
1

Paper 3099-2019

Find a Function Root By Genetic Algorithm

Xia Ke Shan, iFRE Inc., Beijing, China

Kurt Bremser, Allianz Technology GmbH, Austria (Presenter)

ABSTRACT

There are many algorithms which are able to find a function root. Like well-known Newton method,
Brent’s numerical root-finding method … etc . But all these algorithms are calculus-based techniques,
and need object function was continuous or differential , and need a good start point to search. Whereas,
Genetic Algorithm doesn’t need to consider these problems, just give it a pretty wide searching interval
and see if the value of object function is near zero. This paper is trying to use Genetic Algorithm to find
out a function root and displays its power.

INTRODUCTION

The Genetic Algorithms are under SAS/IML® module. Genetic Algorithms are very powerful. GAs are a
family of searching algorithms that could be applied to solve any optimization problems (find out a
function root also could be corresponding to a optimization problem). GAs principle are more like natural
selection and evolution (i.e. survival of the fitness theory). GAs are especially useful for the objective
function which is not differentiable or continuous. GAs require more computation resource and time than
other calculus-based techniques. GAs are not random searching algorithms due to its ability of keeping
the gene of best members into next generation. That means it have a pretty much convergent speed,
especially for real-valued encoding.

GAs have the following basic steps (it is taken from IML documentation):

1) Encoding: The general structure and form of the solution.

2) Objective: The function to be optimized. IML also enables you to specify whether the function is to be
minimized or maximized.

3) Selection: How members of the current solution population will be chosen to be parents to propagate
the next generation.

4) Crossover: How the attributes of parent solutions will be combined to produce new offspring solutions.

5) Mutation: How random variation will be introduced into the new offspring solutions to maintain genetic
diversity.

6) Repeated from 2): When reach the max iterative number, and exit GA .

WHAT IS A FUNCTION ROOT

Suppose we have a function, we put everything at left side of equal symbol, and put zero at the right side
of equal symbol, if we can find a solution to satisfy that form function, and then we can say we find a root
for that function. Take for example : we have a function like x2 =4 and transform it like x2 -4=0 (i.e.
f(x)=0). If we can find a x0 to satisfy f(x0)=0 ,then we can say x0 is a root of f(x) . For this case, x0=2 and
x0=-2 both are the root of f(x) .

WHY TO USE GENETIC ALGORITHM

In SAS/IML, there are two functions FROOT() and POLYROOT () which can be used to find out a
function’s root. Why would we need Genetic Algorithm to solve such problem? The reasons are:

1) GA can handle the function which is not differentiable or continuous, whereas FROOT() can’t handle
such function.

2) FROOT() must offer a good start point to search root. E.g. you must specify a special interval [a , b]
which could make f(a)*f(b) < 0 . whereas GA don’t need to consider about it , just specify a very wide

2

interval(which would contain a root) like [-10 , 10] , and see whether the object function value is near
zero (every small like 1e-6).

3) If you have a hundred, a thousand of functions need to look for a root . FROOT() almost couldn’t
accomplish such task due to need to specify a good start point.

4) POLYROOT () is only applied to find the roots of a real polynomial.

EXAMPLE

Suppose f(x) = ((0.3-x)*2 / (1+x)2) - 48 , It is obvious that x0=-1 is not a differential point(i.e. (1+x)2=0
) . You cannot use FROOT() for this case unless you define a good interval [a , b] which could make
f(a)*f(b) < 0 . let’s see what it looks like :

proc iml;

/* Define a object function */

start func(x);

 v= (0.3-x)#2/(1+x)##2 - 48 ;

 return (v);

finish;

x= do(-3,-1.11,0.01)||{.}||do(-0.9,1,0.01);

y=func(x);

call series x=x y=y other="refline 0/axis=y";

quit;

Figure 1. f(x) = ((0.3-x)*2 / (1+x)2) - 48

Let’s see how to use FROOT() to find a root:

3

proc iml;

/* Define a object function */

start func(x);

 v= (0.3-x)#2/(1+x)##2 - 48 ;

 return (v);

finish;

bounds = {-1.5 -1.1,

 -0.9 -0.5 };

fBounds = Func(bounds[,1]) || Func(bounds[,2]);

roots = froot("Func", bounds);

print roots;

quit;

roots

-1.254501

-0.787165

Output 1. Output from IML Statement of FROOT()

Let’s see how to use GA to find a root.

