
1

Paper 3113-2019

REST Easier with SAS®: Using the LUA Procedure to Simplify

REST API Interactions

Steven Major, SAS Institute Inc.

ABSTRACT

Making HTTP requests to interface with a REST API is a common necessity in modern

programming. Doing this from within a SAS® program can be cumbersome. Making a

simple get request requires the user to write header and body files, parse any URL

parameters, and pass this information along to PROC HTTP. Authentication further

complicates the problem. Once requests are made, the response needs to be somehow read

in a way that is useful to the SAS programmer. This process often requires that the user be

able to parse JavaScript Object Notation (JSON) strings to extract data before storing them

in a SAS data set or local database. In this paper, we show how users can create Lua

modules that simplify these tasks and, by using PROC LUA, how you can use these modules

to easily interface with a REST API from SAS. We also show how debugging functionality can

be worked into these modules and used to troubleshoot request errors. As a specific

example, it is shown how to retrieve online climate data from the National Oceanic and

Atmospheric Administration.

INTRODUCTION

Representational State Transfer (REST) is a web service architecture which is commonly

used to provide an application program interface (API) – a method of communication

between networked computers and a host system. Joseph Henry’s 2016 paper on the use of

the HTTP procedure to make requests to a RESTful web service

(https://support.sas.com/resources/papers/proceedings16/SAS6363-2016.pdf) is an

excellent introduction to the topic for readers who are not familiar.

This paper assumes you are familiar with the basic concepts of RESTful APIs and HTTP.

Using the LUA procedure, it is shown how you can create an easy-to-use interface between

SAS and a web service. Lua is a scripting language that you can use from within SAS by

through the LUA Procedure and offers some distinct advantages to the SAS Macro language

in this context. A brief summary of the LUA procedure is provided.

This paper first develops a general REST service Lua module to show how to simplify

making HTTP requests in general. To show how you can leverage this for a specific web

service, a small sample interface to the ‘Climate Data Online’ web service maintained by The

National Centers for Environmental Information (NCEI) is also presented. In this example, it

is shown how you can easily pull in zip code specific daily temperature data from the

National Oceanic and Atmospheric Administration (NOAA) into a SAS dataset.

A BRIEF OVERVIEW OF THE LUA PROCEDURE

Traditionally, the SAS macro language has been the scripting tool of choice for SAS

developers, and if you are familiar with the unique syntax of SAS macros, you may be

hesitant to take on the task of learning a new tool to accomplish the same goal. However,

you should consider the advantages of the Lua programming language before deciding

https://support.sas.com/resources/papers/proceedings16/SAS6363-2016.pdf

2

whether or not to invest time in learning it. First and foremost, Lua is very straightforward

and easy to learn. With the help of a few bits of sample code you can generally be up

writing code in Lua very quickly. Lua supports functions with multiple return arguments,

data structures (everything in the macro language is a string) and associative arrays; in

other words, it is a modern programming language. Finally, debugging Lua code is very

straightforward. For the purposes of interacting with RESTful APIs, the Lua table is a very

big plus, as it allows for an easy way to parse JSON, which is a very common way to receive

data from an HTTP request.

Two very good papers for getting started with programming in Lua are Paul Tomas' 2015

paper: 'Driving SAS with Lua'

(https://support.sas.com/resources/papers/proceedings15/SAS1561-2015.pdf) and the Lua

reference manual available from https://www.lua.org/. The Lua concepts most relevant to

this paper are discussed below.

LUA BASICS

The most basic way to use the LUA Procedure is to place your Lua code in a submit block.

The following example is meant to demonstrate some basic Lua functionality.

