
1

Paper 3068-2019

It’s All about the Base—Procedures
Jane Eslinger, SAS Institute Inc.

ABSTRACT
As a Base SAS® programmer, you spend your day manipulating data and creating reports.
You know there is a procedure that can give you what you want. As a matter of fact, there
is probably more than one procedure to accomplish the task. Which one should you use?
How do you remember which procedure is best for which task?
This paper is all about the Base procedures. It explores the strengths of the commonly
used, nongraphing procedures. It discusses the challenges of using each procedure and
compares it to other procedures that accomplish similar tasks. The first section of the paper
looks at utility procedures that gather and structure data: APPEND, COMPARE, CONTENTS,
DATASETS, FORMAT, SORT, SQL, and TRANSPOSE. The next section discusses the Base
SAS procedures that work with statistics: FREQ, MEANS/SUMMARY, and UNIVARIATE. The
final section provides information about reporting procedures: PRINT, REPORT, and
TABULATE.

INTRODUCTION
The beauty of SAS is that usually there is more than one method to get what you need.
That is a good thing! It can also be a challenge—you might not know if there is a more
efficient method or a method that requires a lot less code.
This paper provides brief descriptions of the most frequently used Base SAS procedures.
More importantly, it provides ideas for the best way to use the procedure and a comparison
of when another procedure or technique might be better to use. Not every functionality of
every procedure can be listed here. Nor can every comparison be made. Hopefully this
paper will provide ideas on how to accomplish the tasks you need to accomplish, and it
might encourage you to try multiple methods for accomplishing those tasks.
Please note that, due to space considerations, this paper focuses on using these procedures
for SAS®9 data sets (and not for database tables).

UTILITY PROCEDURES
For the purposes of this paper, the utility procedures are those that enable you to get
information about the data or to complete pre-analysis tasks such as restructuring the data.

APPEND PROCEDURE
Description: PROC APPEND is designed to add the observations in one data set (DATA=
data set) to the bottom of another data set (BASE= data set). This process is also known as
concatenating data sets.

Challenges:
• The data structure of the two data sets must match. The variable names, lengths, and

types must be the same in the two data sets. By default, if the structures do not match,
PROC APPEND will not append the observations. The FORCE option will force the append
process to occur if the structure is different. However, in this case, variables in the
DATA= data set that are not in the BASE= data set are not in the resulting data set.

2

• You cannot make changes to the observations in the BASE= data set or to the
observations being added. The observations are simply appended.

Best Use Case: PROC APPEND has a very narrow focus—to add observations from one data
set to another. It does not open the data set being added to. Therefore, it uses a limited
amount of I/O. The ideal circumstance for using PROC APPEND is when you have routine or
cyclical data and you need to add the latest data to the historical data.

Example Code:
 data work.prdsal2;
 set sashelp.prdsal2;
 run;

 data sale2000;
 length country $10 state $22 county $20 prodtype product $10;
 input country $ state $ county actual predict prodtype $ product
 $ year
 quarter monyr monyy.;
 month=month(monyr);
 datalines;
 U.S.A California . 1702.50 40.00 FURNITURE BED 2000 1 JAN00
 ;
 run;

 proc append base=prdsal2 data=sale2000;
 run;

Comparisons: A DATA step that uses the SET statement can accomplish the same task as
PROC APPEND. With PROC APPEND, the I/O to produce the bigger data set is a lot lower
than when using a DATA step. The advantages of using a SET statement in a DATA step
include the ability to rename the variables from each data set, change lengths or other
attributes, or manipulate the data.

Example Code:
 data allsale;
 set prdsal2(rename=(predict=orig_predict))
 sale2000(rename=(predict=orig_predict));

 predict=orig_predict*1.01;
 run;

COMPARE PROCEDURE
Description: PROC COMPARE compares the variable values and attributes of two data sets
and generates a report of the differences.

Challenges:
• The reports that are generated by PROC COMPARE contain the differences between the

two data sets. It does not display values that are the same.
• When specified, the COMPARE procedure compares the data sets according to the BY

and ID values. However, it does not provide a simple list of BY or ID values that are in
one data set but not the other, or that are in both.

• There are no options with PROC COMPARE that will prevent the numeric values from
being displayed in scientific notation or character values from being truncated at 20

3

characters. PROC COMPARE does not have an underlying table template that can be
modified with PROC TEMPLATE to change the formatting of the printed output. An output
data set must be created and then printed to control the formatting for long values.

