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ABSTRACT  

Hospital-acquired conditions (HACs) are health-care complications that occur during 

inpatient hospital stays. Given that HACs can potentially be avoided if hospitals follow 

standard clinical evidence-based guidelines, Medicaid and Medicare reduce reimbursement 

for these conditions. This paper demonstrates how the LOGISTIC procedure can identify 

patients at high risk of developing HACs during an inpatient stay. PROC LOGISTIC predicts 

the probability of an outcome given a set of covariates by using logistic regression models 

and maximum likelihood estimation. Features in the procedure enable users to select 

covariates associated with the highest probability of having an event. This paper 

demonstrates how to use PROC LOGISTIC to identify patients at an elevated risk of HACs 

based on patients' prior medical history. Steps include: 1) identifying patient cohorts 

(training and test cohorts); 2) defining the HAC outcome event; 3) selecting covariates 

associated with developing an HAC; 4) identifying the best fit model in the training cohort; 

5) examining model fit in the test cohort; and 6) assigning patients an HAC risk score. 

Results can be used to flag patients at high risk of developing HACs and to improve a 

hospital's overall health-care quality. Risk scores applied to electronic medical data can be 

used to prevent HACs in real time upon patient admission.  

INTRODUCTION  

Hospital-acquired conditions (HACs) are medical diagnoses that are not initially present 

upon hospital admission (Centers for Medicare and Medicaid Services, 2018a). Common 

types of HACs include adverse drug events, pressure ulcers, falls, and hospital associated 

infections (for example, catheter-associated urinary tract infections, clostridium difficile 

infections, and surgical site infections) (AHRQ, 2018).  In the United States, an estimated 1 

in 25 hospital patients are diagnosed with a hospital acquired infection every year (Centers 

for Disease Control and Prevention, 2016). HACs are associated with prolonged hospital 

stays, high medical costs (Zimlichman et al., 2013), and increased risk of patient mortality 

(Umscheid et al., 2011). Since these conditions are potentially avoidable if evidence-based 

guidelines for clinical care are followed, the Centers for Medicare and Medicaid Services 

(CMS) use HACs as a measure of a hospital’s quality of care (Centers for Medicare and 

Medicaid Services, 2018a; Umscheid et al., 2011). To stress the importance of preventing 

HACs, CMS limits hospital reimbursements for HACs and mandates that hospitals report 

whether a diagnosis is present when patients are first admitted to a hospital (Centers for 

Medicare and Medicaid Services, 2018a).  

Logistic regression models are often used in epidemiologic studies to examine whether an 

exposure event impacts the likelihood of a binary outcome. Given that HACs are a binary 

event (the patient did or did not acquire an HAC), logistic regression models can be used to 

predict whether a patient is at increased risk before the event occurs. Features of the SAS® 

procedure allow users flexibility when entering risk factors that are associated with the 

likelihood of having both the exposure and the outcome event. The output of the model 

identifies which risk factors are associated with the highest likelihood that an HAC will occur, 

given admission to a hospital.  
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If we can identify patients at high risk of developing HACs, then we can potentially prevent 

these conditions from occurring when a patient is admitted to a hospital. This paper 

demonstrates how to use the LOGISTIC procedure to identify risk factors that place patients 

at elevated risk of developing HACs based on their prior medical history. 

IDENTIFICATION OF MODEL CRITERIA  

POPULATION OF INTEREST 

The first step in building a logistic regression model is defining your patient population. The 

population depends on the question that you are trying to answer. In our example, we are 

trying to answer the question “Which patients are at elevated risk of developing an HAC?” 

Therefore, our patient population would include patients who had at least one hospital stay 

during a prespecified time. In some settings, specific inclusion or exclusion criteria are 

needed to limit bias in your model.  

