
1

Paper SAS3116-2019

Execution of User-Written DS2 programs inside Apache Spark using SAS®
In-Database Code Accelerator

David Ghazaleh, SAS Institute Inc., Cary, NC

ABSTRACT

SAS® In-Database Technologies offers a flexible, efficient way to leverage increasing
amounts of data by injecting the processing power of SAS wherever the data lives. SAS®

In-Database Technologies can tap into the massively parallel processing (MPP) architecture
of Apache Hadoop and Apache Spark for scalable performance. SAS® In-Database Code

Accelerator for Hadoop allows the parallel execution of user-written DS2

programs using Apache Spark.

This paper explains how the SAS In-Database Code Accelerator exploits Scala and the

parallel processing power of Apache Spark and prepares you to get started with SAS In-

Database Technologies.

INTRODUCTION

Apache Spark has become one of the most popular platforms for distributed, in-memory

parallel processing. Apache Spark provides a combination of libraries that allows SQL, event

streaming, machine learning, and graph processing seamlessly in the same application.

Apache Spark processes massive amounts of data stored on a cluster of commodity

hardware providing an open-source parallel processing framework. Spark is developed for

low cost, fast, and efficient massively parallelized data manipulation.

SAS Embedded Process is a portable, lightweight execution container that allows the parallel

execution of SAS processes inside Hadoop, Spark, Teradata, and many other MPP

databases.

DS2 is a procedural programming language influenced by the SAS DATA step. The DS2
language excels at achieving parallel execution. Most DATA step functions can be called

from a DS2 program. DS2 programs can run in the Base SAS language interface using PROC

DS2, SAS High-Performance Analytics, SAS In-Database Scoring Accelerator, SAS In-

Database Code Accelerator, and SAS® Viya® Cloud Analytic Services.

The parallel syntax of the DS2 language coupled with SAS Embedded Process allows

traditional SAS developers to create portable algorithms that are implicitly executed inside

Hadoop MapReduce and Spark.

There are many benefits in bringing together big data, Hadoop and Spark processing power,

and the intelligence offered by SAS, including:

• Greater storage capabilities. Store all the data you can collect. Experience the maximum

accuracy of larger data.

• Greater parallel processing capabilities. Write more complex algorithms to obtain more

precise results.

• Faster data growth and processing time. Maximizing and expanding the value of Hadoop

and Spark across the enterprise is essential and desired. SAS Embedded Process is as

scalable as your Hadoop and Spark cluster.

• Data management and integration in order to promote broad reuse while being

compliant with Information Technology policies and procedures.

2

• Boost the value of analytics infrastructure while reducing the cost to maintain it.

SAS EMBEDDED PROCESS ON SPARK

SAS Embedded Process is the core of SAS In-Database Technology that is sufficient to

support the multi-threaded DS2 language. Running DS2 code directly inside Spark

effectively leverages the massive parallel processing and native resources. Applying the
process to the data eliminates data movement and decreases overall processing time.

Information becomes more secure because the data never leaves the cluster.

SAS Embedded Process on Spark is supported when Spark is running on YARN. In order to

run DS2 code in parallel inside Spark, SAS Embedded Process needs to be installed on every

node of the cluster that is capable of running a Spark task. All the computing resources

used by SAS Embedded Process are completely manageable by YARN.

SAS Embedded Process on Spark consists of a Spark driver program that runs in the Spark

application master container and a set of specialized functions that run in the Spark

executors’ containers.

SAS Embedded Process is written mainly in C language where all the interactions with DS2
execution container happen. It is also written in Java and Scala where all the interactions

with the Spark environment happen. The Java code is responsible for extracting data from

Hive tables or Hadoop File System (HDFS) files and passing them to the DS2 execution

container. The Scala code drives the whole application.

Both the C, Java, and Scala code run on the same Java Virtual Machine (JVM) process that
is allocated by the Spark application master and executors’ containers. In order to eliminate

multiple copies of the input data, Java and C code access shared memory buffers allocated

by native code. In order to minimize Java garbage collections, the shared native buffers are
allocated outside of the JVM heap space. Shared native memory allocations and CPU

consumption are seen by the YARN resource management. Therefore, the SAS Embedded

Process complies with the resource constraints imposed by YARN. Journaling messages
generated by the C and DS2 code are written to the Spark standard output (stdout) or

standard error (stderr) logs. Messages generated by the Java and Scala code are written to

the Spark application log (syslog).