• It is difficult to look among all the differences for many records and variables that could
all be different.

Best Use Case: Use PROC COMPARE when you are confident that the data sets are very
nearly the same and you want to find the one or two variables that might have differences.
When developing the program or when expecting a large number of differences, it might be
best to suppress the output generated by PROC COMPARE by using the NOPRINT option.
Instead, create a data set and then print that.

Example Code:
 proc compare data=sashelp.prdsal2 comp=allsale noprint outdif
 outcomp outnoequal outbase out=diffs;
 run;

Comparisons: There is no other procedure that has similar functionality to PROC
COMPARE. It is possible to merge data sets and use assignment logic to compare the values
of two data sets. That would be a substantial programming challenge, based on the number
of variables and their type along with the desired structure of the final data set.
Alternatively, in theory, you can compare the two files by converting the data sets to text
files and then using a comparison tool that is not offered by SAS.

CONTENTS PROCEDURE
Description: PROC CONTENTS provides data set attribute information and engine and host
information, as well as a list of variables within the data set. The attribute information
includes the number of observations, the number of variables, whether a data set is sorted,
whether it has indexes, and what its encoding is. The engine and host information section
provides the file size and the version of SAS and the operating system that created the data
set. For the list of variables, PROC CONTENTS provides details about types, lengths,
formats, informats, and labels.
PROC CONTENTS does not read or process the data. It reads only the data set header
information.

Challenges:
• PROC CONTENTS does not report the number of observations for a DATA step view.
• The Created by and Last Modified by characteristics are unique to z/OS sequential

access bound libraries. PROC CONTENTS does not provide these characteristics in UNIX
or Microsoft Windows environments.

• PROC CONTENTS does not provide the number of observations that are contained in an
external database, such as an Oracle table.

Best Use Case: Use PROC CONTENTS to check that your data set has the variables that
you expect it to have, including their labels, types, and formats (Output 1 shows an
example of a list of variables). The generated report is also a good way to see the SAS
version and the encoding that was used to create the data set, which is critical information
if you get a cross-environment data access error after you try to use the data set.

4

Example Code:
 proc contents data=sashelp.prdsal2 out=contents;
 run;

Output 1. Variable List Created with PROC CONTENTS

Comparisons: A PROC SQL step that references a DICTIONARY table (columns, indexes,
members, and tables) can provide much of the same information that PROC CONTENTS
does.
DICTIONARY.INDEXES provides more information about indexes than PROC CONTENTS. The
below code demonstrates the PROC SQL step.

Example Code:
 ods output indexes=indexzip1;
 proc contents data=sashelp.zipcode out=contentszip;
 run;

 proc sql;
 create table indexzip2
 as select *
 from dictionary.indexes
 where libname='SASHELP' and memname='ZIPCODE';
 quit;

DATASETS PROCEDURE
Description: PROC DATASETS enables you to change variable attributes, rename variables,
create indexes, and see the contents of a data set.

Challenges:
• PROC DATASETS enables you to copy and rename variables only. It cannot drop

variables.

5

• It does not provide the number of observations that are contained in an external
database table.

Best Use Case:
• PROC DATASETS is often used to delete all the data sets in a library. However, be

careful when you do this, because once deleted, you cannot get them back.
Example Code:
 proc datasets library=work kill;
 quit;

• Use PROC DATASETS to modify formats and labels without having to run a DATA step—it
is less resource-intensive (Output 2 shows a log that confirms that modification is
successful).

Example Code:
 data work.prdsal2;
 set sashelp.prdsal2;
 run;

 proc datasets library=work nolist;
 modify prdsal2;
 label product='Product Name';
 format country $char20.;
 quit;

Output 2. Log Showing That a PROC DATASETS Modification Is Successful

Comparisons:
• PROC DATASETS and PROC CONTENTS provide the same information about either a data

set or all the data sets in a library. For content information, use the procedure that you
are most comfortable with.

6

Example Code:
 proc datasets library=work;
 contents data=prdsal2;
 quit;

 proc contents data=prdsal2;
 run;

• PROC SQL provides data set information and enables you to change a variable name at
the same time. Keep in mind that PROC SQL will process the entire data set, not just the
header information.

