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ABSTRACT 

If you are copying and pasting code over and over to perform the same operation on multiple variables in 
a sas® data step you need to learn about arrays and do loops.  Arrays and do loops are efficient and 
powerful data manipulation tools that you should have in your programmer’s tool box.  Arrays list the 
variables that you want to perform the same operation on and can be specified with or without the number 
of elements/variables in the array.  Do loops are used to specify the operation across the elements in the 
array.  This workshop will show you how to use array statements and do loops with and without specifying 
the number of elements in the array to perform the operation on in the do loop. 

INTRODUCTION 
Data preparation can take up the majority of the time dedicated to a statistical analysis for a consulting 
project.  Rather than making sure statistical assumptions are correct, running the procedures to actually 
analyze the data, and examining the results, much of the time spent on a project is spent preparing the 
data for analysis.  Often, when preparing a data set for analysis the raw data needs to be manipulated in 
some way; for example, new variables need to be created, specific questionnaire items need to be 
reversed, and/or scores need to be calculated.  The list can go on and on.  What makes the task of 
preparing a data set for analysis tedious is that many times the same operation needs to be performed on 
a long list of variables (e.g. questionnaire items).  For a beginning SAS® programmer, the most likely 
approach taken to writing the necessary SAS code is to copy and paste the same code over and over for 
each variable and then changing the variable name.  For example, if there is a 100-item questionnaire 
and 10 items need to be reversed, the code to reverse these 10 items results in a minimum of 10 lines of 
code, one line for each questionnaire item to reverse.  And if there are more items that need 
manipulation, copying, pasting, and changing variable names becomes a time sink for the 
programmer/analyst and results in a less efficient program.  One way to overcome the inefficient use of 
time, manpower, and computer processing is to use SAS ARRAYs and DO loops. 

SAS ARRAYS 
A SAS ARRAY is a set of variables of the same type, called “elements” of the arry, that you want to 
perform the same operation on.  An array name is assigned to the set of variables.  Then the array name 
is reference in other DATA step programming to do an operation on the entire set of variables in the 
array.   

Arrays can be used to do all sorts of things.  To list just a few, an array can be used to  

1. Set up a list of items of a questionnaire that need to be reversed. 

2. Change values of several variables, e.g. change a value of “Not Applicable” to missing for 
score calculation purposes. 

3. Create a set of new variables from an existing set of variables, e.g. dichotomizing ordinal or 
continuous variables. 

 
For example, assume we have collected data on the Centers for Epidemiologic Studies Depression 
(CES-D) scale, which is a 20-item questionnaire used to assess depressive symptomatology.  Each 
questionnaire item is measured on an ordinal 0 to 3 scale .  An overall CESD-D score needs to be 
calculated and consists of the sum of the 20 questionnaire items.  However, 4 questionnaire items were 
asked such that the responses to the items need to be reversed; that is, 0 needs to become a 3, 1 needs 
to become a 2, 2 needs to become a 1, and 3 needs to become a 0.  The four items that need to be 
reversed are items cesd4, cesd8, cesd12, and cesd16.  An example of the data is given in Figure 1. 
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Obs ID CESD1 CESD2 CESD3 CESD4 CESD5 CESD6 CESD7 CESD8 CESD9 CESD10 

1 1101 2 3 2 . 3 2 2 3 3 2 

2 1102 0 2 3 0 2 2 2 1 0 0 

3 1103 3 0 2 3 2 1 2 3 1 2 

4 1104 1 0 0 2 3 3 2 3 3 2 

5 1105 3 2 2 . 3 . 3 3 . 2 
 

Obs CESD11 CESD12 CESD13 CESD14 CESD15 CESD16 CESD17 CESD18 CESD19 CESD20 

1 1 3 3 2 3 3 0 1 3 0 

2 2 2 2 3 2 3 3 2 1 1 

3 1 3 2 2 3 3 1 1 0 2 

4 1 2 2 2 0 3 2 2 2 2 

5 2 3 3 3 3 3 0 0 2 0 
 

Figure 1: Raw CES-D Data 
 

You might use the following SAS code to reverse the four items resulting in the output in Figure 2. 
data cesd; 
  set in.cesd1; 
  cesd4=3-cesd4; 
  cesd8=3-cesd8; 
  cesd12=3-cesd12; 
  cesd16=3-cesd16; 
 