CLIENT-SIDE COMPONENTS

Figure 1 illustrates the SAS Embedded Process client-side architectural components.

Figure 1. Client-Side Architectural Components

SAS In-Database Code Accelerator DS2 programs are started from Base SAS using PROC

DS2. When the execution platform is set to SPARK, the EP Client Interface generates the
Scala program that is the SAS Embedded Process Spark Main Driver program, which runs in

the Driver Container (see Figure 2). The EP Launcher deploys the user-written DS2 and the

generated Scala programs to the cluster and submits the SAS Embedded Process Spark

application for execution.

3

DRIVER CONTAINER COMPONENTS

Figure 2 illustrates the SAS Embedded Process driver container architectural components.

Figure 2. Driver Container Architectural Components

Upon Spark application submission, a Driver Container and multiple Executor Containers
(see Figure 3) are allocated on the cluster. The Driver Container is the Spark YARN

Application Master process where the Main Driver program runs.

The Main Driver receives an execution request containing the generated Scala program. The
Scala program is compiled on the fly by the Scala Compiler component. The Generated

Driver component is the product of the generated Scala program compilation into a class
that is stored in the Java Virtual Machine class loader. The Generated Driver drives the

execution of the SAS Embedded Process Spark application.

The Main Driver component puts the Generated Driver into execution by calling its drive()
method. Inside the drive() method, the Generated Driver creates a SAS Context, which is

responsible for an early compilation of the user-written DS2 program and for collecting and

storing all necessary information to run the DS2 program when it is dispatched to the
Executor Containers. SAS Context holds the SAS Embedded Process Task Context (TC), the

input and output file or table metadata (INPUT OUTPUT HDMD), and the output encoder

object (ENC).

When reading data from an HDFS file, the input metadata is passed by PROC DS2 during

application submission. When reading data from a Hive table, the input metadata is
retrieved from the Spark Dataset schema that is returned from the Spark SQL statement

execution request. SAS Context creates the output metadata (output HDMD) based on the
early compilation of the user-written DS2 program inside the EP Native Interface

component. The output metadata is used to create the ENC. The ENC is used to create the

schema of the output Dataset or RDD (Resilient Distributed Datasets) that comes out of the

EP Function.

A specialized EP Function is instantiated by the Generated Driver and applied to a Spark

Dataset or RDD. There are many types of specialized EP functions. Their instantiations

depend on the many different ways to run SAS In-Database Code Accelerator inside Spark.

4

EXECUTOR CONTAINER COMPONENTS

Figure 3 illustrates the SAS Embedded Process executor container architectural components.

Figure 3. Executor Container Architectural Components

Spark tasks run in the executor container process. Each task is assigned an input partition,

which might come from a Hive table or an HDFS file. The specialized EP Function that was

instantiated in the Driver Container and deployed to the executors’ containers is put into
execution by the Spark Task Manager to process records retrieved from the input partition.

Here is a sequence of steps executed in the Executor Container:

1. EP Function creates the input and output channels. The EP Function is also responsible

for controlling the allocation and de-allocation of DS2 Containers.

2. EP Function retrieves records from the Input Partition and pushes them into the DS2
Container through the Input Channel and EP Input Driver. Input data are serialized in a

format that is understood by the DS2 program and stored in native input buffers. The EP

Native Interface is the frontier between the Java and C code.

3. DS2 Container obtains the serialized input records from the native input buffers through

the EP Input Driver and processes them.

4. DS2 Container outputs and stores one or more records in output native buffers through

the EP Output Driver.

5. Output Channel retrieves output records from native output buffers. Using the output
encoder object, the Output Channel serializes the records in a format understood by

Spark. Serialized output records are stored in the Output Partition.

Each task produces an output partition. When all tasks are finished, the Generated Driver

sees all output partitions as a single abstract unit called output Dataset or RDD. The output

Dataset or RDD is then persisted to a Hive table or to an HDFS file.