PROC LUA restart;

submit;

 -- Comments can be written like this

 --[[Or you can write block

 Comments like this

]]--

 -- Everyone’s favorite first bit of code:

 print("Hello World")

 --[[Basic Lua variable types are:

 nil, number, string, boolean, table, and function

]]--

 local num_var = 1

 local str_var = "some string value"

 local bool_var = true

 local table_var = {1,2,"three",four=4,five={6,"seven"}}

 local function func_var(arg1,arg2,arg3)

 return 1,"two"

 end

 -- Variable types are not static:

 print(type(num_var))

 num_var=str_var

 print(type(num_var))

 --Names are case sensitive

 local abc = 1

 local ABC = 2

 print(abc, ABC)

https://support.sas.com/resources/papers/proceedings15/SAS1561-2015.pdf
https://www.lua.org/

3

 -- Tables are lists and associative arrays, very flexible

 -- Grab the first list element, 1

 print(table_var[1])

 -- Grab the named element 'five', which is itself a table and print

 -- its second item

 print(table_var["five"][2])

 --Alternatively

 print(table_var.five[2])

 --Loop through all elements – order is uncertain

 for name,value in pairs(table_var) do

 print("name is:",name," and value is:",value)

 end

 --Loop through only the array elements, numerical order is preserved

 for index,value in ipairs(table_var) do

 print("index is:",index,"and value is:",value)

 end

 --Trying to print a table prints the address, not helpful

 print(table_var)

 --The table package has a tostring function that is nice

 print(table.tostring(table_var))

 --functions can return multiple arguments

 local x,y = func_var(1,2,3)

 -- Second returned value for our function is "two"

 print(y)

 -- Functions are variables and can be stored in tables

 table_var.new_func=func_var

 print(table_var.new_func(1,2,3))

 -- nil is similar to SAS’s missing

 print(type(var_does_not_exist))

endsubmit;

RUN;

USING MODULES

A Lua module is a collection of Lua code stored in a file that can be loaded into a Lua

environment using the require statement. SAS uses the special filepath called ‘LUAPATH’ to

determine where to look for modules. The equivalent for SAS Macros is an autocall library.

Lua modules are a convenient way to store functions that serve a similar purpose.

For the next examples, it is assumed that <lua_location> is a reference to a directory on

your file system, e.g. C:\temp\lua_sample. It is also assumed that there is a subdirectory

within <lua_location> called ‘subdir’.

Create a file called ‘my_module.lua’ in <lualocation> with the following contents:

local module = {}

4

module.details={version="1.0",purpose="example"}

function module.print_info()

 print(table.tostring(module.details))

end

return module

You can then use the module like this:

filename luapath "<lua_location>";

PROC LUA restart;

submit;

 local mod = require 'my_module'

 mod.print_info()

endsubmit;

RUN;

Modules can reference other modules. For example, you can create a utility module that

defines a function called ‘tprint’ to print the contents of a table. Create a file called

‘utility.lua’ in <lualocation> with the following contents:

local M = {}

function M.tprint(a_table)

 if(type(a_table) == 'table' then

 print(table.tostring(a_table))

 else

 print(a_table)

 end

end

return M

You can then simplify the first module (my_module.lua) as follows:

local module = {}

local util = require 'subdir.utility'

module.details={version="1.0",purpose="example"}

function module.print_info()

 util.tprint(module.details)

end

return module

5

A SIMPLE REST API MODULE

A RESTful API will have a base URL, with specific services having an address with this base

URL as their root. For example, the base URL for accessing NOAA’s web services is:

https://www.ncdc.noaa.gov/cdo-web/api/v2/. The datasets service has the address:

https://www.ncdc.noaa.gov/cdo-web/api/v2/datasets. If the ID of a specific dataset is

known, its own services have the address https://www.ncdc.noaa.gov/cdo-

web/api/v2/datasets/{ID}. As such, a REST module should allow the user to set a base url

and make calls against it without having to repeatedly pass this information along.

All requests are made using HTTP, which means that users will be passing a file with the

request header information and another file with the request body. The response from this

request will take the form of a file with header information and a body. As such, a REST

module should make reading and writing to these files simple.

The code for the rest module is developed in the following sections. It consists of 4 functions

and some variables that allow for the control of different HTTP options and the base URL.

REST MODULE BASICS

The first thing we need to do is define the table object that our module will be returning.

Next, define some variables to control the PROC HTTP options and the base url. The use of

these variables will become clear when the HTTP request function is defined.