Inclusion criteria are rules required for a patient to be eligible for your patient population. In 

our HAC example, inclusion criteria would require that patients had at least one hospital 

stay during a prespecified time. If patients are admitted multiple times during a specified 

period, the inclusion criteria might limit the initial logistic regression model to a patient’s 

initial hospital stay. Once the final model is defined and validated, the model could be run 

upon a patient’s admittance to assess the risk of developing an HAC during that stay. Other 

inclusion criteria might depend on your specific patient population. For example, if you are 

using insurance claims data, you might require that patients remain continuously enrolled 

for a minimum time prior to the initial hospital stay. Requiring continuous enrollment will 

help ensure that you are not missing any prior diagnosis or health events that could impact 

a patient’s risk of developing an HAC.  

Exclusion criteria are rules that prevent a patient from being eligible for your patient 

population. For example, you might want to exclude patients that were in the hospital less 

than three days to avoid mislabeling outside conditions as hospital acquired. Conditions that 

present on the first or second day of a hospital stay might be conditions that were acquired 

prior to admission. In addition, you might want to exclude patients in certain types of 

facilities, such as nursing facilities or mental health facilities, since these patients might 

have different underlying reasons for their hospital stays. See Figure 1 for an example of a 

potential patient population flow chart for an HAC model.  



3 

 

Figure 1. Example Flow Chart for Defining a Patient Population for an HAC Model 

OUTCOME SELECTION 

Once you have identified your population, the next step is to identify how you want to 

define an HAC event. For logistic regression models, the outcome variable must be defined 

as a binary outcome (HAC versus no HAC). The choice of which HAC to include depends on 

how frequently the outcome occurs in your population. Logistic regression models can 

potentially underestimate the probability of an HAC if the event is rare in your population 

(King and Zeng, 2001; Pavlou et al., 2015). Therefore, you might want to start by building 

a model that predicts patients at risk of developing the most frequent HAC for your specific 

population. In health-care settings, International Classification of Disease Clinical 

Modification (ICD-9-CM and ICD-10-CM) codes are often used to identify health-care 

outcomes. When selecting your HAC definition, it is important to choose a definition 

associated with a high predictive value to avoid misclassifying patients and introducing 

information bias. Information bias can result in underestimated or overestimated effects, 

depending on the magnitude and whether the bias is the same for patients with and without 

HACs (Delgado-Rodriguez, 2004). CMS maintains updated HAC definitions on its website 

and are a good place to start when defining your outcome (Centers for Medicare and 

Medicaid Services, 2018b). 

COVARIATE SELECTION 

The last step in preparing your model is defining your covariates, or individual patient risk 

factors, associated with having both a hospital stay and acquiring an HAC. When defining 

covariates, it is important to measure covariates prior to the exposure event. In the field of 

Epidemiology, the period used to measure covariates is referred to as the lookback period. 

The length of the lookback period depends on the amount of data that you have available 

and the specific goal of the model. Long lookback periods will help ensure that you are 

capturing a complete picture of a patient’s medical history, but long periods also might limit 
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your population if you require continuous enrollment as an inclusion criterion. Preen et al. 

(2006) found that longer lookback periods (longer than one year) were associated with 

better model fit compared to shorter lookback periods when modeling hospital re-admission 

events. To examine the impact of the lookback period on your results, you might want to 

select two different lookback periods and examine the effect on the results depending on 

the period selected. See Figure 2 for an example of the timeline of events associated with 

the initial model build.  

 

Figure 2. Conceptual Framework of Study Design 

Covariates can be defined as continuous, categorical, or as an interaction between two 

different covariates. In health-care settings, covariates often consist of patient 

demographics, health-care utilization rates, and comorbidities (based on ICD-CM diagnostic 

codes or procedure codes). Covariate selection depends on your outcome and the quality of 

the data. For example, if you want to prevent catheter-associated urinary tract infections, 

you might want to include history of prior catheterization as one of the covariates in the 

model. In addition, if you know that a given field is not well captured in your data, you 

might want to exclude it from your model. See Table 1 for a list of the covariates used in 

the following example HAC model. 