SAS IN-DATABASE CODE ACCELERATOR

Spark provides the ability to read HDFS files and query structured data from within a Spark

application. With Spark SQL, data can be retrieved from a table stored in Hive using an SQL

statement and the Spark Dataset API. Spark SQL provides ways to retrieve information

5

about columns and their data types and supports the HiveQL syntax as well as Hive SerDes

(Serializers and De-serializers).

SAS In-Database Code Accelerator on Spark is a combination of generated Scala programs,

Spark SQL statements, HDFS files access, and DS2 programs.

User-written DS2 programs can be complex. When running inside a database, SAS In-

Database Code Accelerator execution plan might require multiple phases. For example:
when running inside Hadoop MapReduce, SAS In-Database Code Accelerator exploits the

map and reduce phases in order to get to the final result; in some cases, two MapReduce

jobs are required. By generating Scala programs that integrates with the SAS Embedded
Process program interface to Spark, the many phases of a SAS In-Database Code

Accelerator job can be comprised of one single Spark job.

SAS In-Database Code Accelerator for Hadoop enables the publishing of user-written DS2

thread or data programs to Spark, where they can be executed in parallel exploiting Spark’s

massively parallel processing power. Examples of DS2 thread programs include large
transpositions, computationally complex programs, scoring models, and BY-group

processing. For more information about DS2 BY-group processing, consult the SAS In-

Database product documentation.

To use Spark as the execution platform, the DS2ACCEL option in the PROC DS2 statement

must be set to YES or the DS2ACCEL system option must be set to ANY; the
HADOOPPLATFORM system option must be set to SPARK; the Hive table or HDFS file used

as input must reside on the cluster; and SAS Embedded Process must be installed on all the
nodes of the Hadoop cluster that are capable of running a Spark Executor. In addition, the

following products must be licensed:

• Base SAS

• SAS In-Database Code Accelerator for Hadoop

• SAS/ACCESS Interface to Hadoop

Data is distributed on different nodes of the Hadoop cluster. Spark breaks down the input
data into Dataset (input from table) or RDD (input from file) partitions. Data partitions are

also known as file blocks or file splits. Each partition is assigned to a Spark task, where the

DS2 program runs. Each DS2 program has access to its own data partition.

Parallel execution of SAS In-Database Code Accelerator inside the SAS Embedded Process

on Spark consists of one Spark application. A Spark application consists of one or more
jobs. Jobs consist of one or more stages. A stage is a set of tasks that depend on each

other. A task is a unit of work that runs in the Executors Containers.

Figure 4 illustrates the Spark application key execution components.

Figure 4. Spark Application Key Components

The degree of parallelism depends on how the data is partitioned. Therefore, the number of

tasks depends on the number of input data partitions. Spark assigns one partition per task.
The number of parallel tasks depends on the number of available executors, the number of

cores per executor and the number of cores per task. There are many performance tuning

properties that can be used to control the application execution. Spark properties are set in

6

the spark-default.conf configuration file that is stored under the folder that is defined in the
SAS global option SAS_HADOOP_CONFIG_PATH. Examples of such Spark configuration

properties are:

• spark.executor.instances: specifies the number of executors allocated per application.

• spark.executor.cores: specifies the number of cores allocated per executor.

• spark.task.cpus: specifies the number of cores to allocate for each task.

As shown in Figure 3 above, the task runs a specialized EP Functions that retrieves records

from the input partition, serializes and pushes them into the DS2 container. Output records

that are generated by the DS2 program are pulled by the EP Function and stored in the

output partition.

SAS Embedded Process on Spark provides two sets of specialized functions that are capable

of reading data from an input partition and applying them to the DS2 program:

1. File functions: applied when the input data is read from a file stored in HDFS.

2. Dataset functions: applied when the input data is read from a table stored in Hive.

The functions are categorized as transformations or actions. Transformation functions

consume data from a Dataset or RDD and produce another Dataset or RDD. Action functions
consume data from a Dataset or RDD and write the output data directly to a file stored in

HDFS.

HOW IS SAS IN-DATABASE CODE ACCELERATOR EXECUTED INSIDE SPARK?