-- The table our module will return

local rest={}

-- This is the base URL for all calls.

rest.base_url=""

--- Some basic HTTP options

-- use cookies? (NO_COOKIES)

rest.cookies = true

-- clear cache after each call? (CLEAR_CACHE)

rest.clear_cache = false

-- avoid multiple headers when redirected or in other cases?

(HEADEROUT_OVERWRITE)

rest.header_overwrite = false

-- Cache connections?(NO_CONN_CACHE)

rest.cache_connection = true

FILE UTILITIES

Some functions for reading and writing to files can make life a lot easier as most requests

will require that you pass a header and body file. You will also need to read the returned

header and body in order to parse the response.

--

--- Some utility functions to read to and write from files ---

--

https://www.ncdc.noaa.gov/cdo-web/api/v2/
https://www.ncdc.noaa.gov/cdo-web/api/v2/datasets
https://www.ncdc.noaa.gov/cdo-web/api/v2/datasets/%7bID%7d
https://www.ncdc.noaa.gov/cdo-web/api/v2/datasets/%7bID%7d

6

rest.utils={}

--- Read a file referenced by fileref into a string.

-- @param fileref [string or a fileref from sasxx.new()] - The fileref to

read from

-- @return contents [string] - The contents of the fileref, nil if nothing

was found

-- @return msg [string] - Any error message

function rest.utils.read(fileref)

 if type(fileref) == "string" then

 fileref = sasxx.new(fileref)

 end

 local path = fileref:info().path

 if not path then

 fileref:deassign()

 return nil, "Couldn't open "..tostring(fileref).." for read."

 end

 local BUFSIZE = 2^13

 local f = io.open(path,"rb")

 if not f then

 return nil, "Couldn't open "..tostring(fileref).." for read."

 end

 local contents = ""

 while true do

 local bufread = f:read(BUFSIZE)

 if not bufread then break end

 contents = contents..bufread

 end

 f:close()

 return contents,""

end

--- Write a file referenced by fileref from a string with carriage returns

-- @param fileref [string or a fileref from sasxx.new()] - The fileref to

write to

-- @param txt - the string being written to the file

-- @return rc [boolean] true if no error, false otherwise

function rest.utils.write(fileref, txt)

 if type(fileref) == "string" then

 fileref = sasxx.new(fileref)

 end

 local path = fileref:info().path

 if not path then

 fileref:deassign()

 return false, "Couldn't open "..tostring(fileref).." for write."

 end

 local f = io.open(path,"wb")

 if not f then

 return false, "Couldn't open "..path.." for write."

 end

 f:write(txt)

 f:close()

 return true

end

7

--- Encode a URL string - need to do this when passing parameters that

contain special characters

-- @param str String containing a URL to encode

function rest.utils.urlencode(str)

 if (str) then

 str = string.gsub (str, "\n", "\r\n")

 str = string.gsub (str, "([^%w])",

 function (c) return string.format ("%%%02X", string.byte(c)) end)

 str = string.gsub (str, " ", "+")

 end

 return str

end

The urlencode function replaces special characters with their URL-encoded equivalents. This

is necessary if, for example, you want to pass a ‘/’ symbol in a request.

It is also helpful to have some filerefs available to read and write to by default. The next

portion of code will create four filerefs in the work directory or, if a macro variable called

‘working_folder’ is found, it will create them there.

-- Assign some default filerefs that can be used for requests and

responses.

-- _hin_ : the request header

-- _hout_ : the response header

-- _bin_ : the request body

-- _bout_ : the response body

if sas.symget('working_folder') and sas.symget('working_folder') ~= '' then

 rest.working_folder = sas.symget('working_folder')

else

 rest.working_folder = sas.getoption('work')

end

sas.submit([[

 filename _hin_ "@working_folder@/_hin_.txt";

 filename _hout_ "@working_folder@/_hout_.txt";

 filename _bin_ "@working_folder@/_bin_.txt";

 filename _bout_ "@working_folder@/_bout_.txt";

]], {working_folder = rest.working_folder})

THE REQUEST FUNCTION

Finally, we can define a request function that uses all of these pieces. The function first

parses the options that were defined at the beginning and then determines what (if

anything) will be passed as the input body, header, and content type. The actual request is

then made by calling PROC HTTP, and the response is parsed to determine if the call was

successful.