 

Obs ID CESD1 CESD2 CESD3 CESD4 CESD5 CESD6 CESD7 CESD8 CESD9 CESD10 CESD11 

1 1101 2 3 2 . 3 2 2 0 3 2 1 

2 1102 0 2 3 3 2 2 2 2 0 0 2 

3 1103 3 0 2 0 2 1 2 0 1 2 1 

4 1104 1 0 0 1 3 3 2 0 3 2 1 

5 1105 3 2 2 . 3 . 3 0 . 2 2 

 

Obs CESD12 CESD13 CESD14 CESD15 CESD16 CESD17 CESD18 CESD19 CESD20 

1 0 3 2 3 0 0 1 3 0 

2 1 2 3 2 0 3 2 1 1 

3 0 2 2 3 0 1 1 0 2 

4 1 2 2 0 0 2 2 2 2 

5 0 3 3 3 0 0 0 2 0 

 

Figure 2: CES-D Data with Items 4, 8, 12, and 16 Reversed. 
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Notice that the code to reverse each of the four items is essentially the same with the only difference 
being the variable name of the item needing to be reversed.  Copying code that performs the same 
operation for a small number of variables is not that big of a problem.  However, what if the same 
operation had to be performed on 100 variables?  It would be very inefficient to copy the code 100 times 
and change the variable name in each line of code.  There would be an increased likelihood of coding 
errors. 

The solution to overcome the inefficiency is to use a SAS ARRAY with a subsequent DO loop.  We will 
first define two different types of arrays, the indexed array and a non-indexed array.  Then, we will move 
on to how to reference these types of arrays with a DO loop to perform the operation on all the elements 
of the arry. 
 

INDEXED ARRAY SYNTAX 
There are two types of arrays that can be specified in SAS.  The first is what I call an indexed array and 
the second is a non-indexed array.  All arrays are set up and accessed only within a DATA step.  The 
syntax for an indexed array is as follows: 

ARRAY arrayname {n} [$] [length] list_of_array_elements; 

where 

ARRAY   is a SAS keyword that specifies that an array is being defined 

arrayname   a valid SAS name that is not a variable name in the data set. 

{n}    the index used to give the number of elements in the array, optional 

[$]    used to specify if the elements in the array are character variables, the 

default type is numeric 

[length]   used to define the length of new variables being created in the array, 

 optional 

list_of_array_elements a list of variables of the same type (all numeric or all character) to be 

included in the array 

 

An indexed array is one in which the number of elements, {n}, is specified when the array is defined.  A 
non-indexed array is one in which the number of elements is not specified and SAS determines the 
number of elements based on the number of variables listed in the array.  You can always use an indexed 
array, however you can only sometimes, depending on the situation, use a non-indexed array.  

Remember that the arrayname must be a valid SAS name that is not a variable name in the data set.  
One tip I can give you to help distinguish an array name from a variable name is to start the arrayname 
with the letter “a”. 

 

EXAMPLE OF AN INDEXED ARRAY 
Going back to the example of reversing the CES-D items, the SAS code that would be required to define 
an indexed array containing the 4 CES-D items that need to be reversed is 

data cesd; 
  set in.cesd1; 
  array aireverse {4} cesd4 cesd8 cesd12 cesd18 ; 
 

 

In defining this array we first specify the SAS keyword ARRAY with 
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 aireverse    the arrayname used to reference the array in future SAS code 

 {4}    there are 4 elements that will be in the array 

 [$]    not needed as all variables in the array are numeric 

 [length]    not needed 

 cesd4 cesd8 cesd12 cesd18 is the list of the variables that specify the 4 array elements. 

 

NON-INDEXED ARRAY SYNTAX 
In addition to the indexed array, SAS also provides the option of using a non-indexed array.  Here you 
don’t specify the number of elements in the array, {n}.  Rather, during the creation of the array, SAS 
determines the number of elements of the array based on the set of variables listed.  The syntax for a 
non-indexed array is as follows: 

 

ARRAY arrayname [$] [length] list_of_array_elements; 

 

where  

ARRAY   is a SAS keyword that specifies that an array is being defined 

arrayname   a valid SAS name that is not a variable name in the data set. 