There are six different ways to run SAS In-Database Code Accelerator inside Spark. They
are called cases. The generation of the Scala program by the EP Client Interface depends on

how the DS2 program is written. The main factors deciding the Case to be applied are:

• Is there a thread program?

• Is there a thread program with a BY statement?

• Is there a data program with logic worth accelerating?

• Is there a data program with a BY statement?

A simple SET statement or OUTPUT statement in the data program does not trigger

acceleration. When the data program does not contain logic worth accelerating, it means
that there is no data program to be executed in accelerated mode inside the SAS Embedded

Process container.

SAS In-Database Code Accelerator cases depend on how the DS2 program is written. The

six SAS In-Database Code Accelerator cases are described below:

• There is a thread program with no BY statement; there is no data program.

• There is a thread and a data program; none of them with a BY statement.

• There is a thread program with no BY statement and a data program with a BY

statement.

• There is a thread program with a BY statement and no data program.

• There is a thread program with a BY statement and a data program with no BY

statement.

• There is a thread and data program; both with a BY statement.

7

SAS IN-DATABASE CODE ACCELERATOR CASE 1

Table 1 illustrates the deciding factors for Case 1:

Thread Program Thread BY Statement Data Program Data BY Statement

YES NO NO NO

Table 1. SAS In-Database Code Accelerator Case 1

The following code sample is the simplest case where the DS2 thread program runs in one

single phase and tasks are executed in parallel.

proc ds2 ds2accel=yes;

 thread work.workthread / overwrite=yes;

 method run();

 set hive.cars;

 output;

 end;

 endthread;

 data hive.dgcarsout (overwrite=yes);

 dcl thread work.workthread m;

 method run();

 set from m;

 output;

 end;

 enddata;

run; quit;

Figure 5 illustrates the steps performed by the generated Scala program when the input

method is a file.

Figure 5. Case 1 - Input from File

Data is read from a file (1) into a key/value pair RDD (3) using the Hadoop File Input
Format and Record Reader framework (2). The record key is ignored, and the value contains

the record data. The pair RDD (3) is applied to the specialized EP function

FilePairToFileFunction (4), where the DS2 thread program is executed in parallel. The output

produced by the DS2 thread program is written directly to a file (5) stored in HDFS.

Figure 6 illustrates the steps performed by the generated Scala program when the input

method is a table.

Figure 6. Case 1 - Input from Table

Using Spark SQL (2), the data are read from a table (1) into a Dataset of Spark Row objects

(3). Each Row object represents a record. The Dataset (3) is applied to the specialized EP

8

function DatasetToDatasetFunction (4), where the DS2 thread program is executed in
parallel. The output produced by the DS2 thread program is stored in the output Dataset of

Row objects (5). The output Dataset rows (5) are inserted into the output table (7) using

the DataFrameWriter interface (6).

SAS IN-DATABASE CODE ACCELERATOR CASE 2

Table 2 illustrates the deciding factors for Case 2:

Thread Program Thread BY Statement Data Program Data BY Statement

YES NO YES NO

Table 2. SAS In-Database Code Accelerator Case 2

The entire DS2 program runs in two phases. The DS2 thread program runs in phase one

and its tasks are executed in parallel. The DS2 data program runs in phase two using one

single task. Here is an example of a case 2 DS2 program:

proc ds2 ds2accel=yes;

 thread work.workthread / overwrite=yes;

 method run();

 set hive.cars;

 output;

 end;

 endthread;

 data hive.dgcarsout (overwrite=yes);

 dcl thread work.workthread m;

 dcl double count;

 keep count make model;

 method run();

 set from m;

 count+1;

 output;

 end;

 enddata;

run; quit;

Figure 7 illustrates the steps performed by the generated Scala program when the input

method is a file.

Figure 7. Case 2 - Input from File

In phase one, data are read from a file (1) into a key/value pair RDD (3) using the Hadoop

File Input Format and Record Reader framework (2). The record key is ignored, and the

value contains the record data. The pair RDD (3) is applied to the specialized EP function
FilePairToPairFunction (4), where the DS2 thread program is executed in parallel. The

output produced by the DS2 thread program is coalesced into a key/value pair RDD (5).