Example Code:
 proc datasets library=work nolist;
 modify prdsal2;
 index create state / nomiss;
 format monyr yymon7.;
 quit;

 proc sql noprint;
 create table prdsal2b as
 select country, state, county, actual, predict, prodtype, product,
 year, quarter as qtr, month, monyr format=yymon7.
 from sashelp.prdsal2;
 create index state on prdsal2b(state);
 quit;

FORMAT PROCEDURE
Description: PROC FORMAT creates informats, which are instructions for how Base SAS
should read and interpret raw values. It also creates formats and picture formats, which are
instructions for how to display data values.
Formats are created either by hardcoding the values or by using a CNTLIN= data set, which
contains variables with the desired value-label combinations.
Challenges: Forethought is necessary: you must know how you want your data values
displayed.

Best Use Case:
• Generally, PROC FORMAT is used to create a format so that raw values, such as zero

and one, are displayed as another value, such as No and Yes.
Example Code:
 data work.prdsal2;
 set sashelp.prdsal2;
 run;

 proc format;
 value $ typ
 'FURNITURE'='Residential'
 'OFFICE'='Commercial'
 other='Other';
 run;

(code continued)

7

 data prdsal2a;
 length prodtype $12;
 format prodtype $12.;
 set prdsal2;
 prodtype=put(prodtype,$typ.);
 run;

• Creating a format is also needed when you want to reassign values (in a DATA step); to
group values or categories when calculating statistics or creating reports in other
procedures; or to generate rows or placeholders for categories that are not present in
the data. The code below demonstrates using a format to group values in PROC FREQ
output.

Example Code:
 proc format;
 value $ func
 'BED', 'SOFA'='Soft'
 'DESK','CHAIR'='Hard';
 run;

 proc freq data=sashelp.prdsal2;
 format product $func.;
 table product;
 run;

Comparisons: There is no other procedure that has similar functionality to PROC FORMAT.
In a DATA step, you can choose to use IF-THEN or IF-THEN/ELSE statements to
conditionally assign a new value based on an old value. To an extent, one method is not
better than the other, because you still must type out both the new and old values.
Example Code:
 data work.prdsal2;
 set sashelp.prdsal2;
 run;

 data prdsal2b;
 length prodtype $12;
 set prdsal2;
 if prodtype='FURNITURE' then prodtype='Residential';
 else if prodtype='OFFICE' then prodtype='Commercial';
 else prodtype='Other';
 run;

SORT PROCEDURE
Description: The SORT procedure sorts data and can remove duplicate observations.
Challenges: Sorting data is a common, necessary practice. However, PROC SORT will
create a temporary utility file that is approximately twice the size of the original data set.
The amount of memory and disk space used by PROC SORT can be problematic for large
data sets.
Best Use Case: You should sort your data with PROC SORT when the other procedures that
you are using for analytics and reporting require sorting. However, data that is sorted or
grouped prior to being brought into SAS does not need re-sorting. In most procedures, you
can take advantage of the NOTSORTED option in the BY statement. This option will group

8

together observations that have the same BY value. However, it does not put them into any
specific order, such as by numeric value. Also, using a CLASS statement within a procedure
does not require the data to be presorted.

Example Code:
 proc sort data=sashelp.prdsal2 out=prdsal2;
 by year product country;
 run;

Comparisons: PROC SQL can sort data sets. The code below demonstrates using both
PROC SORT and PROC SQL to sort a data set and keep only the unique combinations of
COUNTRY, STATE, and PRODUCT. The two steps generate identical data sets.

Example Code:
 proc sort data=sashelp.prdsal2 out=unqprd1(keep=country state product)
 nodupkey;
 by country state product;
 run;

 proc sql noprint;
 create table unqprd2 as
 select distinct country, state, product
 from sashelp.prdsal2
 order by country, state, product;
 quit;

SQL PROCEDURE
Description: PROC SQL is kind of a super utility procedure. It lets you sort data, merge
data sets, create indexes, and rename variables. You can also create macro variables and
calculate statistics. The procedure accesses DICTIONARY tables, which are special read-only
PROC SQL tables or views that contain information about all the SAS libraries and SAS data
sets.

Challenges:
• It is not a standard SAS procedure that requires a certain set of statements or options.

There is a learning curve to understand the syntax and take full advantages of its
capabilities.

• It does not create a production-quality report, and you cannot manipulate the printed
table with style overrides.