----- Submit a request to rest.base_url

-- ARGUMENTS:

-- action - string - 'GET', 'POST', 'PUT', etc.

-- request - string - the portion of the URL that follows

rest.base_url

-- body_in - string - [OPTIONAL]fileref for the request body.

8

-- header_in - string - [OPTIONAL]fileref for the request header.

-- content_type - string - [OPTIONAL]passed to PROC HTTP's 'ct' parameter

(content type)

-- body_out - string - [OPTIONAL] the fileref to write the output

to. Defaults to '_bout_'

-- header_out - string - [OPTIONAL] the fileref to write the

returned header to. Defaults to '_hout_'

--RETURNS:

-- pass - boolean - whether or not the HTTP return code was in the

200's (200 OK, 201 CREATED, etc)

-- code - number - the actual http return code

function rest.request(action, request, body_in, header_in, content_type,

body_out, header_out)

 -- Handle HTTP options

 local http_options = ""

 if not rest.cookies then http_options = http_options.." NO_COOKIES" end

 if rest.clear_cache then http_options = http_options.." CLEAR_CACHE" end

 if rest.header_overwrite then http_options = http_options.."

HEADEROUT_OVERWRITE" end

 if not rest.cache_connection then http_options = http_options.."

NO_CONN_CACHE" end

 -- Make sure a / separates the base url and request

 if rest.base_url:sub(-1) ~= '/' and request:sub(1,1) ~= '/' then request

= '/'..request end

 local url_str = rest.base_url..request

 -- Set the content type and out arguments

 local body_in_arg, header_in_arg, ct_arg

 if not content_type then ct_arg = "" else ct_arg = "ct =

'"..content_type.."'" end

 if not body_in then body_in_arg = "" else body_in_arg = "in =

"..tostring(body_in) end

 if not header_in then header_in_arg = "" else header_in_arg = "headerin

= "..tostring(header_in) end

 if not body_out then body_out = "_bout_" end

 if not header_out then header_out = "_hout_" end

 -- Initialize the contents of the response files so that if something

 -- goes wrong, we don't accidentally get the contents from a previous

 -- request

 rest.utils.write(body_out,"_NOT_SET_BY_PROC_HTTP_")

 rest.utils.write(header_out,"_NOT_SET_BY_PROC_HTTP_")

 sas.submit([[

 PROC HTTP

 @http_options@

 url=%nrstr('@url_str@')

 @header_in_arg@

 headerout=@header_out@

 @body_in_arg@

 out=@body_out@

 @ct_arg@

 method='@action@';

 RUN;

9

]])

 --Grab the response and pull out the http return code

 local header_string = rest.utils.read(header_out)

 local header_line_one = sas.scan(header_string,1,'\n\r')

 local code = tonumber(sas.scan(header_line_one,2,' '))

 local pass = (code >= 200 and code < 300)

 return pass, code

end

return rest

 REST MODULE EXAMPLE

In the following example, a GET request to http://httpbin.org/ip is made, which will return

the IP address of the requester. Notice that only three lines of lua code are needed for this;

one to load the module, another to set the base url, and a third to make the actual request.

filename luapath "<location of the REST lua module>";

/* Set this if you want to store the header and body files somewhere

other than work */

%let working_folder=;

PROC LUA restart;

submit;

 local rest = require 'rest'

 rest.base_url = 'http://httpbin.org/'

 local pass,code = rest.request('get','ip')

 print(pass,code)

 print(rest.utils.read('_bout_'))

endsubmit;

RUN;

PARSING JSON

Once the response is read, it will generally need to be parsed. A common format for request

and response bodies is Javascript Object Notation (JSON). Lua makes parsing JSON easy,

since any JSON object can be expressed as a Lua table. Note that the same is not true for

SAS datasets in general. Jeffrey Friedl’s publicly available Lua module for encoding and

decoding JSON in Lua is located here: http://regex.info/blog/lua/json. All references to

‘json.lua’ in this paper are referring to that file.