9

In phase two, the coalesced pair RDD (5) is applied to the specialized EP function,
FilePairToFileFunction (6), where the DS2 data program is executed as a single task. The

output produced by the DS2 data program is written directly to a file (7) stored in HDFS.

Figure 8 illustrates the steps performed by the generated Scala program when the input

method is a table.

Figure 8. Case 2 - Input from Table

In phase one, using Spark SQL (2), data is read from a table (1) into a Dataset of Row
objects (3). Each Row object represents a record. The Dataset (3) is applied to the

specialized EP function DatasetToPairFunction (4), where the DS2 thread program is

executed in parallel. The data produced by the DS2 thread program is coalesced into a

key/value pair RDD (5).

In phase two, the coalesced pair RDD (5) is applied to the specialized EP function
FilePairToDatasetFunction (6), where the DS2 data program is executed as a single task.

The output produced by the DS2 data program is stored in the output Dataset of Row

objects (7). The output Dataset rows (7) are inserted into the output table (9) using the

DataFrameWriter interface (8).

SAS IN-DATABASE CODE ACCELERATOR CASE 3

Table 3 illustrates the deciding factors for Case 3:

Thread Program Thread BY Statement Data Program Data BY Statement

YES NO YES YES

Table 3. SAS In-Database Code Accelerator Case 3

Here is an example of a case 3 DS2 program that uses a BY statement in the DS2 data

program:

proc ds2 ds2accel=yes;

 thread work.workthread / overwrite=yes;

 method run();

 set hive.cars;

 output;

 end;

 endthread;

 data hive.dgcarsout (overwrite=yes);

 dcl thread work.workthread m;

10

 dcl double count;

 keep count make model;

 method run();

 set from m;

 by make model;

 count+1;

 output;

 end;

 enddata;

run; quit;

The entire DS2 program runs in two phases. The DS2 thread program runs in phase one

and its tasks are executed in parallel. Output data from the DS2 thread program is sorted
by the columns specified in the BY statement of the DS2 data program. The DS2 data

program runs in phase two using one single task.

Figure 9 illustrates the steps performed by the generated Scala program when the input

method is a file.

Figure 9. Case 3 - Input from File

In phase one, data is read from a file (1) into a key/value pair RDD (3) using the Hadoop
File Input Format and Record Reader framework (2). The key is ignored, and the value

contains the record data. The pair RDD (3) is applied to the specialized EP function

FilePairToPairFunction (4), where the DS2 thread program is executed in parallel. The
output produced by the DS2 thread program is stored in a key/value pair RDD (5). The pair

RDD’s (5) key is the columns specified in the BY statement of the DS2 data program. The
pair RDD (5) is sorted and coalesced (6) into another pair RDD (7) that is used as input for

the next phase.

In phase two, the coalesced pair RDD (7) is applied to the specialized EP function
FilePairToFileFunction (8), where the DS2 data program is executed as a single task. The

output produced by the DS2 data program is written directly to a file (9) stored in HDFS.

Figure 10 illustrates the steps performed by the generated Scala program when the input

method is a table.

11

Figure 10. Case 3 - Input from Table

In phase one, using Spark SQL (2), the data is read from a table (1) into a Dataset of Row
objects (3). Each Row object represents a record. The Dataset (3) is applied to the

specialized EP function DatasetToPairFunction (4), where the DS2 thread program is
executed in parallel. The output produced by the DS2 thread program is stored in a

key/value pair RDD (5). The pair RDD’s (5) key is the columns specified in the BY statement

of the DS2 data program. The pair RDD (5) is sorted and coalesced (6) into another pair

RDD (7) that is used as input for the next phase.

In phase two, the coalesced pair RDD (7) is applied to the specialized EP function

FilePairToDatasetFunction (8), where the DS2 data program is executed as a single task.
The output produced by the DS2 data program is stored in the output Dataset of Row

objects (9). The output rows are inserted into the output table (11) using the

DataFrameWriter interface (10).