Table 1. Outcome and Covariate Definitions in the HAC Example Model 

Outcome Definition Type Value 

HAC Hospital-Acquired 

Condition 

Categorical 0 = No HAC, 1 = HAC 

Covariate Definition Type Value 

Gender Patient Gender Categorical 1 = Male, 0 = Female 

AgeCat1 Patient Age 

Category 

Categorical Patients between the ages of 0–18 

(reference) 

AgeCat2 Patient Age 

Category 

Categorical Patients between the ages of 19–35 

AgeCat3 Patient Age 

Category 

Categorical Patients between the ages of 36–64 

AgeCat4 Patient Age 

Category 

Categorical Patients 65 years and older 

PriorHosp Prior 

Hospitalizations 

Categorical 1 = Prior hospitalization in the last 60 

days, 0 = No prior hospitalizations in the 

last 60 days 
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Comorbida Number of 

Comorbidities 

Numeric 0–30 

PriorOutPt Prior Outpatient 

Visits 

Categorical 1 = Prior outpatient visit in the last 60 

days, 0 = No prior outpatient visit in the 

last 60 days  

FrailtyIndexb Frailty Index 

Score 

Numeric 0–10 

a Comorbidities are a measure of the number of chronic diseases diagnosed during the 

lookback period (for example, the Charlson Index) (Valderas et al., 2009).  

b Frailty is defined by one’s ability to complete activities of daily living. For an example of a 

frailty index using health-care claims data, see the article by Faurot et al. (2015).  

 

BUILDING THE MODEL 

OVERVIEW OF PROC LOGISTIC AND THE HAC MODEL 

PROC LOGISTIC is a SAS procedure that models the probability of a binary outcome given a 

set of covariates using logistic regression models and maximum likelihood estimation (SAS 

Institute Inc., 2018). The procedure identifies which covariates are associated with highest 

probability of the outcome. PROC LOGISTIC offers a wide variety of functions, but the 

following example shows how you can use the procedure to predict the probability that a 

patient develops an HAC during a hospital stay. Refer to Table 1 for an explanation of the 

data elements included in the HAC model. The following demonstrates the equation modeled 

using PROC LOGISTIC: 

Logit P(HAC=1|X) = α + β1GENDER + β2PRIORHOSP + β3COMORBID + β4PRIOROUTPT + 

β5FRAILTYINDEX + ∑ (β2AGECAT – β4AGECAT) 

DATA PREPARATION 

By default, PROC LOGISTIC assumes that you are modeling the probability that an outcome 

event has not occurred (for example, the probability that HAC = 0). To override this 

function, you can use the DESCENDING statement to tell SAS to model the probability that 

the outcome has occurred (for example, the probability that HAC = 1). If one of your 

covariates is categorical with more than two levels, consider creating dummy variables to 

separate out the effects of these categorical differences and thus avoid the assumption of 

an ordinal relationship. The formula for calculating the number of dummy variables to 

include is (number of response levels) – 1 (Polissar and Diehr, 1982). For example, if your 

covariate has four response levels, you would create three dummy variables. The reference 

response level would not have a dummy variable. Often the category with the largest 

number of observations is used as the referent level (Polissar and Diehr, 1982). If you want 

to avoid creating dummy variables, the CLASS and PARAM=REF statements can be used to 

set the reference criteria for a categorical variable. The choice between using the CLASS 

statement versus creating dummy variables depends on how your data is structured. If your 

data is already separated into dummy variables, then you can leave the data as is when 

entering it into the model. However, if categorical variables are present you can use the 

CLASS statement to avoid having to create new variables.  

