
1

Paper 3094-2019

The Essentials of SAS® Dates and Times

Derek Morgan, PAREXEL International, Billerica, MA

ABSTRACT

The first thing you need to know is that SAS® software stores dates and times as numbers.

However, this is not the only thing that you need to know. This presentation gives you a

solid base for working with dates and times in SAS. It introduces you to functions and

features that enable you to manipulate your dates and times with surprising flexibility. This

paper shows you some of the possible pitfalls with dates (and times and datetimes) in your

SAS code and how to avoid them. We show you how SAS handles dates and times through

examples, including the ISO 8601 formats and informats and how to use dates and times in

TITLE and FOOTNOTE statements. The presentation closes with a brief discussion of Excel

conversions.

INTRODUCTION

Dates are counted in days from a zero point of January 1, 1960. Times are counted in

seconds from a zero point of midnight of the current day, and datetimes are counted in

seconds since midnight, January 1, 1960. Each day that passes increments the day counter

by one, and each second that passes increments the time and datetime counters by one.

This makes it easy to calculate durations in days and seconds via simple subtraction. Then it

is a matter of dividing by the appropriate value to get the duration in regular time intervals

(such as hours or minutes,) or using a SAS function to obtain durations in irregularly spaced

time intervals (such as months or years.)

HOW DO WE TELL SAS ABOUT A SPECIFIC DATE?

Unfortunately, most of our references to dates and times do not use the lowest common

denominator of days and seconds, respectively, and they certainly don't use January 1,

1960, and midnight as their central reference points. That is where the first problem comes

up: how to get SAS to speak about dates and times the way we do. How do you tell SAS

that the date is January 14, 1967? Sample Code 1 may seem instinctive, but it won't get

you very far:

date = 'January 14, 1967';

Sample Code 1: This is NOT Correct.

Depending on the context, if you try Sample Code 1, you will get an error message telling

you that you tried to put characters into a numeric value, or you will get a character

variable with the words, "January 14, 1967" stored in it. It may look okay, but if you try to

do a calculation using that character variable, you will get a missing value, as Example 1

shows:

DATA _NULL_;

date1 = 'January 14, 1967';

date2 = 'September 4, 2014';

days_in_between = date2 - date1;

PUT days_in_between = ;

RUN;

2

These are the NOTEs you would get in the SAS log.

NOTE: Character values have been converted to numeric values at the

places given by: (Line):(Column). 19 4:27

NOTE: Invalid numeric data, date2='September 4, 2014' , at line 4

column 19.

NOTE: Invalid numeric data, date1='January 14, 1967' , at line 4 column

27.

days_in_between = •  (the dreaded missing value dot)

Example 1: What Happens When You Try to Use a Character Value as a Date

In order to tell SAS about a specific date, you use a SAS "date literal." The date literals for

the two dates above are "14JAN1967"d and "04SEP2014"d. The letter "d" at the end tells

SAS that this is a date, not a string of characters. When we make the change in the code,

we get the result in Example 2:

DATA _NULL_;

date1 = "14jan1967"d;

date2 = "04sep2014"d;

days_in_between = date2 - date1;

PUT days_in_between = ;

RUN;

days_in_between=17400

Example 2: Using SAS Date Literals

No part of the date literal is case-sensitive, that is, you can use all capital letters, all lower-

case, or mixed case for the date inside the quotes and the 'd' can be upper or lower-case.

You may use single or double quotes to enclose the literal string, but if you use double

quotes, you will be subject to macro variable resolution, which means that an ampersand

(&) may cause unexpected results. Time and datetime literals are expressed in a similar

fashion; however, instead of the letter "d", they are followed by the letter "t" for time, or

the letters "dt" for datetimes. Time literals are expressed with a twenty-four hour clock in

the form "05:00:00"t, and datetime literals are expressed as "04sep2017:05:00:00"dt.

SAVING SPACE BY SHRINKING VARIABLE LENGTHS

While SAS has a default length of eight for numeric variables, you can save space by

defining smaller lengths for dates, times, and datetimes. Dates can be stored in a length of

four. Times can be stored in a length of four, unless you need decimal fractions of seconds;

then you would use eight for maximum precision. Datetimes can safely be stored in a length

of six, unless you need decimal fractions of seconds, in which case you would again use

eight. Why can't you go any lower? Example 3 demonstrates:

3

DATA date_length;

LENGTH len3 3 len4 4 len5 5;

len3 = "02AUG2006"d + 2;

len4 = len3;

len5 = len3;

FORMAT len3 len4 len5 mmddyy10.;

RUN;

Now let's look at our data set:

Example 3: Shrinking Date Variables Too Much

You can see that the value of len3 is wrong. Some precision was lost when the numeric date

value was written to the dataset. Do not have this happen to you.

HISTORICAL DATES

SAS can go all the way back to January 1, 1582, so you will likely be able to work with

historical dates. However, historical dates have the potential to produce incorrect values in

SAS. You may not get a missing value, but make sure that you check your century. The

YEARCUTOFF option gives you the capability to define a 100-year range for two-digit year

values. The default value for the YEARCUTOFF option in version 9.4 of SAS is 1926, giving

you a range of 1926-2025. Let's demonstrate with Example 4, using date literals:

OPTIONS YEARCUTOFF=1926; /* SAS System default */

DATA yearcutoff1;

yearcutoff = "SAS System Default: 1926";

date1 = "08AUG06"d;

date2 = "15JUN48"d;

date3 = "04jan69"d;

RUN;

OPTIONS YEARCUTOFF=1840;

DATA yearcutoff2;

yearcutoff = "1840";

date1 = "08AUG06"d;

date2 = "15JUN48"d;

date3 = "04jan69"d;

RUN;

YEARCUTOFF
value

date1
literal

date1 Value
in SAS

date2
literal

date2 Value
in SAS

date3
literal

date3 Value
in SAS

1926 08AUG06 08/08/2006 15JUN48 06/15/1948 04JAN69 01/04/1969

1840 08AUG06 08/08/1906 15JUN48 06/15/1848 04JAN69 01/04/1869

Example 4: Effects of the YEARCUTOFF= Option on Identical Date Strings

As you can see, identical date literals can give you completely different results based on the

value of this option. Any two-digit year that SAS has to translate, whether it is from a date

literal as shown in the above example, an ASCII file being processed with the INPUT

statement and an informat or even the INPUT() function and an informat will be affected by

this option. However, dates that are already stored as SAS dates are NOT affected by this

4

option. SAS dates are simply stored as the number of days from January 1, 1960, and so

the two-digit vs. four-digit year doesn't matter. The lesson here is to check your dates

before and after processing.

FORMATS AND TRANSLATING SAS DATES

Since SAS keeps track of dates and times (and datetimes) as numbers relative to some

fixed point in time, how do we get SAS to show us its dates in ways that we understand,

and how can we communicate our dates to SAS? Formats are the way that SAS can

translate what it understands into something that we can understand, while informats do

the reverse. So how can this built-in translation fail?

First, you need to make sure you are using the correct format or informat for your data, and

the type of data you are working with. Do not try to use a date format to print out a

datetime value, or use a time format to print out a date. SAS stores dates, times, and

datetimes as numbers, but it does not store any context information with it. Unfortunately,

this means that if it is not clear what the value represents to you, SAS will not be of much

help directly. (You can make an educated guess based on the maximum values and ranges

of the variables involved, but that method is not foolproof, and it would be data-

dependent.) Example 5, uses a date value representing August 8, 2014, a time value of

11:43 AM, and a datetime value of 3:52:07 PM on January 25, 2015, and displays them

using several formats.