SAS IN-DATABASE CODE ACCELERATOR CASE 4

Table 4 illustrates the deciding factors for Case 4:

Thread Program Thread BY Statement Data Program Data BY Statement

YES YES NO NO

Table 4. SAS In-Database Code Accelerator Case 4

Here is an example of a case 4 DS2 program that uses a BY statement in the DS2 thread

program. The data program in the example below does not contain logic worth accelerating.

Therefore, the data program is not executed in accelerated mode inside Spark.

proc ds2 ds2accel=yes;

 thread work.thread1 / overwrite=yes;

 dcl double count;

 dcl double averagemsrp;

 dcl double totalmsrp;

 keep make type averagemsrp;

 method run();

 set hive.cars;

 by make type;

 if first.type then do;

 count=0;

 totalmsrp=0;

12

 end;

 count+1;

 totalmsrp+msrp;

 if last.type and count > 0 then do;

 averagemsrp = totalmsrp / count;

 output;

 end;

 end;

 endthread;

 data hive.carsmsrpout (overwrite=yes);

 dcl thread work.thread1 p;

 method run();

 set from p;

 output;

 end;

 enddata;

run; quit;

The input data are partitioned and sorted within the partition by the columns specified in the

BY statement of the DS2 thread program. All records with same key end up in the same

partition. DS2 thread program runs in parallel using multiple tasks.

Figure 11 illustrates the steps performed by the generated Scala program when the input

method is file.

Figure 11. Case 4 - Input from File

Data is read from a file (1) into a key/value pair RDD (3) using the Hadoop File Input

Format and Record Reader framework (2). Using the columns specified in the DS2 thread
program BY statement, the pair RDD (3) is applied to the specialized function

MapToPairFunction (4) to create a mapped pair RDD (5) with proper key and value pair.

Using the key, the mapped pair RDD (5) is repartitioned with sorting within partitions (6).
This results in a new pair RDD (7) partitioned by the key, where the keys within the

partitions are sorted. The partitioned pair RDD (7) is applied to the specialized EP function

FilePairToFileFunction (8), where the DS2 thread program runs in parallel. The output

produced by the DS2 thread program is written directly to a file (9) stored in HDFS.

Figure 12 illustrates the steps performed by the generated Scala program when the input

method is a table.

13

Figure 12. Case 4 - Input from Table

The columns specified in the BY statement of the DS2 thread program are used in the Spark
SQL SELECT statement with the DISTRIBUTE BY and SORT BY clauses (2). Data is read

from a table (1) into a partitioned and sorted within partition Dataset of Row objects (3).
The Dataset (3) is applied to the specialized EP function DatasetToDatasetFunction (4),

where the DS2 thread program is executed in parallel. The output produced by the DS2

thread program is stored in the output Dataset of Row objects (5). The output rows are

inserted into the output table (7) using the DataFrameWriter interface (6).

SAS IN-DATABASE CODE ACCELERATOR CASE 5

Table 5 illustrates the deciding factors for Case 5:

Thread Program Thread BY Statement Data Program Data BY Statement

YES YES YES NO

Table 5. SAS In-Database Code Accelerator Case 5

The entire DS2 program runs in two phases. Case 5 phase one is similar to the single phase

executed in Case 4. The DS2 thread program contains a BY statement and its tasks are
executed in parallel. The DS2 data program contains logic worth accelerating. Therefore, it

runs in phase two using one single task. Here is an example of a case 5 DS2 program:

proc ds2 ds2accel=yes;

 thread work.thread1 / overwrite=yes;

 dcl double count;

 dcl double averagemsrp;

 dcl double totalmsrp;

 keep make type averagemsrp;

 method run();

 set hive.cars;

 by make type;

 if first.type then do;

 count=0;

 totalmsrp=0;

 end;

 count+1;

 totalmsrp+msrp;

 if last.type and count > 0 then do;

 averagemsrp = totalmsrp / count;

 output;

 end;

 end;

 endthread;

14

 data hive.carsmsrpout (overwrite=yes);

 dcl thread work.thread1 p;

 dcl int i;

 method run();

 set from p;

 i+1;

 output;

 end;

 enddata;

run; quit;

Figure 13 illustrates the steps performed by the generated Scala program when the input

method is a file.