Prior to building your model it is important to examine the frequency distribution of the 

outcome and covariates in your population. If the outcome that you are modeling is rare, 

you can use the EXACT or FIRTH option in PROC LOGISTIC to help minimize potential bias in 
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the results (Heinze, G. 2006; SAS Institute Inc., 2018). If patients are missing data for any 

covariates included in the model, these patients will be excluded from the logistic model. If 

you believe that the data is not missing at random (for example, there is a difference 

between patients who have complete data and those who have missing values), failure to 

account for missing data can result in biased results (Sterne et al., 2009). If you find that 

data is missing for some of your covariates, multiple imputation strategies exist for 

computing missing values (Sterne et al., 2009).  

Lastly, to validate your final model, it is necessary to divide the data into two distinct 

samples: training and testing. Separating your cohort into training and testing samples will 

allow you to test your final model in two distinct unbiased populations. Commonly, a 75:25 

ratio is used to split the data, with 75% of the data assigned to the training sample and the 

other 25% assigned to the testing sample (Giancristofaro and Salmaso, 2007). The testing 

data is used to validate whether the model identified in the training cohort can accurately 

predict patients who acquire an HAC in an independent population. Sample code for 

randomly dividing data into training and testing samples is provided below: 

   DATA temp; 

     SET HAC_data; 

     N=RANUNI(); 

   RUN; 

   PROC SORT DATA=temp; 

     BY N; 

   RUN; 

   DATA training testing; 

     SET temp NOBS=NOBS; 

     IF _N_<=.75*NOBS THEN OUTPUT training; 

       ELSE OUTPUT testing; 

   RUN; 

OUTPUT RESULTS 

The output of PROC LOGISTIC can be used to determine if a covariate has a significant 

association with the outcome event. PROC LOGISTIC provides p-values, odds ratios, and 

95% confidence intervals for each covariate included in the model. These three measures 

can be used to determine whether a given covariate is significantly associated with the 

outcome. P-values represent the probability that the observed association between a 

covariate and the outcome is false. A small p-value (typically anything <0.05) indicates a 

small probability of a false association, so it is reasonable to conclude that the association 

between covariate and outcome is a true association. However, p-values are subject to 

random error and fail to provide information related to the precision of the estimate (Poole, 

2001). Therefore, it is important to also consider 95% confidence intervals in addition to p-

values when examining the results. The width of confidence intervals (ratio between the 

upper and lower confidence interval) can be used to determine the precision of the 

association. Smaller confidence intervals indicate a higher level of precision (Poole, 2001). 

Lastly, odds ratios are useful for describing the magnitude and direction of the association 

between covariates and the outcome. An odds ratio of 1 indicates that the odds of having an 

HAC are null (for example, there is no difference in the odds of the event whether a given 

risk factor is present). An odds ratio greater than 1 denotes higher odds of the outcome, 

while less than 1 indicates lower odds, all things being equal. The EXPB or ODDSRATIO 
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options in PROC LOGISTIC can be used to tell SAS to output the odds ratios from the final 

model. See Table 2 for an example of PROC LOGISTIC output and how you would interpret 

the odds ratio results.  

Table 2. Interpretation of Logistic Regression Results 

Covariate Odds 

Ratio 

95% 

Confidence 

Interval 

Confidence 

Interval 

Ratioa 

Pr > 

Chisqb 

Interpretation of Results 

Gender       

(1 versus 0) 

3.014 2.732, 4.885 1.8 0.0023 Males have 3 times the odds 

of having an HAC event 

compared to females. 

AgeCat1      

(1 versus 0) 

reference reference   reference 

AgeCat2      

(1 versus 0) 

1.110 0.893, 5.476 6.13 0.9832 There is no difference in the 

odds for having an HAC for 

patients between the ages 

of 19-35 compared to 

patients between the ages 

of 0-18.   

AgeCat3     

(1 versus 0) 

0.985 0.752, 3.001 3.99 0.7632 There is no difference in the 

odds for having an HAC for 

patients between the ages 

of 36-64 compared to 

patients between the ages 

of 0-18.   

AgeCat4     

(1 versus 0) 

2.189 1.980, 2.236 1.13 0.0012 Patients over the age of 65 

have 2 times the odds of 

having an HAC event 

compared to patients 

between the ages of 0-18. 

