIN_ADMIT = min(ADMIT,MIN_ADMIT);

 MAX_DISCH = max(DISCH,MAX_DISCH);

 PSUM.replace();

 **;

 * Are we done reading CLAIMS? If yes, write out

 * the contents of the HSUM and PSUM hash tables.

 **;

 if eof then do;

 RC=HIX.first();

 do while(RC=0);

 output HOSP_SUM;

 RC=HIX.next();

 end;

 RC=PIX.first();

 do while(RC=0);

 output PAT_SUM;

 RC=PIX.next();

 end;

 end;

run;







6

CODE WALK-THROUGH

1. Specify the two output data sets. Use a non-executed SET statement and a LENGTH

statement to define all variables that are in any of the hash tables, so they are included

in the PDV. (See the Invisible Curtain section, below, for why this is necessary.)

The next three sections declare all 3 hash tables we’ll be using.

2. The first one (HID) will hold the list of Hospitals and their HOSPTYPEs. This code should

look familiar, as it just defines a lookup table. We are populating the hash table HID

with data from the HOSPITALS file. This happens just by the way we’ve declared the

hash table, specifying the input data set name to the argument tag DATASET. During

the first iteration of the DATA step (_n_=1), the data from HOSPITALS is loaded into the

hash table in one fell swoop – vacuum-cleaner style – Whoosh!

3. The next hash table (HSUM) will hold our hospital summary data, and is declared as an

empty table – more like a template for a table - defining keys and data, but not

specifying an input source with which to populate it. Instead, we will control how the

data get into this table using hash methods during program execution.

To define an empty table, we just have to make a slight modification to our declaration

statement. Instead of specifying the input source data with the argument tag DATASET,

we could just say:

declare hash HSUM();

But since we want our output files to be sorted, we specify a sort order:

declare hash HSUM(ordered:'A');

Specifying an order (‘Y’, ‘Yes’, or ‘A’ for ascending, or ‘D’ for descending), provides us

with the ability to retrieve items from the hash table in sorted order. We do not care

how they are actually stored in memory – this is for SAS to worry about!

We also specify a hash iterator (hiter):

declare hiter HIX('HSUM');

Think of this as a pointer - dedicated to this hash table - which will enable us to traverse

the table forwards and backwards. We name the hash iterator (in this case, HIX) and

associate it with a specific hash table (HSUM).

Note that HOSPID is defined as both the key and data hash variables. This is because I

want HOSPID to populate in the HSUM table. So even though HOSPID is already defined

as the hash table’s key, I also have to define it as a hash data variable.

4. This hash table (PSUM) is also an empty hash table, but this one has two keys: PATID

and HOSPID, and will hold summary measures for all unique combinations of

PATID/HOSPID encountered on the claims.

5. Our hash tables are all defined, so... we can finally start reading CLAIMS.

6. The FIND() method is used to see if this claim’s HOSPID is in the HID hash table, and if

it is, it retrieves the value for HOSPTYPE (which we’ll need for our HSUM hash table). If

we do not find HOSPID in the HID hash table, we assign a value of '?' to HOSPTYPE. It

is extremely important to remember that if the result of a FIND() call is unsuccessful,

then the value of the data item you are trying to retrieve, in this case HOSPTYPE, is not

automatically set to missing. Instead, it is the value of your last successful call. That is

why I’m explicitly assigning a value to HOSPTYPE if I did not find the HOSPID in the HID

7

hash table. Alternatively, I could have set HOSPTYPE to missing before I issued the

FIND():

call missing(HOSPTYPE);

RC = HID.find();

Either of these approaches – setting HOSPTYE to missing before issuing the FIND(), or

explicitly assigning it a value after the FIND() if the call is unsuccessful – will ensure that

you’re not holding onto a value of HOSPTYPE that belongs to another HOSPID.

Note that the variable RC holds the return code for the result of a call, and a value of 0

equals success. This is the opposite of the Boolean convention (where 0 equals FALSE).

Therefore, to help minimize my own confusion, I use this convention:

 RC = H.find();

 FOUND = (RC=0);

 if FOUND then /* do something */;

I’m just converting the successful return code of 0 to a 1, so I can use standard DATA

step coding. With this one teeny extra line of coding (FOUND=(RC=0)), I save myself

from the inevitable unintended swip-swapping of my intended actions.

7. Next, we look to see if the HOSPID from the current claim is in the HSUM hash table. If

it’s not in there yet, we initialize the summary variables N_RECS and TOT_PAY to zero

(0). We then use the ADD method to add this new HOSPID to the hash table. Then, in

all cases, we add 1 to N_RECs, add the payments from the current claim, and use the

REPLACE method to replace the entry in the hash table.