Figure 13. Case 5 - Input from File

In phase one, data is read from a file (1) using the Hadoop File Input Format and Record

Reader framework (2) into a key/value pair RDD (3). Using the columns specified in the BY

statement of the DS2 thread program, the pair RDD (3) is applied to the specialized function
MapToPairFunction (4) to create a mapped pair RDD (5) with proper key and value pair.

Using the key, the mapped pair RDD (5) is repartitioned with sorting within partitions (6)
resulting in a new pair RDD (7) partitioned by the key, where the keys within the partitions

are sorted. The partitioned pair RDD (7) is applied to the specialized EP function

FilePairToPairFunction (8), where the DS2 thread program runs in parallel.

In phase two, the pair RDD (9) produced by the DS2 thread program is applied to the

specialized EP function FilePairToFileFunction (10), where the DS2 data program runs a
single task. The output produced by the DS2 data program is written directly to a file (11)

stored in HDFS.

Figure 14 illustrates the steps performed by the generated Scala program when the input

method is a table.

Figure 14. Case 5 - Input from Table

15

In phase one, the columns specified in the BY statement of the DS2 thread program are
used in the Spark SQL SELECT statement with the DISTRIBUTE BY and SORT BY clauses

(2). Data is read from a table (1) into a partitioned and sorted within partition Dataset of
Row objects (3). The Dataset (3) is applied to the specialized EP function

DatasetToPairFunction (4), where the DS2 thread program is executed in parallel.

In phase two, the pair RDD (5) produced by the DS2 thread program is applied to the
specialized EP function FilePairToDatasetFunction (6), where the DS2 data program runs a

single task. The rows in the output Dataset (7) produced by the DS2 data program are

inserted into the output table (9) using the DataFrameWriter interface (8).

SAS IN-DATABASE CODE ACCELERATOR CASE 6

Table 6 illustrates the deciding factors for Case 6:

Thread Program Thread BY Statement Data Program Data BY Statement

YES YES YES YES

Table 6. SAS In-Database Code Accelerator Case 6

This is the most complex case where both DS2 thread and data program contain a BY

statement and the entire DS2 program runs in two phases. Case 6 phase one is similar to
Case 5 phase one. The DS2 thread program is executed in parallel. The DS2 data program

is executed in one single task. Here is an example of a Case 6 DS2 program:

proc ds2 ds2accel=yes;

 thread work.thread1 / overwrite=yes;

 dcl double count;

 dcl double averagemsrp;

 dcl double totalmsrp;

 keep make type averagemsrp;

 method run();

 set hive.cars;

 by make type;

 if first.type then do;

 count=0;

 totalmsrp=0;

 end;

 count+1;

 totalmsrp+msrp;

 if last.type and count > 0 then do;

 averagemsrp = totalmsrp / count;

 output;

 end;

 end;

 endthread;

 data hive.carsmsrpout (overwrite=yes);

 dcl thread work.thread1 p;

 method run();

 set from p;

 by make;

16

 output;

 end;

 enddata;

run; quit;

Figure 15 illustrates the steps performed by the generated Scala program when the input

method is file.

Figure 15. Case 6 - Input from File

In phase one, data are read from a file (1) using the Hadoop File Input Format and Record

Reader framework (2) into a key/value pair RDD (3). Using the columns specified in the BY

statement of the DS2 thread program, the pair RDD (3) is applied to the specialized function
MapToPairFunction (4) to create a mapped pair RDD (5) with proper key and value pair.

Using the key, the mapped pair RDD (5) is repartitioned with sorting within partitions (6)
resulting in a new pair RDD (7) partitioned by the key, where the keys within the partitions

are sorted. The partitioned pair RDD (7) is applied to the specialized EP function

FilePairToPairFunction (8), where the DS2 thread program runs in parallel.

In phase two, the pair RDD (9) produced by the DS2 thread program is sorted and

coalesced (10) into a new pair RDD (11), which is applied to the specialized EP function

FilePairToFileFunction (12), where the DS2 data program runs a single task. The output

produced by the DS2 data program is written directly to a file (13) stored in HDFS.

Figure 16 illustrates the steps performed by the generated Scala program when the input

method is a file.