[$]    used to specify if the elements in the array are character variables, the 

default type is numeric 

[length]   used to define the length of new variables being created in the array, 

optional 

list_of_array_elements a list of variables of the same type (all numeric or all character) to be 

included in the array 
 

EXAMPLE OF A NON-INDEXED ARRAY 
Again, using the CES-D item reversal example, the SAS code that would be to define a non-indexed 
array containing the 4 CES-D items that need to be reversed is 

data cesd; 
  set in.cesd1; 
  array areverse cesd4 cesd8 cesd12 cesd18; 
 

In defining this array we first specify the SAS keyword ARRAY with 

 areverse    the arrayname used to reference the array in future SAS code 

 cesd4 cesd8 cesd12 cesd18 is the list of the variables that specify the 4 array elements. 

 

One great thing about non-indexed arrays is that they allow for less typing, but give the same functionality 
in the use of an array. 
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SAS DO LOOPS 
So we have now defined our array, but now we have to use it to manipulate the data.  We use a DO loop 
to perform the data manipulations on the array(s).  Within a DATA step, a DO loop is used to specify a set 
of SAS statements or operations that are to be performed as a unit during an iteration of the loop.  It is 
important to note that operations performed within a DO loop are performed within an observation.  
Another thing that you need to be aware of is that every DO loop has a corresponding END statement.  If 
you don’t END your DO loop, you will get a SAS Error message in your log indicating that a 
corresponding END statement was not found for the DO statement.   

There are four different types of DO loops available in SAS. 

1. DO index=, an iterative, or indexed, DO loop used to perform the operations in the DO loop at 
a specified start and ending index value for an array 

2. DO OVER loop used to perform the operations in the DO loop over ALL elements in the array 

3. DO UNTIL (logical condition) loop used to perform the operations in the DO loop until the 
logical condition is satisfied 

4. DO WHILE (logical condition) loop used to perform the operations in the DO loop while the 
logical condition is satisfied 

Many times, DO loops are used in conjunction with a SAS array, with the basic idea being that the 
operations in the DO loop will be performed over all the elements in the array.  It should be noted that 
within a single DO loop multiple arrays can be referenced and operations on different arrays can be 
performed as long as the arrays have the same number of elements in them. 
 

ITERATIVE DO LOOP DEFINITION AND SYNTAX 
An iterative DO loop executes the statements between a DO statement and an END statement 
repetitively based on the value of the specified starting and stopping values of an index.  The syntax for 
an iterative DO loop begins with the SAS keyword DO and is given by 

 

DO indexvariable = startingvalue TO stoppingvalue <BY increment>; 

or 

DO indexvariable = startingvalue, nextvalue, …., endingvalue; 

 

where 

indexvariable  a valid SAS variable name, e.g. i 

startingvalue  a valid starting value, for an indexed array this should be greater than or 

equal to 1 but less than the number of elements in the array, can be a 

character value if not used in conjunction with an array 

endingvalue  a valid ending value, for an indexed array this should be less than or 

equal to the total number of elements in the array, can be character if not 

used in conjunction with an array 

<BY increment>  can specify for numeric starting and ending values how to increment the 

array, optional, e.g. by 2 to do every other element in the array. 
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Note, if the DO loop is being used in conjunction with an array, the way to reference the array element in 
the DO loop is to reference the array name and specify the index variable used in the DO statement in 
square brackets, arrayname[indexvariable].  An advantage of an iterative DO loop used in conjunction 
with an array is that the DO loop can be used to specify a subset of the array elements to perform the 
operation on. 

 

EXAMPLE OF ITERATIVE DO LOOP WITH INDEXED ARRAY 
Going back to the CES-D example, the indexed array “aireverse” has been defined.  The DO loop is now 
defined and the operation that needs to be performed included between the DO and END statements. 

data cesd; 
  set in.cesd1; 
  array aireverse {4} cesd4 cesd8 cesd12 cesd16; 
  do i=1 to 4; 
    aireverse[i]=3-aireverse[i]; 
  end; 
 

The above SAS code specifies the indexed array “aireverse” that contains 4 elements with the list of 
elements being cesd4, cesd8, cesd12 and cesd16.  The iterative DO loop is specified as 

 

 indexvariable  i 

 startingvalue  1 

 endingvalue  4 

 <BY increment>  not specified so the loop increments by 1 each time 

 

Within the DO loop the following operation is performed on the array “aireverse” where 

 aireverse[i]  specifies the arrayname and the indexvariable to use for each iteration 

    of the loop 

 

Specifically, Table 1 gives the value of the index variable and the value of the array element being used 
for every iteration of the loop. 