 Date Formats Time Format Datetime Formats

Variable
Type

Value in
SAS

Using
MMDDYY10.

format

Using
MONYY7
. format

Using
TIMEAMPM11

. format

Using
DTMONYY7.

format

Using DATETIME19.
format

Date 19943 08/08/2014 AUG2014 5:32:23 AM JAN1960 01JAN1960:05:32:23

Time 42180 06/26/2075 JUN2075 11:43:00 AM JAN1960 01JAN1960:11:43:00

Datetime 1737820327 ********** ******* 3:52:07 PM JAN2015 25JAN2015:15:52:07

Example 5: The Importance of Context When Using Formats with SAS Date and

Time Values

The first thing you should notice is that the datetime value gives you several asterisks when

you try to format it as a date. The date represented by the value 1,737,820,327 is so far in

the future that it cannot be represented by a four-digit year, but that is the only blatant

indication that something's not quite right. Why is there a discrepancy on the others? When

you try to translate a date value with a time format, you are translating days since January

1, 1960 using something designed to translate seconds since midnight. 19,943 seconds

after midnight is 5:32:23 in the morning. If you translate 19,943 as seconds after midnight

of January 1, 1960, which is the definition of a datetime, you get 5:32:23 AM on January 1,

1960. Similarly, if you translate 42,180 as days since January 1, 1960, you get June 26,

2075. Finally, note the cell in italics. There is absolutely nothing to indicate that something

is wrong here. Why do we get a normal-looking time? The TIMEAMPM. format gives times

from 12:00 AM to 11:59 PM, so any value greater than 86,400 (the number of seconds in a

day) just cycles into the next day. Therefore, you are getting the result of the calculation

MOD(1737820327,86400), which is 57,127, and translates into a time of 3:52:07 PM using

the time scale of seconds after midnight.

NEED A FORMAT FOR YOUR DATE?

Although there are many formats built into SAS, you may find yourself in a position where

you cannot find a format that displays your date, time, or datetime the way you want. Don't

panic. You can create and use a custom format to show off your dates. There are two ways

to do this and they both require using the FORMAT procedure. The first way uses the VALUE

5

statement. You define a range for the values using date, time, or datetime constants, and

then you can tell SAS what to print out instead of the date. Sample Code 2 creates a format

to display whether a contract is scheduled for arbitration or renegotiation

1 PROC FORMAT;

2 VALUE contrct

3 LOW-'15nov2013'd="EXPIRED"

4 '16NOV2013'd-'15nov2014'd="RENEGOTIATION"

5 '16NOV2014'd - '15nov2016'd = "ARBITRATION"

6 '16nov2016'd-high=[MONYY7.]; /* INSTRUCTS SAS TO USE THE MONYY7.

 FORMAT FOR VALUES BEYOND NOVEMBER

 16, 2016 */

7 RUN;

Sample Code 2: Creating a Format to Display Text Instead of a Date

This is a look at a few records of the raw data:

Contract Number Expiration Date

5829014 11/06/2013

9330471 09/21/2015

6051271 04/11/2015

Instead of printing the date for the variable EXP_DATE, our format classifies the date values

and translates them into categorical text. We are going to reformat the display of the raw

date as well. Using aliases in the COLUMNS statement below, Example 6 shows how to turn

these two columns from the dataset we create into an ordered list by date using differing

formats:

PROC REPORT DATA=contracts NOWD;

COLUMNS exp_date_raw contract_num exp_date_raw=exp_date

exp_date_raw=exp_date_disp;

DEFINE exp_date_raw / NOPRINT ORDER;

DEFINE contract_num / "Contract Number";

DEFINE exp_date / FORMAT=contrct. "Negotiation Status at End-of-Term";

DEFINE exp_date_disp / FORMAT=worddate. "Expiration Date";

RUN;

Contract
Number

Negotiation Status at
End-of-Term Expiration Date

5829014 EXPIRED November 6, 2013

2301911 RENEGOTIATION January 23, 2014

1540956 ARBITRATION December 1, 2014

6051271 ARBITRATION April 11, 2015

9330471 ARBITRATION September 21, 2015

6894300 ARBITRATION August 21, 2016

7465502 NOV2016 November 18, 2016

Example 6: Custom Format Using the VALUE Statement

6

So where can you go wrong here? Several places, actually. Let's examine Sample Code 2:

1 PROC FORMAT;

2 VALUE contrct

3 LOW-'15nov2013'd="EXPIRED"

4 '16NOV2013'd-'15nov2014'd="RENEGOTIATION"

5 '16NOV2014'd - '15nov2016'd = "ARBITRATION"

6 '16nov2016'd-high=[MONYY7.]; /* INSTRUCTS SAS TO USE THE MONYY7.

 FORMAT FOR VALUES BEYOND NOVEMBER

 16, 2016 */

7 RUN;

If you forget the "d" to use a date constant, you will get an error in lines 3-6. Line 3 uses

the special value "LOW". Without it, any date before November 16, 2013, would display as

the actual SAS numeric value. Similarly, line 6 accounts for dates in the future by using the

special value "HIGH". We tell SAS to use one of its own date formats if the date is after

November 16, 2016 by enclosing a format name in brackets after the equal sign. Without

that, there would be no format associated with SAS date values after November 16, and

only the number of days since January 1, 1960 would be displayed.

PRETTY AS A PICTURE

The second way to create your own format for your date, time, or datetime is with a picture

format. Picture formats allow you to describe what you want your date to look like. Special

formatting directives allow you to represent dates, times and datetime values, and are

case-sensitive. You will also need to use the DATATYPE= option in your PICTURE

statement. DATATYPE is DATE, TIME, or DATETIME to indicate the type of value you are

formatting. Table 1 lists the directives:

%a Locale's abbreviated weekday name.

%A Locale's full weekday name.

%b Locale's abbreviated month name.

%B Locale's full month name.

%d Day of the month as a decimal number
(1-31), with no leading zero. Put a zero
between the percent sign and the "d" to
have a leading zero in the display.

%H Hour (24-hour clock) as a decimal
number (0-23), with no leading zero. Put
a zero between the percent sign and the
"H" to have a leading zero in the display.

%I Hour (12-hour clock) as a decimal

number (1-12), with no leading zero. Put
a zero between the percent sign and the
"I" to have a leading zero in the display.

%j Day of the year as a decimal number (1-
366), with no leading zero. Put a zero
between the percent sign and the "j" to
have a leading zero in the display.

%m Month as a decimal number (1-12), with
no leading zero. Put a zero between the
percent sign and the "m" to have a

leading zero in the display.

%M Minute as a decimal number (0-59),
with no leading zero. Put a zero
between the percent sign and the "M"

to have a leading zero in the display.

%p Either AM or PM.

%S Second as a decimal number (0-59),
with no leading zero. Put a zero

between the percent sign and the "S" to
have a leading zero in the display.

%U Week number of the year (Sunday as

the first day of the week) as a decimal
number (0-53), with no leading zero.
Put a zero between the percent sign
and the "U" to have a leading zero in
the display.

%w Weekday as a decimal number, where 1
is Sunday, and Saturday is 7.