Best Use Case:
• For the average SAS programmer, PROC SQL is best used for generating macro

variables in one step, such as a list of unique variable values, population totals, or
minimum and maximum values.

Example Code:
 proc sql noprint;
 select count(country) into :usa from sashelp.prdsal2
 where country="U.S.A.";
 select count(country) into :mex from sashelp.prdsal2
 where country="Mexico";

(code continued)

9

 select count(country) into :can from sashelp.prdsal2
 where country="Canada";
 quit;

 proc sql noprint;
 select distinct(state) into :stlist1 separated by ', '
 from sashelp.prdsal2;
 quit;

• Access to DICTIONARY tables is also very useful when you need information about
libraries, data sets, and variables.

Example Code:
 proc sql;
 select *
 from dictionary.tables
 where libname='WORK';
 quit;

Comparisons: PROC SQL functionality overlaps that of the DATASETS, CONTENTS, FREQ,
MEANS, and SORT procedures. It also has some of the same capabilities as the DATA step.
It is difficult to provide a set rule for when to use it over other procedures. If you need a
Cartesian product, use PROC SQL. If you understand merging with the IN= operator more
than joins, use a DATA step with the MERGE statement.
The code below demonstrates generating the same counts with both PROC SQL and PROC
FREQ.

Example Code:
 proc sql;
 select product, count(product) as n
 from sashelp.prdsal2
 group by product
 order by product;
 quit;

 proc freq data=sashelp.prdsal2;
 tables product /nopercent nocum;
 run;

TRANSPOSE PROCEDURE
Description: PROC TRANSPOSE restructures data. It changes data sets from long and
narrow to wide and short, or vice versa.
Challenges:

• It usually requires that data be sorted first.
• Controlling the resulting variable names can be challenging; to do that, sometimes you

must use two PROC TRANSPOSE steps.
Best Use Case: Use PROC TRANSPOSE with a data set that is unique—either within a set of
BY variables or over the entire data set—where you need to create new numeric variables
named after the value of a categorical variable.

10

Example Code:
 proc transpose data=sashelp.stocks out=test;
 where year(date)=2005;
 by stock;
 id date;
 var close;
 run;

Comparisons: Using a DATA step can transpose data with the use of ARRAY, DO, and
OUTPUT statements. It often provides more control over the resulting variables, and you
can include any other DATA step functionality that you need. Using a DATA step as an
alternative to PROC TRANSPOSE is daunting for some programmers because of the use of
arrays.
Transposing multiple variables is a challenging task. The code below provides a comparison
of the steps needed to use PROC TRANSPOSE and a DATA step that accomplishes the same
task.
Transposing multiple variables with PROC TRANSPOSE requires multiple steps: a PROC
SORT step, two PROC TRANSPOSE steps, and a DATA step.

Example Code:
 proc sort data=sashelp.prdsale out=prdsale;
 where product='SOFA' and year=1993 and region='EAST';
 by country division prodtype;
 run;

 proc transpose data=prdsale out=sale1 prefix=predict_;
 by country division prodtype;
 id month;
 var predict;
 run;

 proc transpose data=prdsale out=sale2 prefix=actual_;
 by country division prodtype;
 id month;
 var actual;
 run;

 data all1;
 merge sale1 sale2;
 by country division prodtype;
 run;

The DATA step code below accomplishes the same task of transposing the data as the
previous four steps.

Example Code:
 data all2;
 set prdsale;
 by country division prodtype;

(code continued)

11

 array pred{12} predict_Jan predict_Feb predict_Mar predict_Apr
 predict_May predict_Jun predict_Jul predict_Aug
 predict_Sep predict_Oct predict_Nov predict_Dec;
 array actl{12} actual_Jan actual_Feb actual_Mar actual_Apr
 actual_May actual_Jun actual_Jul actual_Aug
 actual_Sep actual_Oct actual_Nov actual_Dec;
 array vals{12} $ ('Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Aug'
 'Sep' 'Oct' 'Nov' 'Dec');
 retain predict: actual_:;

 do i=1 to 12;
 if put(month,monname3.)=vals{i} then do;
 pred{i}=predict;
 actl{i}=actual;
 end;
 end;
 if last.prodtype;
 drop actual predict quarter year vals: i;
 run;

STATISTICAL-ESQUE PROCEDURES
For the purposes of this paper, statistical-esque procedures are those that enable you to
summarize your data and calculate various statistics. The results might or might not be in
final, report-quality form.