INTERFACING WITH A REST API

In this section, the REST module defined in the previous section is used to create a simple

interface to a REST API; NOAA’s ‘Climate Data Online’ web service. Because there are many

REST enpoints for this service, an attempt to cover all (or even many) of them is not made.

Instead, an interface to the datasets and data endpoints is developed as an example. The

API is documented here: https://www.ncdc.noaa.gov/cdo-web/webservices/v2. Before any

requests can be made to the API, a token must be obtained by going to

http://httpbin.org/ip
http://regex.info/blog/lua/json
https://www.ncdc.noaa.gov/cdo-web/webservices/v2

10

https://www.ncdc.noaa.gov/cdo-web/token and providing an email address. This token is

used for all requests.

As with the REST module, the code for the module will be developed in components.

Functions for interacting with the datasets API, used for getting a list of available datasets

and their IDs, as well as the data API, which provides specific data values, are developed. A

generic request function for any of the NOAA API endpoints is also provided.

NOAA API BASICS

The NOAA module will use the rest and json modules to make requests and parse the

responses. It will allow for the setting of the token used for requests and will handle all of

the interactions with the rest module. A utility function used internally to parse the various

filters is defined, but note that it is not returned as part of the module since it has no real

use outside of the context of the NOAA API.

local noaa = {}

local rest = require 'rest'

local json = require 'json'

-- The token that will be used for requests.

noaa.token=false

-- Set the base url

rest.base_url = 'https://www.ncdc.noaa.gov/cdo-web/api/v2/'

--- Take a table of parameters and create a string to append to a url

-- @params parms_table [table] - table of name,value pairs

-- @return parms_string [string] - parameter table parsed as a string

function parms_table_to_string(parms_table)

 local has_parm = false

 local parms_string = ""

 for key,value in pairs(parms_table or {}) do

 if value then

 if has_parm then parms_string = parms_string..'&' end

 parms_string = parms_string..key..'='..value

 has_parm = true

 end

 end

 if has_parm then parms_string='?'..parms_string end

 return parms_string

end

DATASETS API

The datasets API takes an optional ID and a series of filters. The description of these

parameters can be found here: https://www.ncdc.noaa.gov/cdo-

web/webservices/v2#datasets. The function first checks that the token is defined and then

parses the parameters to construct a proper HTTP query string. Once the request is made,

the response is converted to a lua table and returned.

https://www.ncdc.noaa.gov/cdo-web/token
https://www.ncdc.noaa.gov/cdo-web/webservices/v2#datasets
https://www.ncdc.noaa.gov/cdo-web/webservices/v2#datasets

11

-- #DATASETS --

noaa.datasets = {}

--- Get a specific dataset or pass nil for id and get a list of all

datasets. Use filters to filter the results. See"

--- https://www.ncdc.noaa.gov/cdo-web/webservices/v2#datasets

-- @param id [string] - Optional, if nil a list of all tables is returned,

otherwise querry a specific table by id

-- @param filters [table] - Optional, table with entries for any filters to

apply. See help for the list.

-- @return pass [boolean] - true if call was successful, false if error

occurred.

-- @return datasets [table] - Table with all available datasets

function noaa.datasets.get(id,filters)

 if not noaa.token then

 print('ERROR: You need to specify a token first')

 return false,nil

 end

 local id_str = ""

 if id then id_str = '/'..tostring(id) end

 local parms_str = parms_table_to_string(filters)

 rest.utils.write('_hin_','token:'..noaa.token)

 local pass,code = rest.request('get','datasets'..id_str..parms_str

,nil,'_hin_')

 if not pass then

 return false, nil

 end

 return true, json:decode(rest.utils.read('_bout_'))

end

DATA API

The data API requires start and end dates and a dataset ID. It is documented here:

https://www.ncdc.noaa.gov/cdo-web/webservices/v2#data. The function takes an optional

argument called ‘dataset’ which allows the user to specify a SAS Dataset to have the results

written to. Like the datsets function, it checks that the token is specified and parses the

arguments to form a proper query string.