 

Iteration i = areverse[i] Value of 
areverse[i] 

Operation 
Performed 

Increment i by 1 

One 1 areverse[1] cesd4 cesd4=3-cesd4 i=1+1=2 

Two 2 areverse[2] cesd8 cesd8=3-cesd8 i=2+1=3 

Three 3 areverse[3] cesd12 cesd12=3-cesd12 i=3+1=4 

Four 4 areverse[4] cesd16 cesd16=3-cesd16 i=4+1=5 so exit the loop 

 

Table 1: Iterative Step Through of DO Loop Processing of Array “aireverse” 

The resulting output is exactly the same as that presented in Figure 2. 
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DO OVER LOOP DEFINITON AND SYNTAX 
The DO OVER loop is one of the most useful DO loops that I have discovered in SAS.  It can be used 
with an array when indexing of the array is not needed.  For example, if the operation needs to be 
performed on all elements there is no reason to define the array with an index and no need to created an 
iterative DO loop.  The key to using this type of DO loop is that the operations between the DO and END 
statements will be performed over ALL elements in the array.  An advantage is that the number of array 
elements does not need to be known.  The syntax for the DO OVER loop is 

 

 DO OVER arrayname; 

where  

 arrayname  valid non-indexed arrayname that has been previously defined 

 

When using an arrayname in the operations to perform within the DO loop, one nice feature of the DO 
OVER loop is that no index is needed when referencing the array.  One just needs to reference the 
arrayname like one would a variable name. 

EXAMPLE OF DO OVER LOOP WITH A NON-INDEXED ARRAY 
Again, using the CES-D example, the non-indexed array “areverse” has been defined.  The DO OVER 
loop is now defined and the operation that needs to be performed included between the DO and END 
statements. 

data cesd; 
  set in.cesd1; 
  array areverse cesd4 cesd8 cesd12 cesd16; 
  do over areverse; 
    areverse=3-areverse; 
  end; 

 

The above SAS code specifies the non-indexed array “areverse”.  SAS will determine that the array 
“areverse” contains 4 elements: cesd4, cesd8, cesd12 and cesd16.  The non-iterative DO OVER loop 
is specified as 

 

 DO OVER areverse; 

where 

 areverse  the arrayname to perform the operation on each element of the array 

REFERENCING MULTIPLE ARRAYS IN A SINGLE DO LOOP 
One advantage of using ARRAYs and DO loops is that operations on multiple arrays can be done within a 
single DO loop; however there are things that must be kept in mind.  The first is that the arrays should all 
contain the same number of elements.  The second is that if operations are being done within a DO loop 
on two or more arrays simultaneously (i.e. an operation using one array is being used to create new 
variables in a second array), the order of the array elements needs to be the same in each array.  In other 
words, if we are creating newvar1 in newarray from var1 in oldarray then newvar1 and var1 need to be in 
the same position in the list of array elements.  Here is an example. 
 

 
 

array aold cesd4  cesd8   cesd12  cesd16; 
array arev rcesd4 rcesd12 rcesd16 rcesd8; 
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do over aold; 
  arev=3-aold; 
end; 

 

Looking at the above code, the DO loop will correctly assign the reversed value of the first element of the 
array aold, which is reference variable cesd4, to the first element of the value of the first element of the 
array arev, rcesd4.  However, during the second pass through the loop, and hence the arrays, the value 
of the second element of the array aold, which is referencing the variable cesd8, will incorrectly assign 
the reversed value of cesd8 to the second element of the array arev, which is the variable rcesd12.  
Similarly, an incorrect assignment will be made for the third and fourth elements of the array arev. 