%y Year without century as a decimal
number (0-99), with no leading zero.
Put a zero between the percent sign
and the "y" to have a leading zero in
the display.

%Y Year with century as a decimal number
(four-digit year).

%% The percent character (%).

Table 1: SAS Date Directives for Use with PICTURE Formats

7

Example 7 shows how to use date directives to create an enhanced date display with the

day of the year, starting with the code:

1. PROC FORMAT;
2. PICTURE xdate
3. . - .z = "No Date Given"

4. LOW - HIGH = '%B %d, %Y is day %j of %Y' (DATATYPE=DATE); 
5. RUN;

Let's look at the output for several pseudo-random dates:

SAS
Date
Value

Date Formatted
Using WORDDATE.

Date Formatted Using Custom
Format XDATE40.

Date Formatted Using
Custom Format XDATE.

WITHOUT a Length
Specification

. . No Date Given No Date Given

19703 December 11, 2013 December 11, 2013 is day 345 of 2013 December 11, 2013 is day

19724 January 1, 2014 January 1, 2014 is day 1 of 2014 January 1, 2014 is day 1

19765 February 11, 2014 February 11, 2014 is day 42 of 2014 February 11, 2014 is day

19849 May 6, 2014 May 6, 2014 is day 126 of 2014 May 6, 2014 is day 126 of

19860 May 17, 2014 May 17, 2014 is day 137 of 2014 May 17, 2014 is day 137 o

19920 July 16, 2014 July 16, 2014 is day 197 of 2014 July 16, 2014 is day 197

20033 November 6, 2014 November 6, 2014 is day 310 of 2014 November 6, 2014 is day 3

Example 7: Using the PICTURE Statement and Date Directives for a Custom Date

Format

Well, the third column is impressive. Nothing other than the XDATE format we created was

used to produce this. So where can you go wrong? First, remember that you cannot

translate date values with time or datetime formats. Since we are working with date values

here, make sure that you have defined the DATATYPE correctly (line 4 in the above code.)

Otherwise, SAS will interpret the data as seconds after midnight when DATATYPE=TIME or

seconds after midnight on January 1, 1960 if DATATYPE=DATETIME, and your result will be

spectacularly incorrect. This is the same problem (incorrect context) you have when you use

the wrong type of SAS-supplied format to translate a value you have. Second, you need to

make sure you use single quotes around your picture specification. If you do not, SAS will

attempt to translate the date directives as a macro call. Lastly, you need to use a length

specification long enough to show all of your text. The default length of a picture format is

the number of characters between the quotes in the picture specification, which is 25 in this

case. That is not long enough to accommodate all of the text in the format because each of

the format directives are only two characters long, while the values they display are much

longer than that. That is why the format length is specified for the third column. The last

column shows what you get if you do not specify any length for the XDATE. format. As you

can see, all of the values in the fourth column are truncated to 25 characters. You can also

avoid this problem by explicitly defining a default length in the PICTURE statement with the

DEFAULT= option as shown in Sample Code 3:

PROC FORMAT;

PICTURE xdate (DEFAULT=40)

Sample Code 3: The DEFAULT= Option in PROC FORMAT

The last issue is that even though the dates are displayed as text, the underlying values are

numbers, so they are right-justified in the columns. You can use style options in ODS to

solve the reporting problem, but you may find yourself with some unwanted leading spaces

if you use the formatted date in a concatenated string. However, you can easily avoid this

by using the CATX(), CATS(), or CATT() functions for string concatenation.

8

DATES IN TITLES AND FOOTNOTES

Now that we know how to dress up our dates just the way we want them, how can we show

them other than in the detail of our reports? For example, if you have a report that is run

every week, you could put the date in the title like this:

TITLE 'Date of report: March 24, 2019';

Unfortunately, that means you will be responsible for changing the code every week. You

can get around this by using one of the date and time automatic macro variables in SAS:

&SYSDATE; &SYSDATE9; &SYSDAY, &SYSTIME. They are set when the SAS job starts and

you cannot change them. Sample Code 4 demonstrates:

TITLE "Date of report: &SYSDATE9";

/* Since you are using a macro variable, you MUST have DOUBLE quotes around

the text */

Sample Code 4: Using SAS Automatic Macro Variables for Dates

If you were to run this job on March 24, 2019, this statement would put the text "Date of

report: 24MAR2019" at the top of each page. The following day, the title would be "Date of

report: 25MAR2019". That is functional, but not very appealing. None of the macro variables

is particularly appealing in their native format: &SYSTIME comes out as a 24-hour clock

value (e.g., 23:00), while &SYSDATE is the same as &SYSDATE9 with a two-digit year

(24MAR09). However, &SYSDAY will look like a proper day of the week (Tuesday).

If that's not exactly what you had in mind, don't worry. You can take advantage of formats

and display dates (and times) within your TITLEs and FOOTNOTEs exactly how you want

them to look. You can always get the current date and time from SAS using the DATE(),

TIME(), and/or DATETIME() functions. It will involve the creation of a macro variable to hold

your text, but it takes only a little macro or DATA step coding to do it. Before you put your

own date on a page, make sure that you take the default date display off your pages with

OPTIONS NODATE;.

If that's not exactly what you had in mind, don't worry. You can take advantage of formats

and display dates (and times) within your TITLEs and FOOTNOTEs exactly how you want

them to look. You can always get the current date and time from SAS using the DATE(),

TIME(), and/or DATETIME() functions. It will involve the creation of a macro variable to hold

your text, but it takes only a little macro or DATA step coding to do it. Before you put your

own date on a page, make sure that you take the default date display off your pages with

OPTIONS NODATE;. Sample Code 5 illustrates:

DATA _NULL_; /* Don't need to create a dataset */

/* Create a global macro variable called &RDATE and give it the value of

 today's date formatted with the worddate32. format. Use the STRIP()

 function to remove leading spaces or else you'll get an unwelcome

 surprise! Use CALL SYMPUTX instead of CALL SYMPUT to remove any

 trailing blanks in the macro variable. */

CALL SYMPUTX('rdate',STRIP(PUT(DATE(),worddate32.)));

RUN;

TITLE "Date of report: &rdate"; /* Don't forget DOUBLE quotes! */

Sample Code 5: Using CALL SYMPUTX() to Create a Macro Date Variable

The value of the macro variable &RDATE is "March 24, 2019", and it is left-justified, so the

title on each page will now read "Date of report: March 24, 2019". You can take this code as

written above, change the format from WORDDATE32. to whatever you need, put it into

your reports and your dates will automatically change each day they are run.

9

Next is another example of what you can do with custom formats and your TITLEs and

FOOTNOTEs. Once the format is created, this can also be done with a DATA step as shown

above. The first part of Sample Code 6 below creates a custom format named DEDATE using

the PICTURE statement.

1 PROC FORMAT;

2 PICTURE dedate

3 . - .z = "No Date Available" /* What if the date (datetime in this

 case) is missing? */

4 LOW - HIGH = '%B %d, %Y at %I:%0M %p' (DATATYPE=DATETIME)

5 ;

6 RUN;

7 /* Now use the %SYSFUNC() function to access a DATA step function in

macro language */

8 %LET rdate=%SYSFUNC(DATETIME(),dedate32.);

9 TITLE "Date of report: &rdate"; /* Don't forget DOUBLE quotes! */

Sample Code 6: Using Custom Formats with Macro Functions for Titles and

Footnotes

The FORMAT procedure uses a mixture of text and date directives to create the display. Line

3 is there in case a datetime value is missing (if you use the DATETIME() function, it will

never be missing.) Line 4 contains the date directives as well as text that will be printed

with the date directives, but the most important part of the line is the DATATYPE=

argument. This is not optional, because it tells the format what type of value to expect so

that it can be translated correctly. The value of the DATATYPE argument can be DATE,

TIME, or DATETIME. Sending the wrong type of data to a custom format will give you

incorrect results just like sending the wrong type of data to a SAS-supplied format does.