--

-- #DATA --

--

noaa.data = {}

--- Get a specific dataset or pass nil for id and get a list of all

datasets. Use filters to filter the results. This APi will be deprecated

soon (as of March 2019)

--- https://www.ncdc.noaa.gov/cdo-web/webservices/v2#data

-- @param id [string] - dataset id to get data for. Use datasets.get() to

see a list of all IDs

-- @param startdate [string] - required, Accepts valid ISO formated date

(YYYY-MM-DD) or date time (YYYY-MM-DDThh:mm:ss)

-- @param enddate [string] - required, Accepts valid ISO formated date

(YYYY-MM-DD) or date time (YYYY-MM-DDThh:mm:ss)

https://www.ncdc.noaa.gov/cdo-web/webservices/v2#data

12

-- @param filters [table] - Optional, table with entries for any filters to

apply. See help for the list.

-- @param dataset_name [string] - Optional. If nothing is specified, no

dataset is created. Otherwise, a dataset called 'dataset_name' is

-- created with the contents of the

requested data. If you specify a libname (e.g. pass 'mylib.dataset') then

-- the specified library needs to exist

-- @return pass [boolean] - true if call was successful, false if error

occurred.

-- @return data [table] - Table with the requested data

function noaa.data.get(id,startdate,enddate,filters,dataset_name)

 if not noaa.token then

 sas.print('%1zYou need to specify a token first')

 return false,nil

 end

 if not id then

 sas.print('%1zAn id is required for this API')

 return false,nil

 end

 --default output_type to table only

 dataset_name = dataset_name or false

 filters = filters or {}

 filters.datasetid = tostring(id)

 filters.enddate = tostring(enddate)

 filters.startdate = tostring(startdate)

 local parms_str = parms_table_to_string(filters)

 rest.utils.write('_hin_','token:'..noaa.token)

 local pass,code = rest.request('get','data'..parms_str ,nil,'_hin_')

 if not pass then

 return false, nil

 end

 local output = json:decode(rest.utils.read('_bout_'))

 if dataset_name then

 local sasds = output.results

 sasds.vars={station = {length=32, type="C"},

 date = {length=32, type="C"},

 value = {length=8, type="N"},

 attributes = {length=32, type="C"},

 datatype = {length=8, type="C"}

 }

 sas.write_ds(sasds, tostring(dataset_name))

 end

 return true, output

end

A GENERIC NOAA API REQUEST

--

-- #GENERIC --

--

--- Generic request function for endpoints not covered in this module for

the v2 API

function noaa.request(method,endpoint,filters)

 if not noaa.token then

 sas.print('%1zYou need to specify a token first')

13

 return false,nil

 end

 filters = filters or {}

 endpoint = endpoint or ''

 method = method or 'get'

 local parms_str = parms_table_to_string(filters)

 rest.utils.write('_hin_','token:'..noaa.token)

 local pass,code = rest.request(method,endpoint..parms_str ,nil,'_hin_')

 if not pass then

 return false, nil

 end

 return true, rest.utils.read('_bout_')

end

return noaa

EXAMPLE

You can now easily interact with the NOAA API. In this example, a list of all datasets is

retrieved. Next, the summary data for Cary, NC for the month of January, 2018 is pulled

into a SAS dataset. Finally, the list of all stations for a given zipcode are retrieved.

filename luapath "<location of the NOAA module>";

PROC LUA restart;

submit;

 local noaa = require 'noaa'

 noaa.token='jfFOguhJNpUDOhhVvoHdVmXMhlCneimp';

 -- Get a list of all datasets

 local pass, datasets = noaa.datasets.get()

 --Get some actual data

 local filter = {limit=25,locationid='ZIP:27603'}

 local pass, data = noaa.data.get('GHCND','2018-01-01','2018-01-

31',filter,'work.weather')

 --Use the generic request function to access the stations API

 local pass, output =

noaa.request('get','stations',{locationid='ZIP:27603'})

endsubmit;

RUN;

CONCLUSION

As RESTful APIs continue to grow in prevalence, the ability to easily interact with a REST

API from SAS will allow you to interact with these services, perform any data analyses, and

generate reports all from within the SAS environment. PROC LUA simplifies this task by

allowing you to create a simple set of functions, managed within lua modules, to streamline

these interactions.