Finding a root of function could be corresponding to a optimization problem, just add absolute value on
f(x). So the optimization problem of finding a function root could be expressed as :

MIN |f(x)|

As long as |f(x)| is near zero , we can say we find a root of function. As you can see the value of objection
function is 7.105E-15 , which means it is very small(near zero), so we can say we found a function root -
1.254501 that is the same as function FROOT() does. You also notice that we just define a very wide
range [-10,10] ,not like FROOT() need to consider f(a)*f(b) < 0 and consider if there is a uncontinuous
point in the searching interval. Of course, we can define another interval to get another root. This example
is just showed how easy to use for GA and how powerful for GA. More details check the annotation in the
following code.

proc iml;

/*Define a object function. NOTE: Add an ABS()on f(x)*/

start func(x);

 v=abs((0.3-x)#2/(1+x)##2 - 48);

 return (v);

finish;

/*The first 1 means fixed-length real encoding. since there is only one

parameter X (fixed-length) in object function and searching interval is

continuous for X (real)*/

/*The second 1 means the size of encoding. since there is only one

parameter X in object function */

/* 1234 is initial random seed*/

id=gasetup(1,1,1234);

/*id is what returned from gasetup()*/

/* 0 means minimize user module*/

/* “func” is user module we define above*/

call gasetobj(id,0,"func");

/* 100 is selecting the best 100 members into next generation*/

/* 1 is dual tournament selective method*/

4

/* 0.95 is selective pressure. The member with the best objective value is

chosen with a Probability 0.95 */

call gasetsel(id,100,1,0.95);

/* 0.05 is crossover probability. For real encoding I recommend to use a

small value to avoid to leak out the best member*/

/* 4 define a kind of crossover method – heurisitic */

call gasetcro(id,0.05,4);

/* 0.05 is mutation probability. Use the default mutation method -

uniform*/

call gasetmut(id,0.05);

/*Initial population size is 10000 members. Range is [-10,10]*/

call gainit(id,10000,{-10,10});

niter = 100; /* The number of iterations*/

summary = j(niter,2);

mattrib summary [c = {"Min Value", "Avg Value"} l=""];

do i = 1 to niter;

/*Get the next generation*/

 call garegen(id);

/*Get the value of Objection function */

 call gagetval(value, id);

/*Get the best value of Objection function of this generation*/

summary[i,1] = value[1];

/*Get the average value of Objection function of this generation*/

summary[i,2] = value[:];

end;

/*Get the best member X and the best value of object function*/

call gagetmem(mem, value, id, 1);

print mem[l="ROOT:"],

 "Min Value: " value[l = ""] ;

iteration = t(1:niter);

print iteration summary;

call gaend(id);

quit;

ROOT:

-1.254501

Min Value: 7.105E-15

Iteration MinValue AvgValue

…………………………

95 7.105E-15 12.584355

96 7.105E-15 3.1274638

97 7.105E-15 3.1356642

98 7.105E-15 3.379379

99 7.105E-15 4.092118

100 7.105E-15 3.2699371

Output 2. Output from IML Statement of GA

5

CONCLUSION

Beyond traditional calculus-based techniques, the Genetic Algorithms have itself qualities for the problem
of looking for a function root. When you meet a problem that traditional method can’t solve, consider
using Genetic Algorithms.

REFERENCES

SAS Institution Inc.2014. SAS/IML® 13.2 User’s Guide. Cary, NC: SAS Institute Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Xia Ke Shan
iFRE Inc.
Beijing, China
Phone: +8613521225927
E-mail: 12135835@qq.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