Line 9 demonstrates a nice feature of the %SYSFUNC function: you can format the result of

a call without needing to use the PUT() or PUTN() function, so you can just tell the macro

processor the format you want to use without having to nest %SYSFUNC or %QSYSFUNC

calls. You will need to specify the length of the format because its default length is only 22

(the number of characters between the quotes in line 4.) This also automatically justifies the

formatted result properly within the macro variable &RDATE without having to use the SAS

autocall macro %LEFT() to left-justify the result and store it in the macro variable &RDATE.

Our report title will now say, Date of report: March 24, 2019 at 4:08 PM (italics mine, not

actual appearance) as per the date directive in line 4. Your title will update each time you

execute the code that creates the macro variable. If you do not want the title line to update

throughout your report, make sure you only execute the code once, and do it at the

beginning of your program.

READING DATES AND TIMES AND DATETIMES

So far, all our examples have used date constants, but you cannot put a date constant

everywhere you need a date, such as in data. If you are converting text data, then you

have to use informats to read the data correctly. Depending on the source of your data, you

will need either an INPUT statement or the INPUT() function as well as an informat.

Example 8 consists of ASCII file data, the code to process it correctly, and a display of the

result:

10

10/26/2000

09/03/1998

05/14/1967

08/25/1989

07/01/2004

03/16/2001

03/16/1971

04/03/1968

09/25/1965

To read the above file, you would use the following DATA step. Note the MMDDYY10. after

the variable name SAMPLE_DATE. This is the informat, and it tells SAS how to process the

ten characters it is reading (that's what the 10 in MMDDYY10. means.)

1. DATA read_dates;
2. INFILE "a_few_dates.txt" PAD;
3. INPUT @1 sample_date :MMDDYY10.;
4. RUN;

The first column is the value that is stored in the dataset created by the above code. Extra

columns have been added to show that value when it is displayed using two different

formats. Note that the output is right-aligned because that is the default for numeric values,

regardless of formatting.

SAS Date Value Formatted Using MMDDYY10. Formatted Using WEEKDATE.

20022 10/26/2014 Sunday, October 26, 2014

19239 09/03/2012 Monday, September 3, 2012

2690 05/14/1967 Sunday, May 14, 1967

20325 08/25/2015 Tuesday, August 25, 2015

19905 07/01/2014 Tuesday, July 1, 2014

18702 03/16/2011 Wednesday, March 16, 2011

4092 03/16/1971 Tuesday, March 16, 1971

3015 04/03/1968 Wednesday, April 3, 1968

38254 09/25/2064 Thursday, September 25, 2064

Example 8: Using an Informat to Process ASCII Date Data

Since we looked at the file first, we knew all the data looked like "mm/dd/yyyy", and we

simply told the INPUT statement what it would see when it read the field. By specifying that

informat, we told SAS how to translate what seems to be a character string ("/" is not a

number) into a SAS date value. It's easy to get the wrong result here: if you use the wrong

informat for your data, things will definitely go wrong. In most cases, using the wrong

informat will give you an error, but you need to be careful with some of the informats that

differ only in the order of month, day, and/or year. The MMDDYY. informat will not give you

the same result as the DDMMYY. informat, and it would not give you any sign that

something abnormal happened until the middle two digits in the data field were greater than

12. Example 9 uses the same file as Example 8, but the wrong informat:

11

1 DATA read_dates;

2 INFILE "c:\book\examples\a_few_dates.txt";

3 INPUT @1 sample_date :DDMMYY10.;

4 RUN;

NOTE: Invalid data for sample_date in line 1 1-10.

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6-

---+----7----+----8----+--

1 10/26/2014 10

sample_date=. _ERROR_=1 _N_=1

NOTE: Invalid data for sample_date in line 3 1-10.

3 05/14/2012 10

sample_date=. _ERROR_=1 _N_=3

NOTE: Invalid data for sample_date in line 4 1-10.

4 08/25/2015 10

sample_date=. _ERROR_=1 _N_=4

NOTE: Invalid data for sample_date in line 6 1-10.

6 03/16/2011 10

sample_date=. _ERROR_=1 _N_=6

NOTE: Invalid data for sample_date in line 7 1-10.

7 03/16/1971 10

sample_date=. _ERROR_=1 _N_=7

NOTE: Invalid data for sample_date in line 9 1-10.

9 09/25/2064 10

sample_date=. _ERROR_=1 _N_=9

At least you can see the error messages. But you didn't get an error message on every line.

What happened to the data on lines 2, 5 and 8? Let's show the result side by side with the

table from Example 8 on the right in italics.

SAS Date
Value

Formatted

Using
MMDDYY10.

Formatted Using
WEEKDATE.

SAS Date
Value

Formatted Using
MMDDYY10.

 20022 10/26/2014

19061 03/09/2012 Friday, March 9, 2012 19239 09/03/2012

 2690 05/14/1967

 20325 08/25/2015

19730 01/07/2014 Tuesday, January 7, 2014 19905 07/01/2014

 18702 03/16/2011

 4092 03/16/1971

2985 03/04/1968 Monday, March 4, 1968 3015 04/03/1968

 38254 09/25/2064

Example 9: When You Use an Incorrect Informat to Read Data

You can see how important it is to use the correct informat; instead of the data you expect,

you get missing values and incorrect data.

HOW DO I USE AN INFORMAT WHEN MY RAW DATA IS DELIMITED?

Example 8 used a column pointer (the "@1") to tell SAS where to start reading, because the

data were neatly aligned in columns throughout the flat file.

12

INPUT @1 sample_date :MMDDYY10.;

What do you do when you have a file that doesn't use columns, but has delimiters between

fields such as tab characters or commas? Start the informat name with a colon (":").

Example 10 will use data from a CSV file:

Smith,12DEC1950,Goal,1989

Jones,30OCT1994,Defense,

Hull,9AUG1964,Wing,2005

Oates,27AUG1962,Center,2004

As you can see, the obvious date isn't in the same column for each line. The following code

is used to read these data. The DELIMDATES dataset is then used with PROC REPORT to

produce the resulting table.

DATA delimdates;

INFILE "delim.csv" DLM=',' DSD PAD MISSOVER;

/* MISSOVER translates missing columns into missing data */

INPUT name $ birthDate :date. position $ retired;

RUN;

The bolded ":date." in line 3 tells SAS to apply the DATE. informat to the second field, since

we can't figure out where the field starts. Here's the result, again using an aliased variable

to provide a formatted version of the variable birthDate.