Figure 16. Case 6 - Input from Table

In phase one, the columns specified in the BY statement of the DS2 thread program are

used in the Spark SQL SELECT statement with the DISTRIBUTE BY and SORT BY clauses
(2). Data is read from a table (1) into a partitioned and sorted within partition Dataset of

17

Row objects (3). The Dataset (3) is applied to the specialized EP function

DatasetToPairFunction (4), where the DS2 thread program is executed in parallel.

In phase two, the pair RDD (5) produced by the DS2 thread program is sorted and
coalesced (6) into a new pair RDD (7), which is applied to the specialized EP function

FilePairToDatasetFunction (8), where the DS2 data program runs a single task. The rows in

the output Dataset (9) produced by the DS2 data program are inserted into the output table

(11) using the DataFrameWriter interface (10).

CONCLUSION

The SAS In-Database Code Accelerator enables you to run your DS2 code inside the Spark

framework. Parallel processing and data proximity are fundamental factors to achieve faster
results. The challenges imposed by the big data era can be minimized by using SAS In-

Database Technologies for Spark.

SAS provides the platform you need to process your data in an effective and efficient
manner by using the massively parallel processing power of Apache Spark. You are now

ready to collect, store, and process your data with confidence using the power of SAS.

This paper has prepared you to explore the SAS In-Database Code Accelerator for Hadoop

using Apache Spark as the execution platform. It has explained the internal components of

the SAS Embedded Process and the many different ways Code Accelerator is executed

within it.

REFERENCES

• Ghazaleh, David. 2016. “Exploring SAS® Embedded Process Technologies on Hadoop®.”

Proceedings of the SAS Global Forum 2016 Conference. Cary, NC: SAS Institute Inc.

Available: http://support.sas.com/resources/papers/proceedings16/SAS5060-2016.pdf.

• Secosky, Jason, et al. 2014. “Parallel Data Preparation with the DS2 Programming

Language”, Proceedings of the SAS Global Forum 2014 Conference. Cary, NC: SAS
Institute Inc. Available:

http://support.sas.com/resources/papers/proceedings14/SAS329-2014.pdf.

• Ray, Robert, and William Eason. 2016. “Data Analysis with User-Written DS2 Packages”,

Proceedings of the SAS Global Forum 2016 Conference. Cary, NC: SAS Institute Inc.

Available: http://support.sas.com/resources/papers/proceedings16/SAS6462-2016.pdf

• Apache Spark Documentation. Available:

https://spark.apache.org/docs/latest/configuration.html

RECOMMENDED READING

• SAS Institute Inc. SAS® DS2 Programmer’s Guide. Cary, NC: SAS Institute, Inc. Available:
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=ds2pg&docsetTar
get=ds2pgwhatsnew94.htm

• SAS Institute Inc. SAS® In-Database User’s Guide. Eighth Edition. Cary, NC: SAS Institute, Inc.
Available:
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=indbug&docsetTa
rget=titlepage.htm

• SAS Institute Inc. SAS® In-Database Administrator’s Guide. Ninth Edition. Cary, NC: SAS Institute,
Inc. Available:
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=indbag&docsetTa
rget=titlepage.htm

http://support.sas.com/resources/papers/proceedings16/SAS5060-2016.pdf
http://support.sas.com/resources/papers/proceedings14/SAS329-2014.pdf
http://support.sas.com/resources/papers/proceedings16/SAS6462-2016.pdf
https://spark.apache.org/docs/latest/configuration.html

18

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

David Ghazaleh

500 SAS Campus Drive

Cary, NC 27513
SAS Institute, Inc.

(919) 531-7416
david.ghazaleh@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

mailto:david.ghazaleh@sas.com

	Abstract
	Introduction
	sas embedded process on spark
	Client-SIDE components
	driver CONTAINER components
	executor CONTAINER components

	sas in-database code accelerator
	sas In-database Code accelerator case 1
	SAS in-database Code accelerator case 2
	Sas in-database Code accelerator case 3
	SAS In-database Code accelerator case 4
	SAS in-database Code accelerator case 5
	SAS in-database Code accelerator case 6

	Conclusion
	References
	Recommended Reading
	Contact Information

