
1

Paper 3108-2019

Reduce Table Size and Always Normalize! (Right? Maybe Not!)

Darryl Prebble, Prebble Consulting Inc.

ABSTRACT

For years it’s been common knowledge that you should normalize your data to maximize

your storage space. Of course, this involves creating and maintaining reference tables. What

if the tables become out of date? Am I just causing more problems by introducing

complexity like this?

In this paper I illustrate a method of automating the normalization of tables to take the

work and maintenance out of the equation. I also introduce an alternative to normalization

available in Teradata and how it stacks up.

INTRODUCTION

The idea of normalizing your data is a simple one – remove long, repeating, descriptive text

fields from a table (taking up lots of space) and replace them with an integer ID. This helps

you store the same information using far less storage space.

The practice comes with an admin cost however, in that you have to maintain the

supporting reference tables. Often this is done in a manual way and requires ongoing

support on the project, which is not ideal.

This paper examines how to automate the process and ends with a small twist – when is

Best Practice, not Best Practice?!

WHY?

A simple question, and a good place to start. If you don’t already know about data

normalization, why should you take the time to learn what it is and why should you

implement it? A simple question, with a simple answer shown in Figure 1 below.

2

Figure 1. Size of table before and after normalization (table names redacted)

In Figure 1, Answerset2 is the “before”, while Answerset3 is the “after”. An easy savings of

over 6%! Doesn’t sound like much, but when implemented on a large scale it’s a huge

savings.

WHAT IS NORMALIZATION?

What is the issue that needs solving here? See Figure 2 for an example of the problem.

Figure 2. Sample data from SASHELP.BASEBALL

As shown in red and blue, we have two examples of repeating, descriptive text values that

over a large enough dataset will utilize a lot of storage space needlessly. As shown in Figure

3 below, this is what it looks like once normalized.

Figure 3. Sample of data from SASHELP.BASEBALL after normalization

Instead of storing all of those repeating text values, we now only have to store a number.

The benefit of this technique increases as the size of the text we’re replacing increases as

well.

The last step required here is simply to create a reference table as shown in Figure 4.

3

Figure 4. REF_TEAM table created to support normalization of SASHELP.BASEBALL

A simple join on TEAM_ID will retrieve the TEAM_DESC and you end up with the same end-

result with all of the storage savings to make your friendly neighborhood DBA happy.

DRAWBACKS?

Few things in life are free of course, and normalization is no exception. There are two costs

to consider when implementing a solution such as this.

PUSHING WORK DOWN TO THE END-USER

Where previously the end-user could simply query the table and see all the information they

wanted, they may not be happy seeing the TEAM_ID in place of the TEAM_DESC. This

means that they will have to do a join to REF_TEAM on TEAM_ID to get the full information.

This in itself isn’t the end of the world, but what happens as the solution scales upwards

with large tables and your normalization is encompassing many fields, not just one?

Luckily, the solution here is simple – create a view that the end-user will query instead of

pointing them to the actual table. In the view, you will do all of the joins ahead of time so

that your work behind the scenes is completely invisible to the end-user. If done correctly,

they’ll have no idea you worked so hard to keep your DBAs happy. See Figure 5 below for

an example of how to create this type of view.

Figure 5. View to hide your tracks from end-users

When a user queries V_BASEBALL, they’ll have no idea that the data has been normalized

behind the scenes. Is there a performance hit in the background now that joins have to take

place? Yes, but if keys and indexes are properly defined, there shouldn’t be an issue for any

but the largest of tables.

WHO MAINTAINS THE REFERENCE TABLES?

Often, reference table values are defined by a Business Analyst during the implementation

of a project. Perhaps the tables are passed to the development team as an Excel or CSV file

to be ingested into the database. This works great for day 1 deployment, but what happens

going forward when new values are introduced to the data?

4

By normalizing the data you’ve made it critical that new data values are communicated to

the development team ahead of time, and likely require on-going developer and BA support.

Or does it…

AUTOMATED SUPPORT OF REFERENCE TABLES

In order to automate the whole thing so that you don’t have to continue supporting the

project for rest of your life, we can break it all down into three tasks.