Name
Birth Date

(SAS Date Value) Formatted Birth Date Position Year Retired

Smith -3307 Tuesday, December 12, 1950 Goal 1989

Jones 12721 Sunday, October 30, 1994 Defense

Hull 1682 Sunday, August 9, 1964 Wing 2005

Oates 969 Monday, August 27, 1962 Center 2004

Example 10: Using the Colon (:) Informat Modifier to Read Delimited Data

THERE HAS TO BE AN EASIER WAY TO READ DATES AND TIMES

Version 9 of SAS addressed one major problem with reading dates from flat files into SAS:

you had to know what your date and time data looked like before you could process it from

a flat file into SAS. The ANYDTDTE., ANYDTDTM., and ANYDTTME. informats will translate

dates, times, and datetime values, respectively, into their corresponding SAS System values

without having to know the representation of these dates, datetime, and time values in

advance.

Of course, there are a couple of warnings: if you are going to leave it to SAS to figure out

what the data look like, it will add some overhead to the processing, but the amount of

extra processing depends on how many dates you need to process. What may be negligible

for small amounts of data could become significant in a multi-billion record data warehouse

with multiple dates to handle.

Overhead aside, doesn't this solve all of your problems with dates and informats?

Unfortunately, no. What if you have to read a value such as "06/11/2015"? Or even worse,

"06/11/15"? Is it June 11, 2015, November 6, 2015, or November 15, 2006? The

DATESTYLE= option allows you to tell SAS what it should be. Table 2 details the four

possible values, assuming the default YEARCUTOFF value of 2015:

13

MDY
Sets the default order as month, day, year. "06-11-15" would be translated as June
11, 2015

DMY
Sets the default order as day, month, year. "06-11-15" would be translated as
November 6, 2015

YMD
Sets the default order as year, month, day. "06-11-15" would be translated as
November 15, 2006

LOCALE
(default)

Sets the default value according to the LOCALE= system option. When the default
value for the LOCALE= system option is "English_US", this sets DATESTYLE to MDY.
Therefore, by default, "06-11-15" would be translated as June 11, 2015.

Table 2: Values for the DATESTYLE= Option

Although it may seem simple to resolve ambiguous dates using the ANYDT series of

informats, it is not foolproof. If you use them, always check the resulting data, especially if

you need to process dates with two-digit years. However, in general, it is good

programming practice to check your datasets regardless of how simple the task of creating

them may seem.

AM I READING ENOUGH?

One last issue with reading dates and times from an external file is ensuring you are reading

the correct number of characters in the field. All of the informats have a length

specification, which tells SAS how many characters to process using the informat. For

example, the MMDDYY10. informat reads ten characters and will attempt to translate it as

mm-dd-yyyy, although the exact separator between month, day, and year may vary. If you

do not use the length specification on your informat, each one has its own default length.

However, this default may not match your data.

The bottom line is that when you are reading formatted date values that have not been

stored as SAS dates, it is best to look at the data that you have produced before you

actually use it.

CREATING DATES, TIMES AND DATETIMES FROM NUMBERS

There are three functions in SAS that create SAS date, time, and datetime values from

individual elements such as month, year, hour, and minute. The MDY() function takes

individual values for month, day and year, and converts them to a SAS date value.

Similarly, the HMS() function creates SAS time values from hours, minutes, and seconds.

Finally, the DHMS() function yields SAS datetime values from dates, hours, minutes, and

seconds. Each of the functions needs all of its component arguments, e.g., the DHMS()

function needs non-missing values for date, hour, minute, and second. If you are missing

any one of these components, you will get a missing value as the result. All the arguments

to these functions must be numeric; they can be actual values or numeric variables. In the

DHMS() function, the date used can be a date literal, a SAS date value, or a numeric

variable.

Month, day and year are the arguments to the MDY() function as follows:

MDY(month,day,year); This function calculates a SAS date value as long as: 1) none of

the arguments are missing; 2) month is between 1 and 12, and 3) the combination of

month, day, and year is a valid calendar date. As an example of the last, MDY(2,31,2019);

will return a missing value because February 31, 2019, does not exist.

The HMS(hours,minutes,seconds); function creates a SAS time value from the hours,

minutes, and seconds given, and once again, all three values must be non-missing. When

you use this function, it is important to remember that there are two distinct concepts of

time: 1) clock time, and 2) elapsed time. Because of that, the only restriction on this

function is that hours must be greater than or equal to zero, while minutes and seconds

14

have no restrictions on their value. HMS(7,45,80); will calculate to 27,980 seconds; to SAS,

that is exactly the same as HMS(7,46,20). The format that you use ultimately determines

the context of the time value. If you are talking about clock time, the value returned will be

MOD(result,86400). You can use the following program to test this and help your

understanding, substituting actual non-clock values for hours, minutes, and second. The

first value printed in the resulting log will be the total number of seconds; the second value

will display the number of seconds calculated to a 24-hour clock (that MOD(value,86400)

thing again.) Sample Code 7 illustrates:

DATA _NULL_;

x = HMS(hours,minutes,seconds);

PUT x= +3 'x=' x time.;

RUN;

Sample Code 7: How the HMS() Function Works

The DHMS(date,hour,minute,second); function will create a datetime value from the

component parts of date, hour, minute, and second in the same way the previous two

functions work. Again, each argument must not be missing. date can be a date literal, a

SAS date value, or a numeric variable.

EXTRACTING MONTH, DAY, YEAR, ETC., FROM YOUR SAS DATE

Table 3 lists the functions that will pull the individual component values from SAS date, time

and datetime values. arg represents the appropriate date, time or datetime value for the

function:

DATEPART(arg) Extracts the date from a SAS datetime value as a SAS date value.

DAY(arg) Extracts the number of the day of the month from a SAS date value.

HOUR(arg) Extracts the hour from a SAS time value.

MINUTE(arg) Extracts the minute from a SAS time value.

MONTH(arg) Extracts the month from a SAS date value.

SECOND(arg) Extracts the second from a SAS time value.

TIMEPART(arg) Extracts the time portion from a SAS datetime value as a SAS time value.

WEEKDAY(arg)
Extracts the number of the day of the week, where Sunday=1, Monday=2,
etc. from a SAS date value.

YEAR(arg)

Extracts the year from a SAS date value. Since obtaining the year value is

the point of using this function, it is important to remember that the
YEARCUTOFF option affects two-digit years.

Table 3: Functions to Get Components from a SAS Date, Time, or Datetime Value

You need to make sure that you use the appropriate function for the type of value you are

working with. For example, do not try to use the DAY() function to extract a day from your

datetime value. It will not work correctly, as shown in Example 11.

15

DATA _NULL_;

datetime = "27JAN1960:12:35:00"dt;

time = "12:35:00"t;

date = "27JAN1960"d;

day_datim = DAY(datetime);

day_tm = DAY(time);

day_date = DAY(date);

PUT datetime= +3 time= +3 date= ;

PUT day_datim= +3 day_tm= +3 day_date=;

RUN;

datetime=2291700 time=45300 date=26

day_datim=20 day_tm=10 day_date=27

Example 11: Using a SAS Date Function to Process the Wrong Type of Data

The first line of output shows the actual values that SAS is operating on. In the above

example, I purposely used an early datetime value (2,291,700 seconds relative to midnight,

January 1, 1960) because it gives me a non-missing value, albeit incorrect, for the day. If

you use a datetime sometime after March of 1960, SAS will give you an error message.