PriorHosp 

(ref=0) 

6.134 0.012, 1.902  159 0.0678 Patients who have at least 

one hospital visit in the last 

60 days have 6 times the 

odds of having an HAC 

compared to patients 

without prior 

hospitalizations in the last 

60 days. 

Comorbidc 

(ref=0) 

4.698 3.276, 5.001 1.53 0.0200 Each comorbidity in the last 

60 days was associated with 

a 370% increase in the odds 

of having an HAC compared 

to patients who did not have 

a history of any 

comorbidities. 

PriorOutPt 

(ref=0) 

2.987 1.236, 5.098 4.12 0.7891 Patients who have at least 

one outpatient visit in the 

last 60 days have nearly 3 
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times the odds of having an 

HAC compared to patients 

without prior outpatient 

visits.  

FrailtyIndex 

(ref=0) 

1.083 0.341, 0.659 1.93 0.5612 There is no association 

between history of being 

frail and having an HAC 

event. 

aThe confidence interval ratio is not provided in the PROC LOGISTIC output. It was calculated by 

dividing the upper confidence interval by the lower confidence interval.  

b P-value 

c Since comorbidities is a continuous variable the odds is associated with a one-unit increase in 

the number of comorbidities.   

 

Based on the results in Table 2, the following covariates would be considered as having a 

statistically significant association with having an HAC: Gender (Male), AgeCat4 (over the 

age of 65), and Comorbid (history of comorbidity conditions). Prior hospitalizations 

appeared to be close to the statistically significant cut-off of 0.05; however, the confidence 

interval ratio tells you that the association is not precise.   

BUILDING THE INITITAL MODEL USING TRAINING DATA 

Now that you have identified the model criteria, it is time to build the model. PROC 

LOGISTIC provides you the option to manually add covariates, or you can use one of the 

following automated covariate selection tools: stepwise selection, backward selection, or 

forward selection. If you choose to use one of the three automated approaches, PROC 

LOGISTIC provides you the option of specifying the p-value that is used to define 

significance. The function SLENTRY allows you to specify the p-value for determining 

whether a covariate gets added to the model, and the function SLSTAY allows you to specify 

the p-value for determining whether a covariate remains in the model (SAS Institute Inc., 

2018). By default, the cut-off criteria for determining significance is 0.05, but depending on 

your sample size you might want to adjust this level. If your sample size is large, you might 

want to consider lowering the significance level below 0.05 to reduce the likelihood that the 

association is due to chance (Sullivan and Feinn, 2012).  

In our example, stepwise selection was used to identify significant covariates associated 

with developing an HAC in the testing model. The stepwise selection process works by 

adding covariates individually to the model and examining whether the addition significantly 

improves model fit based on the p-value assigned in the SLENTRY criteria. The difference 

between stepwise selection and forward selection is that stepwise selection allows fields to 

be removed once they are added to the model if the effect is no longer significant (SAS 

Institute Inc., 2018). The result is a final model that only includes covariates significantly 

associated with the outcome. If you are interested in seeing the steps used to build the final 

model, the DETAILS function can be used to show the selection process. To verify the fit of 

the final model, the area under the curve (AUC) value, or C-statistic, can help you 

determine if the model has a high probability for distinguishing between patients who had 

an HAC event. Higher C-statistics indicate better discrimination. A C-statistic value of 1 

indicates that a model can perfectly predict which patients had an HAC (Giancristofaro and 

Salmaso, 2007). The AUC plot can be obtained from PROC LOGISTIC using ODS Graphics 

and the following option: PLOTS(ONLY)=(ROC(ID=OBS)). Hosmer-Lemeshow chi-square 

values can be used as a measure of bias to examine if model-predicted events match the 
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observed events (Giancristofaro and Salmaso, 2007). The LACKFIT option tells SAS to 

generate the Hosmer-Lemeshow test results. Higher p-values indicate that the model is a 

good fit (for example, expected values are close to the observed values). 