Note that we do not need a RETAIN for these accumulated variables. Why not? What’s

going on here? I called the FIND method prior to doing any summing. If the key-value

of HOSPID (currently in the PDV) is not found in the table, I’m just initializing variables,

then adding a new entry to the table. But if the key-value is found, then the current

values of N_RECS and TOT_PAY are the accumulated values for that key variable so far.

I then add 1 to N_RECS and add the current value of PAYMENT to the accumulated

TOT_PAY, and put the updated values back into the hash table using the REPLACE

method. Items in a hash table are not reinitialized at each execution of a DATA step.

8. This section is similar to the previous section – but we are now summarizing to the

patient/hospital level. Is this PATID/HOSPID combination from the CLAIMS already in

the hash table PSUM? If not, initialize the summarization variables to missing (.). Then

use standard DATA step functions to determine the earliest admission date and latest

discharge date, and use the REPLACE method to put these values back into the hash

table.

9. When we’ve finished reading all the CLAIMS, the HSUM table will contain one entry for

each unique HOSPID encountered on the CLAIMS, with a count of that hospital’s claims

and a sum of its payments. The PSUM hash table will contain one entry for each

patient/hospital combo, with the earliest admission date and latest discharge date for

each combo. Now we just have to write out each entry from these hash tables. If we

don’t, all our work will be lost, since the contents of a hash table disappears when the

DATA step finishes processing.

To write out these entries to a SAS data set we will traverse the table, one item at a

time, starting with the ‘FIRST’. Since we defined the HSUM hash table as ORDERED: ‘A’,

the ‘first’ item is the one with the smallest value of HOSPID. We then move on to the

NEXT (logical) entry, and continue along until the entire table is written out to a file.

Again, we don’t know or care how SAS is storing our data in memory – we just care

8

about how it’s retrieved for us.

The next block of code writes out items from the PSUM hash table using the same

technique as described above. The resulting data set holds the earliest admission date

and latest discharge date for each unique combination of PATID / HOSPID.

Here is another way to write the contents of a hash table:

 if EOF then

 RC=HSUM.output(dataset:'HOSPITAL_SUMMARY');

This construct uses a leaf-blower technique – Whoosh! The entire hash table is output to a

file in our desired sort order. No need to traverse the table one item at a time using the

hash iterator; the OUTPUT method does it automatically. Keep in mind that if you use this

method to output your data to a file, you cannot specify the name of the output data set on

your DATA statement. In the code above, I chose to show you the one-item-at-a-time

technique for two reasons – a) to familiarize you with how the hash iterator works, and b)

because I think it’s more intuitive to see the output data sets specified on the DATA

statement. In this example, either technique is fine to use because we are writing out the

contents of our hash tables just once – after we’ve read all our records. But if you call the

OUTPUT method more than once (naming the same output data set) in your DATA step,

each subsequent OUTPUT method call will result in overwriting that file. For further details

on this, I refer you to the book by Paul Dorfman and Don Henderson, listed at the end of

this paper.

WHY THIS IS SO WONDERFUL – AKA HASH LOVE

The beauty of creating summary tables using hash objects is that our incoming data does

not need to be pre-sorted – yet we are building a table which we can retrieve in sorted

order. Additionally, since the entire table is in memory, we have access to all of the data

during program execution. We can traverse the table, examining entries as we go, and

perform other DATA step operations if desired. And as mentioned above, the code follows a

logical and intuitive flow that is easy to modify. Imagine if you were asked to create

another summary table. No problem! Just throw in another hash table to gather the

summarized data.

THE INVISIBLE CURTAIN

Did you know that the hash variables that you define in the key and data portions of your

hash table do not automatically appear in the Program Data Vector (PDV)? Wow! To me,

this fact is both perplexing and magical. I imagine an invisible curtain between these two

environments. So how does data in your hash table communicate with the PDV? How do

you pass information between them? You must create PDV variables at compile time with

the same exact names as all the hash variables defined in your hash tables. You can use

SET or LENGTH statements to do this. Using any of these techniques achieves the goal of

providing a ‘conduit’ for communication between your hash table variables and their PDV

counterparts. It’s helpful to remember this as you develop and test your code, and I

encourage (URGE) you to refer to Paul Dorfman’s 2014 paper for further explanation of this.

MORE COOL STUFF

Here’s another kind of problem hash tables can help you solve: Supposing you had to

select all of the claims for patients, where some condition was met on one or more claims

for that patient. You might not know if the condition has been met until you read through

9

all of the claims for a patient. Programmers frequently solve this problem by passing

through their data twice – once to identify which patients have one or more claims that

meet the condition(s), and then a second time to pull all claims for those patients. With a

hash approach, you can do this all in one DATA step! Let’s look at an example.

Our task is to create a sorted file of all inpatient claims for patients who meet these criteria:

 they have at least one claim with (condition X) … and

 they have at least one claim with (condition Y)

where the conditions are stand-ins for whatever selection criteria you want. For example,

condition X could be (DIAG_CD='1234') and condition Y could be (HOSPID='5678'), and the

conditions need not be met on the same claim. The output file is to be sorted by PATID and

ADMIT date.