However, here the error message does not occur because SAS recognizes it as a datetime

value; rather it occurs because it is trying to determine a day for a value that is too large

for the function to work. Example 12 is trickier:

DATA _NULL_;

datetime = "27MAR1998:12:15:00"dt;

time = "12:15:00"t; date = "27MAR1998"d;

minit_datim = MINUTE(datetime);

minit_tm = MINUTE(time);

minit_date = MINUTE(date);

PUT datetime= +3 time= +3 date= ;

PUT minit_datim= +3 minit_tm= +3 minit_date=;

RUN;

datetime=1206620100 time=44100 date=13965

minit_datim=15 minit_tm=15 minit_date=52

Example 12: SAS Date/Time Functions Give Misleading Results Due to Incorrect

Context

What happened here? Isn't that the correct value for the datetime value? Not exactly.

Remember that both times and datetimes are stored in seconds since midnight, and that

times cycle every 86,400 seconds. Any value greater than 86,400 (the number of seconds

in a day) just cycles into the next day. Therefore, when you calculate minutes from the

datetime value as shown above, you may seem to get the right answer, when in reality, you

are getting the result of MOD(value,86400). So while the time extraction functions seem to

work with datetimes, it is not good practice. You can also clearly see that trying to get the

minute out of the date value gives you an incorrect result.

The YEAR() function is affected by the YEARCUTOFF option only if you have a date literal

with a two-digit year, and this can lead to unexpected results. On the other hand, if you are

extracting the year from a SAS date value, the YEARCUTOFF option will have no effect,

because the concept of two-digit year vs. four-digit year does not exist; it is simply the

number of days since January 1, 1960.

16

INTERVALS

Intervals are another way people track periods of time. SAS can allow you to manipulate

dates and times and datetimes by these intervals. SAS Intervals are very powerful, but

frequently misunderstood, especially when they are used in association with the two interval

calculation functions INTCK() and INTNX(). The INTCK() function counts the number of

intervals between two given dates, times, or datetimes, while the INTNX() function takes a

given date, time or datetime and increments it by a given number of intervals. SAS has

several standard intervals defined in it. The intervals represent periods of time such as

days, weeks, months and quarters, to name a few. Appendix 3 contains the complete list of

SAS-supplied intervals, along with the default starting point for each one. While intervals

such as "YEAR" and "MONTH" may seem self-explanatory, if you just jump right in and use

SAS intervals without reading about them first, you may not get the results you expect. A

paper containing a more in-depth discussion of SAS date intervals is listed in the references

section of this paper.

WHEN IS A YEAR NOT A YEAR?

The syntax for the INTCK() function is:

INTCK(interval,start-of-period,end-of-period,method);

interval must be in quotes. This function calculates the number of intervals between the

dates represented by start-of-period and end-of-period. method is either CONTINUOUS

or DISCRETE, and must be enclosed in quotes. If you do not specify method, DISCRETE is

the default. The CONTINUOUS method can best be summed up as counting intervals the

way we intuitively think about periods of time such as months or years. For the purposes of

this paper, however, we will focus on the DISCRETE method, which is how the INTCK()

function has calculated intervals since its creation. A great deal of existing code relies on the

DISCRETE method, and I strongly advise against changing it to the more intuitive method.

To illustrate the potential for problems with SAS intervals, consider Sample Code 8:

DATA _NULL_;

v1 = INTCK('YEAR','01jan2018'd,'01jan2019'd);

v2 = INTCK('YEAR','31dec2018'd,'01jan2019'd);

PUT v1= +3 v2= +3;

RUN;

v1=1 v2=1

Sample Code 8: How the INTCK() Function Calculates a Year

Now wait a minute. We know that a year from December 31, 2018, is not January 1, 2019.

What happened? SAS intervals are not a shortcut to doing the math. When the DISCRETE

method is used (either explicitly or by default,) the INTCK() function counts the number of

times that the period interval begins between start-of-period and end-of-period. It does

not count the number of complete intervals between start-of-period and end-of-period. The

YEAR interval will start on January 1, 2018 for any date in 2018. Therefore, given any

starting date in 2018, INTCK() will only count a single YEAR interval for any given date in

2018 because it only passes January 1, 2018 one time. There is an enormous potential for

bad results if you misunderstand how INTCK() calculates using its default (the DISCRETE)

method. The important thing to remember about intervals is that they are based on the

starting point of the interval for the start-of-period date given to the function, and not the

start-of-period date itself.

17

WHEN IS 3 MONTHS FROM TODAY?

The INTNX() function advances a given date, time or datetime by a specified number of

intervals. The syntax is:

INTNX(interval,start-date,number-of-increments,alignment);

interval is one of the SAS intervals from the previous page (again in quotes), start-date is

the starting date, and number-of-increments is how many intervals you want to change

the date. alignment will adjust the result of INTNX() relative to the interval given. It can

be 'B', 'M', or 'E' (quotes necessary) for the beginning, middle, or end of the interval,

respectively. There is also the 'S' alignment value, which will adjust the result to the same

day as given in the start-date argument. Example 13 illustrates how INTNX() and

alignment works using a sample program that adds six months to March 20, 2017. The

result is shown in bold:

DATA _NULL_;

a = INTNX('MONTH','20MAR2017'd,6);

b = INTNX('MONTH','20MAR2017'd,6,'B');

c = INTNX('MONTH','20MAR2017'd,6,'M');

d = INTNX('MONTH','20MAR2017'd,6,'E');

e = INTNX('MONTH','20MAR2017'd,6,'S');

PUT "6 months from 3/20/2017 with default alignment = " a mmddyy10.;

PUT "6 months from 3/20/2017 aligned with beginning of MONTH interval= " b

mmddyy10.;

PUT "6 months from 3/20/2017 aligned with middle of MONTH interval= " c

mmddyy10.;

PUT "6 months from 3/20/2017 aligned with end of MONTH interval= " d

mmddyy10.;

PUT "6 months from 3/20/2017 aligned with same day in MONTH interval= " e

mmddyy10.;

RUN;

6 months from 3/20/2017 with default alignment = 09/01/2017
6 months from 3/20/2017 aligned with beginning of MONTH interval= 09/01/2017
6 months from 3/20/2017 aligned with middle of MONTH interval= 09/15/2017
6 months from 3/20/2017 aligned with end of MONTH interval= 09/30/2017
6 months from 3/20/2017 aligned with same day in MONTH interval= 09/20/2017

Example 13: How the INTNX() Function and the Alignment Argument Work

BUT I DON'T WANT MY YEAR TO START ON JANUARY 1

Since the default starting point of an interval is at the beginning of it, SAS seems to have a

blind spot when it comes to figuring out intervals that do not coincide with that. There is a

way to shift the starting point of any given interval by creating your own interval definition.

For example, what if you wanted to know the number of YEAR intervals between two dates,

but instead of calculating calendar years, you wanted to calculate your company's fiscal

year, which starts on February 1? You tell SAS how many periods to shift. Each interval has

a shift unit. For years, the shift unit is months, so you will tell SAS to shift the starting point

of the year in terms of months. A shifted interval is the interval name, followed by a period,

and the number of periods to shift. To shift the start of the YEAR interval to February 1, you

would use the interval "YEAR.2".

It is important to remember that when you count the number of periods to shift, you need

to include the beginning of the period. We are not shifting the start of the year interval by

one month to move to February; we are moving the start of the year to the second month.

18

If you do not account for this, you will be off by one unit. Another handy way to think of it is

that the YEAR.1 interval is the same as the YEAR interval.