FREQ PROCEDURE
Description: PROC FREQ gives counts and percentages. It can also generate statistics, like
Fisher’s exact test or the chi-square test.

Challenges:
• PROC FREQ will not insert categories that are not present in the data with a count of

zero, even when you apply a format that contains the category that does not exist in the
data.

• The OUT= and ODS output data sets do not contain the same variables or structure.
• It is not easy to change the format of the statistics for one-way tables. For example, you

cannot display the counts with commas without making a change to the underlying table
template.

• You can get overall percentages for a whole data set or within a BY group, but you
cannot generate customized percentages.

Best Use Case:
• PROC FREQ is often used to create data sets with total counts that can be used later as

denominators, when merged with detail data.
• PROC FREQ is also extremely useful for checking your data to ensure that it contains all

expected categories. An example is shown in Output 3.

Example Code:
 proc freq data=sashelp.prdsal2;
 tables country*product / list out=freqs;
 run;

12

Output 3. PROC FREQ Output

Comparisons: PROC REPORT and PROC TABULATE also calculate counts and percentages.
They might require more coding to get the same information, but they enable you to have
more control over formatting and table structure.
The PRELOADFMT option, in both the REPORT and TABULATE procedures, will display values
that are present in the format but are not present in the data set.

PROC TABULATE can calculate subtotals, which PROC FREQ cannot.

Example Code:
 proc tabulate data=sashelp.prdsal2 format=8.;
 class country product;
 table country*(product all='SubTotal') all='Total', N;
 run;

MEANS AND SUMMARY PROCEDURES
Description: PROC MEANS calculates statistics, such as N, sum, mean, minimum,
maximum, standard error, and percentiles. PROC SUMMARY is very similar to PROC MEANS:
it computes the same descriptive statistics. By default, the SUMMARY procedure does not
produce printed output. Also, if the VAR statement is omitted, PROC SUMMARY produces a
simple count of observations.

Challenges:
• The procedures do not calculate percentages.

• The structure of the report output is either difficult or impossible to change.

13

Best Use Case: Use PROC MEANS when you want to generate data sets with statistics,
totals, and overall. Simultaneously, use it to add records, with a count of zero, for values
that are not present in the data. See Output 4 for an example of the PROC MEANS output.

Example Code:
 proc format;
 value $prod 'BED'='BED' 'CHAIR'='CHAIR'
 'DESK'='DESK' 'SOFA'='SOFA' 'TABLE'='TABLE';
 run;

 proc means data=sashelp.prdsal2 completetypes nway;
 format product $prod.;
 class product / preloadfmt;
 var actual predict;
 output out=means mean= sum= n= /autoname;
 run;

Output 4. PROC MEANS Output

Comparisons:
• PROC TABULATE calculates the same statistics as the MEANS and SUMMARY procedures,

as well as percentages.

Example Code:
 proc tabulate data=sashelp.prdsal2;
 class year country;
 var actual;
 table country='', year*actual=''*(mean median);
 run;

• PROC SQL calculates statistics and has the additional capability of generating macro
variables with the calculated values.

14

Example Code:
 proc sql noprint;
 select max(actual) into :actmax from sashelp.prdsal2;
 quit;

UNIVARIATE PROCEDURE
Description: PROC UNIVARIATE calculates summary statistics, generates quantiles and
percentiles, performs tests for goodness of fit, and produces probability plots.

Challenges:
• The default output contains a large number of tables and data. To limit the generated

output, you have to use an ODS SELECT statement or an ODS EXCLUDE statement.
• There are no options in the PROC UNIVARIATE statement for subsetting to get only the

statistics that you are interested in. You have to create an output data set and
manipulate it to get only the statistics that you need.

Best Use Case: Use it to generate custom (nondefault) percentiles.

Example Code:
 proc univariate data=sashelp.prdsal2;
 var actual;
 output out=univ pctlpts=15 25 35 pctlpre=actual_p;
 run;

Comparisons: PROC MEANS calculates the same summary statistics as PROC UNIVARIATE.
If you do not need the statistical testing or plotting capabilities, either procedure can be
used. It is a matter of programmer preference.