In this example, I’m assuming that my hospital claims are at least partially sorted - that is,

they are sorted by patient (PATID). We’ll solve this by inserting all claims for a patient into

a hash table. Once we’ve assembled all the claims for that patient, we’ll decide if they’ve

met our selection criteria – in this case conditions X and Y. If they have, we’ll write out the

contents of the hash table to a permanent data set. Then we’ll move on to the claims for

the next patient.

SOLUTION

Here is the logic of what we’ll be doing:

1. Define all the variables in our hash table for the PDV.

2. Declare (create) a hash table for the hospital claims.

3. Read each record from the CLAIMS data set, and determine if the current claim meets

the selection criteria.

4. Whether or not a condition has been met, insert the claim into the hash table.

5. If we’re on the last claim for this patient, decide if this patient has met all the selection

criteria. If YES, write out all of the table entries to an external file (in sorted order).

6. Empty out the contents of the hash table, to prepare for the next patient’s claims.

Continue until we’re done reading all the claims.

Done!

The code starts on the next page, followed by a code walk-through.

10

CODE

data OUT.FOO;

 **;

 * Define all vars used in HASH table for the PDV.

 **;

 if 0 then

 set CLAIMS;

 **;

 * Declare the hash table.

 **;

 if _N_=1 then do;

 **;

 * CLM: Hash table that holds data from CLAIMS.

 **;

 declare hash CLM(ordered: 'A', multidata:'Y');

 declare hiter CIX('CLM');

 CLM.definekey('PATID','ADMIT');

 CLM.definedata('PATID','ADMIT','HOSPID','DISCH','PAYMENT');

 CLM.definedone();

 end;

 **;

 * Read the claims. Set indicators if my conditions are met.

 **;

 set CLAIMS;

 by PATID;

 length EVER_X EVER_Y 3;

 retain EVER_X EVER_Y 0;

 if /* (condition x is TRUE) */ then EVER_X=1;

 if /* (condition y is TRUE) */ then EVER_Y=1;

 **;

 * Insert the claim into the hash table.

 **;

 CLM.add();

 **;

 * If we are on the last record for this PATID, check if this

 * patient meets the selection criteria. If YES, write out all

 * claims for this PATID. Then clear out the hash table, to

 * prepare it for the next patient’s claims.

 **;

 if last.PATID then do;

 if EVER_X & EVER_Y then do;

 RC=CIX.first();

 do while(RC=0);

 output OUT.FOO;

 RC=CIX.next();

 end;

 end; /* EVER_X & EVER_Y */

 RC=CLM.clear();

 EVER_X=0; EVER_Y=0;

 end; /* last.PATID */

 drop EVER_X EVER_Y;

run;

❶

❷









11

CODE WALK-THROUGH

1. Specify the output data set. Remember: This file will hold all claims for patients who

meet the selection criteria. We then use a non-executed SET statement to define all

variables that are in the hash table, so they are included in the PDV.

2. Next we define an empty hash table that will hold data from the CLAIMS file. The

ORDERED=‘A’ argument tag indicates that I‘ll want my output data file to be sorted by

my keys, which in this case are PATID and ADMIT. We often think of a key as having

unique values, but in this case I know that my CLAIMS data set contains multiple

records with the same value for PATID (and possibly even multiple values for the same

PATID ADMIT combo.). Using the argument tag MULTIDATA =‘Y’ will allow me to insert

records with the same key values into my hash table without causing any problems. I

also declare a hash iterator, because I’ll need to traverse this table. And just a

reminder: Although I’ve already defined PATID and ADMIT as my keys, I must also

define them as DATA items since I want these items to appear in my output record.

3. Now we can start reading the CLAIMS data set. Since this file is sorted by PATID, and

since I will be processing these claims in groups by patient, I use by-group processing,

with the BY PATID statement. I use the RETAIN statement to initialize a few indicators

(EVER_X and EVER_Y) to zero. Then I set these indicators to 1 if my various conditions

are met. For the purpose of this example, I’m using pseudo-code (if /* condition X is

TRUE) */ to make the point, but of course your real code would be something like: if

DIAG_CD='1234' then...

4. I use the ADD method to insert the claim into the hash table. Note that whether or not

my conditions are met, I insert the claim. This is for two reasons: a) If the selection

criteria are met, I’ll need to have access to all claims for this patient, so they all have to

be in the table, and b) I might not know if this PATID will be selected until I’ve read all

claims for this patient.