ISO 8601 AND SAS DATES, TIMES, AND DATETIME VALUES

For us long-time SAS users (pre-version 9), making dates, times and datetimes adhere to

the ISO 8601 standard required a little bit of ingenuity. There are macros that have been

constructed to take the ISO representations and turn them into SAS-appropriate values,

and to transform SAS values for date, time, and datetimes into the ISO 8601

representation. If you are using one of those macros, and you now have access to SAS

version 9 or higher (the ISO 8601 formats and informats were first introduced in SAS 8.2,

but version 9 has several enhancements), you can stop now. For the sake of brevity, this

paper will only discuss the conversion of dates, times, and datetimes between SAS and their

ISO 8601 extended representations, and not the more complicated concept of describing

periods.

To convert an ISO 8601 datetime value (which is a character variable) into its SAS

equivalent and its components, you just need three lines of code:

SAS-datetime-variable = INPUT(ISO 8601-datetime-variable),E8601DT.);

SAS-date-variable = INPUT(ISO 8601-datetime-variable),E8601DA.);

SAS-time-variable = TIMEPART(SAS-datetime-variable);

That's it, unless the ISO 8601 datetime value includes time zones, in which case the

datetime conversion becomes:

SAS-datetime-variable = INPUT(ISO 8601-datetime-variable,E8601DZ.);

If you are using a version of SAS prior to 9.4, here's a necessary alternative:

SAS-datetime-variable = INPUT(COMPRESS(ISO 8601-datetime-variable,'-:.+ '),

B8601DT.);

Why do you need to use the COMPRESS() function? It's a solution to a problem described in

SAS Note 43337, which was fixed in SAS 9.3 TS1M1. Prior to that release, if you had a

partial ISO date value (e.g., "2011-03-20T15:30"), you would not be able to process it with

the B8601DT. informat because the default length of the informat is 19 (which is also the

minimum length allowed by SAS), but the length of the character value is 16. You cannot

specify B8601DT16. (if you try, you get an error.) Conversely, if you use the default length,

you will get the error message: "NOTE: Invalid argument to function INPUT" in your

SAS log.

There is one downside to using the basic (starts with 'B", not "E") ISO datetime informats:

SAS will make assumptions for partial ISO date, time, and datetime values. This can be

tricky when it comes to processing partial ISO datetime values where the date and/or time

may not be complete. SAS will not return a missing value, even if that is what you want.

SAS will substitute midnight for missing times, the first for missing days, and January for

missing months. If there is no year present, then the datetime value will be set to missing.

The workaround is easy. You can conditionally execute the datetime code above by checking

the ISO string for the letter 'T'. If it is present, then the code will provide you with a

datetime value. If not, then set it to missing, and calculate the date as follows:

SAS-date-variable = DATEPART(INPUT(COMPRESS(ISO 8601-date-variable,'-:. ')

,B8601DT.));

It is even easier to represent a SAS datetime value using the ISO 8601 standard: you

simply use one of the formats in Table 4:

19

E8601DA. Represents a SAS date value in the format yyyy-mm-dd

E8601DT. Represents a SAS datetime value in the format yyyy-mm-ddThh:mm:ss.ffffff
(ffffff represents fractional seconds)

E8601DZ. Represents a SAS datetime value in the format yyyy-mm-ddThh:mm:ss+|-
hhmm

E8601TM. Represents a SAS time value in the format hh:mm:ss.ffffff (ffffff represents
fractional seconds)

Table 4: ISO 8601 Formats

EXCEL

We cannot overlook the potential for incorrect results whenever you convert from Microsoft

Excel into SAS or vice versa. Like SAS, Excel counts days from a fixed reference point, and

it uses January 1, 1900. Excel keeps track of times as decimal fractions where you can

multiply by 24 (hours) to get the clock time of the day. Six a.m. is a quarter of a day (.25);

noon is exactly one-half day; and so on. A datetime value in Excel is the sum of the day and

the time value. For example, September 5, 2014 is 41887 to Excel, so noon on September

5, 2014 would be 41887.5. Unfortunately, this also means Excel does not keep track of time

as a separate entity from dates. A period of more than 24 hours is translated by Excel into

more than 1 day. As an example, if you have a period of 36 hours (1.5 in Excel), Excel will

happily convert this into noon of January 2, 1900 for you.

Exchanging historical dates between SAS and Excel is a definite problem. While Excel uses a

zero point of January 1, 1900, unlike SAS, it cannot count backwards from zero. Therefore,

any date prior to 1900 in Excel is represented as text, not as an Excel date value. What do

you do if you have dates before January 1, 1900, to convert? Going to Excel, you will have

to store them as character strings, and you will not be able to use any of the Excel math or

date functions on them. On the other hand, if you are going from Excel to SAS, then you

can use an INPUT statement and a DATA step to process a CSV file. If you use the IMPORT

wizard and/or procedure, you may get the dreaded dot, or worse. SAS may decide the

entire column is a character variable, leaving you with text where your date values should

be. Unless you have historical dates, the IMPORT procedure or SAS/ACCESS® will convert

dates, times and datetimes for you, and it is fairly reliable. However, when you are

importing into SAS from any other software or database, always test your dates, times and

datetimes, because different software uses different representations of dates, times, and

datetimes, and the default conversion is not foolproof.

SUMMARY

The way that SAS handles dates, times, and datetimes allows for a great deal of flexibility in

the display, manipulation, and computation of these important data. However, that

flexibility can also make it easy to make mistakes. Dates, times, and datetimes are stored

as numbers in SAS. Dates are counted in days from a zero point of January 1, 1960. Times

are counted in seconds from a zero point of midnight of the current day, and datetimes are

counted in seconds since midnight, January 1, 1960. Each day that passes increments the

day counter by one, and each second that passes increments the time and datetime

counters by one.

SAS dates and times are displayed by using formats. There are many SAS-supplied formats

and each displays a date, time, or a datetime value as something we can recognize. Date

formats are specific to date values, time formats are specific to time values, and datetime

formats are specific to datetime values. If you use the wrong type of format, your display

will be incorrect. If none of the SAS-supplied formats meets your needs, you can create

20

your own, either by defining the display to correlate with certain values, or by defining the

display with a template using symbolic directives. You can use formats to customize titles

and footnotes in your output with date and time information.

We use informats to translate dates and times as we know them into the values recognized

by SAS. As with formats, there are many SAS-supplied informats designed to translate

standard alphanumeric or numeric representations of dates into SAS date, time, or datetime

values. You need to specify the number of characters to be processed by the informat, and

you should use the correct informat for the alphanumeric characters you are processing. If

you do not know the format of the alphanumeric characters you will be processing, you can

use the ANYDATE informats, but be prepared for your job to take longer, and always check

your results.

You may extract the individual components of a SAS date, time, or datetime value, such as

month number, day or hour. However, you need to make sure you do not try to extract a

month from a time, or an hour from a date. You may also create a SAS date, time, or

datetime value from individual components. Whenever you do this, remember that all of the

arguments to the MDY(), HMS() and DHMS() functions must be non-missing for these

functions to work.

It is frequently useful to refer to periods of time by familiar references such as year or

quarter. SAS uses intervals to handle this. There are several such standard periods defined

in SAS, and two functions that use them, INTCK() and INTNX(). The most important thing

to remember is that by default, these functions use SAS intervals by measuring the

intervals from the start point of the interval, not the dates you supply.