I break down these tasks below using passthrough Teradata SQL, as normalization gets it’s

best results from large database appliances working with large amounts of data. However,

these modular concepts are simple to port to SAS® datasets as well (I started this design

with SAS datasets), or any other DB appliance.

1. Creation of reference tables

2. Population of reference tables (both initial load and ongoing)

3. Normalization of main table

a. Addition of ID fields

b. Population of ID fields

c. Removal of descriptive text fields

CREATION OF REFERENCE TABLES

In the process of replacing text descriptions with IDs from a reference table, first you must

create the reference table and populate it.

In order to figure out how to create the reference table we turn to the dictionary tables to

find out how big the text field needs to be. Note that the code below in Figure 6 has been

macro-ized so that it can be called easily to create as many reference tables as needed.

Figure 6. Use the dictionary tables to get metadata information

Once you know how big of a text field you need to make, you can go ahead and create the

empty table as seen here in Figure 7, using the macro variable col_length created above.

5

Figure 7. Create the empty reference table based on metadata information

Creating multiple reference tables based on multiple fields is now easy with this macro, as

seen in Figure 8.

Figure 8. Creating multiple reference tables with macro call

Further to this solution is the ability to programmatically figure out what fields should be

normalized based on the field’s cardinality, then having this macro called within. In other

words, automating the entire process. I won’t give away all of my secrets, so I leave this to

the user to solve themselves.

POPULATION OF REFERENCE TABLES

Population of the reference tables for both Initial and Ongoing loads is the same logic. This

is helpful, because as I’ve laid out earlier in the Drawbacks section, ongoing support

requirements is an issue to be taken into consideration when normalizing your data. See

Figure 9 below.

6

Figure 9. Population of reference tables with macro call

MODIFY MAIN TABLE

With the reference tables created, the last step is to replace the values in the main table

with the representative IDs. This is done by adding ID fields, populating them, then

dropping the text description fields, as seen in Figure 10 below.

7

Figure 10. Modification of main table

This finalizes the normalization process, as you have replaced large, repeating text

descriptions with integer IDs instead. A simple join allows you to reintegrate the text

descriptions at run-time in a view with nobody the wiser! This is why data normalization is

considered Best Practice for your database environment.

AN ALTERNATIVE

As alluded to in the title of this paper, there is an alternative to the Best Practice in this

case! In Teradata you can "fake" normalization in a way that achieves very similar results

called Multi Value Compression (MVC).

To use the basis of understanding that has been developed above, this method replaces the

text values with IDs just as normalization does, but stores the reference table (ie.

Mappings) in the table header. See below in Figure 11 for an example of MVC.

Figure 11. Teradata MVC

The advantage here is clear – all of the advantages of normalization, without any of the

upkeep. You do not have to create reference tables. You do not have to create views to join

all the data back together again. You do not have to maintain the reference tables going

forward!

So what’s the catch? The catch is maintenance. Going forward when there are new values

introduced in your data, those values will not be compressed. The data values in MVC need

to be baked right into the table DDL itself as shown in Figure 11. So while your table will not

8

break as new values are introduced to the data going forward, the storage savings will

suffer. Best Practice for getting around this is archive the table, drop it and then recreate

with the new values listed in the table DDL. Then you insert the data into the new table

from the backup. Whether this solution works for you in your environment is something

you’ll have to work out with your DBAs and Governance team, but the benefits are clear

especially if you do not anticipate large volumes of new data values coming through.

The normalization method outlined above takes care of maintenance going forward and is

hands-off once implemented.

CONCLUSION

The benefit of normalizing your data is clear, especially in today’s age of massive data

volumes. The methods as outlined in this paper can help minimize overhead and support,

removing any counter-arguments to implementing this technique in your datamart.

Also, if the situation allows, Teradata MVC is a wonderful alternative though you must be

aware of it’s limitations. As a rule, it works best when you anticipate no new values to be

introduced to your data (ie. Provinces or States).

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Darryl Prebble

Prebble Consulting Inc.

dprebble@gmail.com