OPERATIONALIZING THE FINAL MODEL 

Once you identify the final model in the training data, the last step is to validate the model’s 

out of sample accuracy in the testing cohort. The SCORE statement retains the input data 

and the predicted probabilities associated with the training model and applies them to the 

testing model. The OUTPUT statement saves the fitted model of the training data, so it can 

be applied to the testing data. To assess the accuracy of the trained model on the test data, 

examine how well the trained model correctly predicts whether someone had an HAC event 

using the output from the SCORE statement. If the model was a good fit, the model will 

have a high probability of correctly assisinging a patient a HAC status.   

The following is example code for building and validating the model using stepwise 

selection: 

   ODS GRAPHICS ON; 

   PROC LOGISTIC DATA=Training PLOTS(ONLY)=(ROC(ID=OBS)) DESCENDING; 

   MODEL HAC = Gender Agecat2 Agecat3 Agecat4 Priorhosp Comorbid Prioroutpt 

Frailtyindex / 

SELECTION=STEPWISE  

DETAILS 

LACKFIT; 

   OUTPUT OUT=TrainedModel PREDPROBS=INDIVIDUAL; 

   SCORE DATA=Testing OUT=TestModel; 

   RUN; 

   ODS GRAPHICS OFF; 

ASSIGNING RISK SCORES 

Once the final model has been validated in the testing cohort, the intercept and beta 

coefficients from this final model can be used to calculate patient risk scores for developing 

an HAC. The formula for calculating a patient’s risk score is described below (Pavlou et al., 

2015): 

Patient risk score= α (model intercept) + β1*(patient factor) + β2*(patient factor) + 

β3*(patient factor) + etc.  

Risk of having the outcome =  
exp(𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒)

(1+exp(𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒))
∗ 100  

 

Table 3: Example Results from Final Model 

Field Beta Coefficient 

Model Intercept -3.215 

Gender 1.356 

AgeCat4  0.875 
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Comorbid 0.762 

 

For example, based on the beta coefficients from the example HAC model in Table 3, a 

patient’s risk score would be defined as follows: (-3.215) + 1.356*(patient gender, 1 or 0) 

+ 0.875*(AgeCat4, 1 or 0) + 0.762*(number of comorbidities). Since we used females as 

the reference in the model, female patients would be assigned a value of 0, and male 

patients would be assigned a value of 1. Similarly, patients over the age of 65 would be 

assigned a value of 1, and since comorbidities was a continuous variable, values for 

comorbidity could range 0-30.  

Patients estimated to have a high probability of developing HAC events will have values 

closer to 100%, and patients with values closer to zero have a small probability of 

developing an HAC.   

CONCLUSION 

Preventing HACs can help improve patient quality of care, reduce hospital costs, and 

ultimately increase patients’ recovery time during hospital stays. Once the initial model is 

developed and validated, the HAC risk score can be considered as a tool for supplementing 

clinical decisions in hospital settings. Embedding the risk score algorithm into hospital 

admitting systems can provide information at the time of admission on the patient’s risk for 

developing a HAC during the hospital stay, providing data-driven early warning of 

potentially preventable events. Hospital clinicians and administrators can use the HAC risk 

scores to facilitate and justify the application of evidence-based prevention strategies. A 

phased approach – in which pilot programs of the HAC risk score are conducted before full 

roll-out - is crucial to determining operational utility, feasibility of deployment, and clinician 

acceptance. 

Risk scores, such as the HAC model, require integrated health data systems to have pre-

admission patient data readily available to hospitals. As health data integration continues to 

expand, it is important to be prepared with valid and reliable analytic approaches to avoid 

inappropriate or misinformed data mining. The approach described here enables 

determination of a population-specific HAC risk model to maximize validity for your 

population of interest and includes a testing strategy to verify and quantify reliability.   
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