There are many more uses of SAS dates, more functions relating to dates and times and

datetimes, and more capabilities of intervals than have been shown in this paper. This

introduction provides an overview of handling and manipulating dates and times in SAS, and

addresses a large percentage of date- and time-related tasks. Even if you need something

that has not been covered in this paper, the tools SAS provides to handle dates and times

should allow you to accomplish your tasks.

REFERENCES

Morgan, Derek P. 2014. The Essential Guide to SAS® Dates and Times, Second Edition.

Cary, NC: SAS Institute Inc.

Morgan, Derek, 2017, “Demystifying Intervals.” Proceedings of MWSUG 2017. Available at:

http://www.mwsug.org/proceedings/2017/BB/MWSUG-2017-BB042.pdf

CONTACT INFORMATION:

Comments and questions welcome to:

Derek Morgan

E-mail: mrdatesandtimes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration. Other brand and product names are trademarks of their respective companies.

http://www.mwsug.org/proceedings/2017/BB/MWSUG-2017-BB042.pdf

21

APPENDIX 1: HOW DO I?

1) Convert a character date into a valid SAS date?

This is one of the most frequently asked questions, usually occurring when moving data

from other software into SAS. The example uses the ANYDTDTE. informat, but it is more

efficient to use one of the specific date informats.

SAS-date-variable = INPUT(character_date,ANYDTDTE.);

2) Put a date into a file name?

Ever been asked to label a file with a date? This example puts the full month name and

four-digit year in the name of the Excel file.

PROC FORMAT LIB=LIBRARY;

PICTURE monthyr (DEFAULT=15)

LOW-HIGH = '%B %Y' (DATATYPE=DATE)

;;;;

RUN;

%LET datestr=%SYSFUNC(STRIP(%SYSFUNC(DATE(),monthyr.)));

ODS TAGSETS ExcelXP FILE="&datestr Monthly Report.xml";

With a little more effort on your own, you can label worksheet tabs in a workbook using this

method.

3) Turn my date from a number into something I understand?

Use a format. In a DATA step or procedure, the code would be:

FORMAT date mmddyy10.;

In SQL:

SELECT date FORMAT=mmddyy10.

4) Turn my asterisks into a date? I used a date format like you said.

This generally means the value you are trying to display is too big to display with the format

you are using. With dates, this happens most often when you use a date format to display a

datetime value. The log segment below demonstrates:

1 DATA _NULL_;

2 datetime=1682340217;

3 PUT "Datetime value formatted with DATE9. format " datetime date9.;

4 PUT "Datetime value formatted with DATETIME19. format " datetime

datetime19.;

5 RUN;

Datetime value formatted with DATE9. format *********

Datetime value formatted with DATETIME19. format 23APR2013:12:43:37

5) Figure out how many days have elapsed between two SAS dates?

Since SAS keeps track of dates as number of days relative to January 1, 1960, subtraction

is the quickest method. This also works for times and datetimes, but you will get the result

in seconds.

how_many_days = date2 - date1;

22

6) Create a datetime from month, day and year when I don't have a time?

This takes two steps if you don't already have a SAS date:

SAS_date = MDY(month,day,year);

SAS_datetime_value = DHMS(SAS_date,0,0,0);

If you have a SAS date and SAS time available you can just use both in the DHMS()

function. SAS times are stored in seconds, so there's no need to convert into hours,

minutes, seconds, but you do need zeroes as placeholders for hours and minutes:

SAS_datetime_value = DHMS(SAS_date,0,0,SAS_time);

23

APPENDIX 2: HANDY CUSTOM DATE FORMATS AND INFORMATS

Here are some of the most common date formats and informats I've needed. I create a

permanent format library for my projects, so I don't have to worry about coding these every

time I need one of them.

PROC FORMAT LIB=LIBRARY;

INVALUE mthct (UPCASE) /* translate month abbreviations into month numbers

*/

'JAN' = 1

'FEB' = 2

'MAR' = 3

'APR' = 4

'MAY' = 5

'JUN' = 6

'JUL' = 7

'AUG' = 8

'SEP' = 9

'OCT' = 10

'NOV' = 11

'DEC' = 12

' ', . = .

OTHER = _ERROR_

;;;;

VALUE ctday /* Translate weekday numbers (like from the WEEKDAY() function)

 Into weekday names

*/

1 = "Sunday"

2 = "Monday"

3 = "Tuesday"

4 = "Wednesday"

5 = "Thursday"

6 = "Friday"

7 = "Saturday"

;;;;

INVALUE ctday /* Translate weekday names into weekday numbers */

"Sunday" = 1

"Monday" = 2

"Tuesday" = 3

"Wednesday" = 4

"Thursday" = 5

"Friday" = 6

"Saturday" = 7

OTHER = _ERROR_;

;;;;

PICTURE monthyr (DEFAULT=15) /* Display date as full month name and 4-digit

year */

LOW-HIGH = '%B %Y' (DATATYPE=DATE)

;;;;

RUN;

24

APPENDIX 3: SAS INTERVALS AND THEIR STARTING POINTS

Interval Name Definition

Default
Starting

Point

DAY Daily intervals Each day

WEEK Weekly intervals of seven days
Each
Sunday

WEEKDAYdaysW

Daily intervals with Friday-Saturday-Sunday counted as the
same day (five-day work week with a Saturday-Sunday
weekend). days identifies the individual numbers of the

weekend day(s) by number (1=Sunday ... 7=Saturday). By
default, days="17", so the default interval is WEEKDAY17W.

Each day

TENDAY Ten-day intervals (a U.S. automobile industry convention)
1st, 11th,

and 21st of
each month

SEMIMONTH Half-month intervals

1st and 16th

of each
month

MONTH Monthly intervals
1st of each

month

QTR Quarterly (three-month) intervals

1-Jan

1-Apr
1-Jul
1-Oct

SEMIYEAR Semi-annual (six-month) intervals
1-Jan
1-Jul

YEAR Yearly intervals 1-Jan

DTDAY Daily intervals used with datetime values Each day

DTWEEK Weekly intervals of seven days used with datetime values
Each

Sunday

DTWEEKDAYdaysW

Daily intervals with Friday-Saturday-Sunday counted as the

same day (five-day work week with a Saturday-Sunday
weekend.) days identifies the individual weekend days by
number (1=Sunday ... 7=Saturday.) By default, days="17", so
the default interval is DTWEEKDAY17W. This interval is only
used with datetime values.

Each day

DTTENDAY
Ten-day intervals (a U.S. automobile industry convention) used

with datetime values

1st, 11th,
and 21st of
each month

DTSEMIMONTH Half-month intervals used with datetime values
1st and 16th
of each

month

DTMONTH Monthly intervals used with datetime values
1st of each

month

25

Interval Name Definition

Default
Starting

Point

DTQTR Quarterly (three-month) intervals used with datetime values

1-Jan
1-Apr
1-Jul
1-Oct

DTSEMIYEAR Semiannual (six-month) intervals used with datetime values
1-Jan
1-Jul

DTYEAR Yearly intervals used with datetime values 1-Jan

DTSECOND Second intervals used with datetime values Seconds

DTMINUTE Minute intervals used with datetime values Minutes

DTHOUR Hour intervals used with datetime values Hours

SECOND Second intervals used with time values Seconds

MINUTE Minute intervals used with time values Minutes

HOUR Hourly intervals used with time values Hours