14

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Steven Major

100 SAS Campus Dr

Cary, NC 27513

919-531-1467

Steven.major@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

15

BASIC INSTRUCTIONS

WRITING GUIDELINES

Trademarks and product names

To find correct SAS product names (including use of trademark symbols), if you are a SAS employee, see the Master Name List.
Otherwise, see SAS Trademarks.

• Use superscripted trademark symbols in the first use in title, first use in abstract, and in graphics, charts, figures, and
slides.

• Do not abbreviate product names. For example, you cannot use “EM” for SAS® Enterprise Miner™. After having
introduced a SAS product name, you can occasionally omit “SAS” for certain products, provided that your editor agrees.
For example, after you have introduced SAS® Simulation Studio, you can occasionally use “Simulation Studio.”

Writing style

• Use active voice. (Use passive voice only if the recipient of the action needs to be emphasized.) For example:

The product creates reports. (active)
Reports are created by the product. (passive)

• Use second person and present tense as much as possible. For example:

You get accurate results from this product. (second person, present tense)
The user will get accurate results from this product. (future tense)

• Run spellcheck, and fix errors in grammar and punctuation.

Citing references

All published work that is cited in your paper must be listed in the REFERENCES section.

If you include text or visuals that were written or developed by someone other than yourself, you must use the following guidelines
to cite the sources:

• If you use material that is copyrighted, you must mention that you have permission from the copyright holder or the
publisher, who might also require you to include a copyright notice. For example: “Reprinted with permission of SAS
Institute Inc. from SAS® Risk Dimensions®: Examples and Exercises. Copyright 2004. SAS Institute Inc.”

• If you use information from a previously printed source from which you haven’t requested copyright permission, you
must cite the source in parentheses after the paraphrased text. For example: “The minimum variance defines the distance
between cluster (Ward 1984, p. 23)

TIPS FOR USING WORD

These instructions are written for MS Word 2007 and MS Word 2010. The steps are similar for MS Word 2003.

To select a paragraph style

1. Click the HOME tab. The most common styles in your document are displayed in the top right area of the Microsoft
ribbon. If you don’t see a style that you want, click the slanted down arrow at the bottom right corner of the Styles area,
and scroll through the list. The main styles for this template are headings 1 through 4, PaperBody, and Caption. Avoid
using other styles.

2. To change a paragraph style, click the paragraph to which you want to apply a style, and then click the style that you
want in the ribbon.

3. PaperBody (used for most text) is automatically applied when you press Enter at the end of any heading style or the
Caption style.

To insert a caption

1. Click REFERENCES on the main Word menu.

2. Click Insert Caption.

http://sww.sas.com/sasnaming/
http://www.sas.com/en_us/legal/trademarks.html

16

3. Select the Label type that you want.

4. Click OK.

To insert a cross-reference

1. Click REFERENCES on the main Word menu.

2. Click Cross-reference.

3. In the Reference type list box, select Heading, Figure, Table, Display, or Output.

4. For a heading:

a. In the For which heading list, select the heading that you want.

b. From the Insert reference to list, select Heading text.

5. For a figure, table, display, or output:

a. In the For which caption list, select the caption that you want.

b. From the Insert reference to list, select Only label and number.

To insert a graphic from a file

1. Click INSERT on the main Word menu.

2. Click Picture.

3. In the Insert Picture dialog box, navigate to the file that you want to insert.

4. When the name of the file that you want to insert is displayed in the File name box, click Insert.