5. Are we on the last record for this PATID? If yes, we can determine if the patient has

met our selection criteria. If they have, we output the all the claims for this PATID, one

record-at-a-time, using the hash iterator, just as we did in the first example. Note that

in this example, I cannot use the OUTPUT method described above. (Believe me, I tried

it!) The resulting file would only contain data for the last patient who met all my

selection criteria. Since I want to add records to my output data set as I process each

patient, I need to use the hash iterator to cycle through the hash table’s entries, and

write them out one-record-at-a-time.

If the selection criteria were not met, we simply don’t output the records. Note that

outputting entries from the hash table does not clear out its contents. We’ll do this in

our next step.

6. In all cases (whether or not the selection criteria were met for this PATID, and whether

or not we output the entries from the hash table to an external data set), we must clear

out the contents of the hash table. We are not deleting the table, we are just clearing

out its contents, making it ready to receive the next patient’s claims. We must also re-

initialize our indicators (EVER_X and EVER_Y), making them ready for the next patient

as well. We can drop these variables, because by definition, they will always have

values of 1 in the output file.

We’re at the bottom of the DATA step. If there are more records to be read, we loop

back up to the top and read the next record. If there are no more records to be read,

we’re all done. Note that unlike our first example, we’re not doing any end-of-file

processing. Instead, we are (optionally) outputting the entries from the hash table,

12

clearing out the hash table, and reinitializing our indicators for each patient, when we’re

at LAST.PATID.

MORE HASH LOVE

Using this approach, we were able to solve this task in a single DATA step. How cool is

that? Could we have done it using other approaches? Certainly. But by using hash tables,

we are able to take advantage of all the goodies available to us in standard DATA step

coding. And since we’re only placing one patient’s claims into our hash table at a time, it’s

extremely unlikely that we would approach memory limit issues.

There are many situations where using hash tables to store data in memory can be a useful

technique, and I’ve only mentioned a few. Hash tables are of course limited by available

memory, and this can be an obstacle. But even so, there are ways to deal with this. I refer

you to the paper and book by Paul Dorfman and Don Henderson, listed at the end of this

paper, for methods to deal with the limits of memory.

The examples I’ve presented here are based on a few of the real-world problems I’ve been

asked to solve. I chose these to share with you because they are common problems that

we, as programmers, are faced with, and it is most likely that using hash techniques to

solve them will not result in memory problems. So they’re a nice way to jump in and start

using hash beyond lookups!

CONCLUSION

We did it! Starting with some un-sorted data (first example) or partially sorted data

(second example), we built tables in memory, created several aggregated files, traversed

tables, and extracted data based on various conditions - all without creating intermediate

results, without sorting, and by passing through the incoming data just once.

And because the hash processing is embedded within the DATA step, we are able to take

full advantage of the power and capabilities of the DATA step. Code flows in a logical

progression that reflects the simplest path in solving a problem, making your code readable,

maintainable, and flexible.

This is by no means an exhaustive overview of what you can do with the hash object –

there are many excellent papers that will take you further. But I hope you can see that the

code to build hash tables during program execution is really quite straightforward and not

difficult to write. The first time I tried this, I was faced with a very complex set of

specifications and with enormous data sets as input. I was apprehensive to try it, but I was

pretty sure it was the best approach. I was amazed at how easy it was to write, and how

efficient it was to run. No sorting! No multiple passes through the data! The result was

elegant and extremely satisfying. So I encourage you to take another look at your

programming assignments, and see if a solution using hash tables could work for you too.

REFERENCES & RECOMMENDED READING

Dorfman, Paul, and Don Henderson. 2018. Data Management Solutions Using SAS Hash

Table Operations: A Business Intelligence Case Study. Cary, NC: SAS Institute Inc.

Dorfman, Paul, and Don Henderson. 2015. “Data Aggregation Using the SAS Hash Object”.

Available at https://support.sas.com/resources/papers/proceedings15/2000-2015.pdf.

Dorfman, Paul. 2014. “The SAS® Hash Object in Action”. Available at:

http://www.lexjansen.com/wuss/2014/113_Final_Paper_PDF.pdf

https://support.sas.com/resources/papers/proceedings15/2000-2015.pdf
http://www.lexjansen.com/wuss/2014/113_Final_Paper_PDF.pdf

13

Burlew, Michele M. 2012. SAS® Hash Object Programming Made Easy. Cary, NC: SAS

Institute Inc.

Secosky, Jason and Janice Bloom. 2007. “Getting Started with the DATA Step Hash

Object”. Available at: http://www2.sas.com/proceedings/forum2007/271-2007.pdf

ACKNOWLEDGEMENTS

The author wishes to thank Paul Grant, for his review and advice, and Paul Dorfman and

Don Henderson for their 2016 presentation at BASUG, which got me hooked on hash.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Elizabeth Axelrod

Abt Associates Inc.

10 Fawcett Street

Cambridge, MA 02138

elizabeth_axelrod@abtassoc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/forum2007/271-2007.pdf
mailto:elizabeth_axelrod@abtassoc.com