Example Code:
 proc means data=sashelp.prdsal2 min max mean mode;
 class product;
 var predict actual;
 output out=stats mean= sum= /autoname;
 run;

REPORTING PROCEDURES
For the purposes of this paper, reporting procedures are those that are used to create final,
publication-quality report tables.

PRINT PROCEDURE
Description: The PRINT procedure displays data. Summary totals can be requested for
numeric variables.
Challenges:
• The amount of customization in the final table is limited. For example, PROC PRINT

cannot either apply formatting based on another column or include additional text.
• The values of numeric columns are simply displayed. Their values cannot be added,

subtracted, multiplied, or divided against each other.
• An output data set cannot be created. There is no OUT= data set option, and PROC

PRINT does not support the ODS OUTPUT statement.

15

Best Use Case:
• Use PROC PRINT when you need a quick view of your data to ensure it has the variables

and values that you expect.

Example Code:
 proc print data=sashelp.prdsal2(obs=30);
 var country state product actual predict;
 run;

• PROC PRINT is the easiest way to get a report when your data set contains everything
you need and it does not require additional formatting, or you have a small amount of
data and want a grand total. Output 5 provides an example with a summary row at the
end.

Example Code:
 proc print data=sashelp.class grandtotal_label='Grand Total';
 var name age height weight;
 sum height weight;
 run;

Output 5. PROC PRINT Output with a Summary Row

16

Comparisons: PROC REPORT can simply display data, but it can also apply custom
formatting and transpose the data.

Example Code:
 proc report data=sashelp.prdsal2;
 column country product predict actual;
 define country / group;
 define product / group;
 break after country / summarize;
 compute actual;
 if actual.sum > predict.sum then
 call define('actual.sum','style',
 'style=[foreground=green]');
 endcomp;
 run;

REPORT PROCEDURE
Description: PROC REPORT generates both detailed and summary reports, meaning it can
print all observations from your data set or group them into categories. It can calculate
statistics, create new variables, and transpose data.

Challenges:
• There is a learning curve to using the compute block, the most powerful aspect of PROC

REPORT.
• It does not provide a subtotals breakdown like PROC TABULATE can generate.
Best Use Case: Use it to create a final report that includes customized headers and text,
coloring based on certain values (trafficlighting), and calculations based on various columns.
See Output 6 for an example of a report that uses a customized header.

Example Code:
 proc report data=sashelp.prdsal2;
 column country state product predict actual diff;
 define country / group noprint;
 define state / group;
 define product / group;
 define diff / computed 'Dif=Pred-Act' format=dollar10.2;
 break after country / summarize;

 compute before country;
 line 'Section for ' country $20.;
 endcomp;
 compute after country;
 state='Total';
 endcomp;
 compute diff;
 diff=predict.sum-actual.sum;
 endcomp;
 run;

17

Output 6. PROC REPORT Output (Partial)

Comparisons: PROC REPORT combines a lot of the capabilities of the PRINT and TABULATE
procedures. PROC PRINT should be used for small, simple reports. PROC TABULATE easily
generates subtotals and percentages that require a large amount of code in PROC REPORT.

Example Code:
 proc format;
 picture mypct low-high='009.9%';
 run;

 proc tabulate data=sashelp.prdsal2;
 class prodtype product;
 var actual;
 table prodtype*product, actual*(sum*f=dollar12.
 pctsum<product>*f=mypct.);
 run;

18

TABULATE PROCEDURE
Description: The TABULATE procedure calculates statistics and percentages. It is capable
of summarizing at a categorical level and generating overall totals. It can create columns
from values in the input data set.
Challenges:
• The syntax for the TABLE statement has a learning curve. The statement can be long,

and it might be confusing due to the asterisks, brackets, and denominator definitions.
• The procedure cannot perform basic mathematical calculations, such as adding,

subtracting, multiplying, or dividing analysis variables. However, there is a special case
where you can calculate a ratio by using two analysis variables and the PCTSUM
statistic.

• You can apply formatting to a variable, but that formatting cannot be based on the value
of another column.

• You cannot insert text in the middle of the table.
Best Use Case: PROC TABULATE generates percentages with very little code. It can also
calculate totals and subtotals for various combinations of class variables. Output 7 shows an
example.

Example Code:
 proc tabulate data=sashelp.prdsal2;
 class country product;
 var actual;
 tables country*product all='TOTALS'*product='',
 actual*(sum*f=dollar12. pctsum<product>);
 run;

19

Output 7. PROC TABULATE Output

Comparisons: PROC REPORT generates the same statistics as PROC TABULATE. Its
additional capabilities are manipulating cell values and formatting based on other columns.