When using multiple arrays within a DO loop, it is imperative to make sure that the elements are in the 
correct order in each array. 
 

 
 

array aold cesd4  cesd8  cesd12  cesd16; 
array arev rcesd4 rcesd8 rcesd12 rcesd16; 
do over aold; 
  arev=3-aold; 
end; 

EXAMPLES USING NON-INDEXED ARRAYS AND DO OVER LOOPS 
As stated before, ARRAYs and DO loops can be used for a variety of data manipulation needs from 
assigning or reassigning values, renaming variables, creating new variables from existing variables, 
simulating data, creating randomization schemes, and changing the data structure.  The following are 
examples of how to manipulate data for some of these applications. 

 
Example 1 – Assigning or Reassigning Values 
Suppose data have been entered such that for a series of items in a list an individual had to mark whether 
the item applied to them or not.  In order to make data entry faster, the person entering the data only 
entered a 1 if the item was checked and otherwise left the item as missing.  We want to change all 
missing values to 0. 

data list; 
  set in.list1; 
  array aquest q1-q20; 
  do over aquest; 
    if aquest=. then aquest=0; 
  end; 
run; 
 

There are a couple things to note. The first is that because we want to perform the operation on all 
variables in the array, we can create a non-indexed array and use a DO OVER loop.  Secondly, we can 
specify the list of array elements with the “-“ in between the first variable name, q1, and last variable 
name, q20, because the variables are named with the same root name followed by a number that is 
indicated sequentially from 1 to 20. 

 
Example 2 – “Renaming” Variables 
Another use of arrays and DO loops for data manipulation is the ability to “rename” variables.  The word 
“rename” is in quotes for a reason.  We are not really renaming the variables, but creating a new variable 
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that contains the exact information as the existing or old variable.  Below is the SAS code used to 
“rename” a group of variables.  You should know that there are other ways to actually rename variables. 

array aquest q1-q20; 
array anquest nq1-nq20; 
do over aquest; 
  anquest=aquest; 
  if anquest=. Then anquest=0; 
end; 

 

Note that here we “rename” the variables in array aquest, q1-q20, to nq1-nq20 in array anquest, and 
then assign the new variables a value of 0 if the value was missing.  If we do not drop the original 
variables, q1-q20, we have preserved the raw data values within our data set as well as created new 
variables that we can use for analysis with no missing data. 
 

Example 3 – Creation of New Variables Using Multiple Arrays 
Arrays and DO loops can also be used to create new variables using multiple arrays.  For example, an 
investigator collects data on height in meters and weight in kilograms at 5 different time points and needs 
the body mass index (BMI) determined for each weekly measure.  To utilize arrays and DO loops to 
calculate the BMI you must first set up three arrays.  These can be indexed or non-indexed arrays.  If you 
are using non-indexed arrays you need to be careful to order the variables for height and the variables for 
weight in the same order in their respective arrays.    The SAS code that might be used is  

array awtkg wtkg1-wtkg5; 
array ahtm htm1-htm5; 
array abmi bmi1-bmi5; 
do over awtkg; 
  abmi=awtkg/(ahtm**2); 
end; 

 

Notice in the above code that the order of the variables in each array is the same, var1-var5.  As well, 
notice that you only need to specify one arrayname in the DO OVER as each array contains the same 
number of elements.  If you wanted to use indexed arrays and iterative DO loops to perform the same 
operations above, the SAS code is 

array awtkg {5} wtkg1-wtkg5; 
array ahtm  {5} htm1-htm5; 
array abmi  {5} bmi1-bmi5; 
do i=1 to 5; 
  abmi[i]=awtkg[i]/(ahtm[i]**2); 
end; 

 

Example 4 – Using Indexed Arrays and Iterative Do Loops to Change the Data Structure 
The final example we will examine demonstrates the solution to a common problem of changing the data 
structure from a short wide data set to a long narrow data set; from one record per ID to multiple records 
per ID.  The use of arrays and DO loops for this problem is especially useful when an investigator has 
collected repeated measures of several variables yet entered one observation containing all measures for 
each individual.  Using the height and weight data from Example 3, the raw data are given in Figure 3 as 
an example of a short wide data set.  Here there are 5 measurement times with height and weight 
collected at each time point.  Only 3 observations are shown. 
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Obs id htm1 htm2 htm3 htm4 htm5 wtkg1 wtkg2 wtkg3 wtkg4 wtkg5 
1 1 0.9072 1.0080 1.1592 1.3356 1.5372 20.4545 25.9091 29.5455 37.2727 45.4545 

2 2 0.7560 0.8316 0.9576 1.1088 1.2348 15.9091 18.1818 21.3636 25.4545 32.2727 

3 3 0.8316 0.9324 1.1088 1.2348 1.3608 19.5455 27.2727 32.7273 39.5455 52.2727 
 

Figure 3: Raw Height and Weight Data at 5 Measurement Times. 
 

We want to change the structure of this data set so that each individual has five observations with each 
observation corresponding to a measurement time.  The steps to restructure the data are as follows: 

1. Create an array for each measurement that contains the variables corresponding to the 
measurements at the specific time points. 

2. Create an iterative DO loop with an index that uses the first measurement time at the starting 
index value and the last measurement time as the ending index value. 

3. Perform any operations that are needed on the variables, such as creating new variables at each 
measurement time. 

4. Create a measurement time variable.  This can be a created as some function of the index 
variable from the DO loop if you want. 

5. Assign each arrayname to a new variable name that is NOT an arrayname, e.g. 
newvar=arrayname[i]; 

6. Use an OUTPUT statement before ending the DO loop to output the observation to the data set. 

7. END the DO loop. 

8. Using a DROP or KEEP statement, drop any variables that you don’t need or keep only those 
variables you want to keep. 

 

Using the BMI data in Figure 3, below is example SAS code to transform the short wide data set to a long 
skinny data set.  Because we are creating the BMI for each measurement time from the existing height 
and weight variables and we are creating a measurement time variable, the new data set should end up 
having 15 observations and 5 variables. 

data bmi_longskinny; 
  set in.bmi_shortwide; 
  array ahtm {5} htm1-htm5; 
  array awtkg {5} wtkg1-wtkg5; 
  array abmi {5} bmi1-bmi5; 
  do i=1 to 5; 
    timept=i;                      *creates the measurement time variable; 
    abmi[i]=awtkg[i]/(ahtm[i]**2); *calculates the bmi for each time point; 
    htm=ahtm[i];             *assigns the ith value of array ahtm to htm; 
    wtkg=awtkg[i];           *assigns the ith value of array awtgk to wtkg; 
    bmi=abmi[i];             *assigns the ith value of array abmi to bmi; 
    output;                  *outputs the observation to the data set; 
  end; 
  keep id timept htm wtkg bmi;      
run; 

 

Figure 4 shows the long skinny data set.  Notice that each id has 5 observations corresponding to the 5 
measurement times. 
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Obs id timept htm wtkg bmi 
1 1 1 0.9072 20.4545 24.8533 

2 1 2 1.0080 25.9091 25.4995 

3 1 3 1.1592 29.5455 21.9874 

4 1 4 1.3356 37.2727 20.8948 

5 1 5 1.5372 45.4545 19.2361 

6 2 1 0.7560 15.9091 27.8357 

7 2 2 0.8316 18.1818 26.2911 

8 2 3 0.9576 21.3636 23.2974 

9 2 4 1.1088 25.4545 20.7042 

10 2 5 1.2348 32.2727 21.1662 

11 3 1 0.8316 19.5455 28.2629 

12 3 2 0.9324 27.2727 31.3707 

13 3 3 1.1088 32.7273 26.6197 

14 3 4 1.2348 39.5455 25.9360 

15 3 5 1.3608 52.2727 28.2284 
 

Figure 4:  Restructured Data Set of 5 Observations Corresponding to 5 Measurement times for 
Each of Three Individuals 

CONCLUSION 
The utility of SAS ARRAYs and DO loops are many when having to manipulate data. We have looked at  just some of 
the ways to use arrays and DO loops including creating new variables, performing the same operation over a set a 
variables more efficiently, “renaming” variables, and changing the data structure.  Arrays and DO loops can also be 
used to simulate data and create randomization schemes.  SAS ARRAYs and DO loops are powerful data 
manipulation tools that help to make your program more efficient and save you lots of time and energy. 
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