Example Code:
 proc report data=sashelp.prdsal2;
 column country product predict actual diff;
 define country / group;
 define product / group;
 define diff / computed 'Dif=Pred-Act' format=dollar10.2;
 break after country / summarize;
 compute diff;
 diff=predict.sum-actual.sum;
 if _break_ ^= '' then do;
 if country='U.S.A.' then call define('diff','style',
 'style=[background=lightblue]');
 else if country='Mexico' then call define('diff','style',
 'style=[background=lightgreen]');
 else if country='Canada' then call define('diff','style',
 'style=[background=lightred]');
 end;
 endcomp;
 run;

20

CONCLUSION
This paper focused on commonly used Base SAS procedures. The capability of most
procedures overlaps with at least one other procedure. Each procedure has its strengths and
its challenges.
Use the information in this paper to help you decide whether it would be easier to
accomplish a task with a different procedure. Or you can confirm that you are already doing
the right thing!

REFERENCES
McLawhorn, Kathryn. 2011. “Choosing the Road Less Traveled: Performing Similar Tasks
with either SAS® DATA Step Processing or with Base SAS® Procedures.” In Proceedings of
the SAS Global 2011 Conference. Cary, NC: SAS Institute Inc. Available at
support.sas.com/resources/papers/proceedings11/259-2011.pdf.

McLawhorn, Kathryn. 2013. “Tips for Generating Percentages Using the SAS® TABULATE
Procedure.” In Proceedings of the SAS Global 2013 Conference. Cary, NC: SAS Institute Inc.
Available at support.sas.com/resources/papers/proceedings13/134-2013.pdf.

McLawhorn, Kathryn. 2014. “Which Base procedure is best for simple statistics?” Available
at blogs.sas.com/content/sgf/2014/05/09/which-base-procedure-is-best-for-
simple-statistics/. Last modified October 1, 2014. Accessed on January 1, 2019.

SAS Institute Inc. SAS Note 52520. “Tips for determining which Base SAS® procedure to
choose.” Available at support.sas.com/kb/52/520.html.

ACKNOWLEDGMENTS
The author is immensely grateful to Marcia Surratt, Kathryn McLawhorn, Sharon Hamrick,
and Jerry Leonard for contributing to this paper, and to Chris Dahlin, who edited the paper.

RECOMMENDED READING
• Eslinger, Jane. 2015. “The REPORT Procedure: A Primer for the Compute Block.” In

Proceedings of the SAS Global 2015 Conference. Cary, NC: SAS Institute Inc. Available
at support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf.

• McLawhorn, Kathryn. 2017. “Tables and Graphics That Will ‘FREQ’ You Out.” In
Proceedings of the SAS Global 2017 Conference. Cary, NC: SAS Institute Inc. Available
at support.sas.com/resources/papers/proceedings17/SAS0404-2017.pdf.

• Olson, Diane. 2014. “Nitty Gritty Data Set Attributes.” In Proceedings of the SAS Global
2014 Conference. Cary, NC: SAS Institute Inc. Available at
support.sas.com/resources/papers/proceedings14/SAS164-2014.pdf.

• SAS Institute Inc. 2018. Base SAS® 9.4 Procedures Guide, Seventh Edition. Cary, NC:
SAS Institute Inc. Available at
go.documentation.sas.com/?docsetId=proc&docsetTarget=titlepage.htm&docsetV
ersion=9.4&locale=en.

https://support.sas.com/resources/papers/proceedings11/259-2011.pdf
http://support.sas.com/resources/papers/proceedings13/134-2013.pdf
https://blogs.sas.com/content/sgf/2014/05/09/which-base-procedure-is-best-for-simple-statistics/
https://blogs.sas.com/content/sgf/2014/05/09/which-base-procedure-is-best-for-simple-statistics/
http://support.sas.com/kb/52/520.html
http://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0404-2017.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0404-2017.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0404-2017.pdf
https://support.sas.com/resources/papers/proceedings14/SAS164-2014.pdf
https://go.documentation.sas.com/?docsetId=proc&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en
https://go.documentation.sas.com/?docsetId=proc&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en

21

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
 Jane Eslinger
 SAS Institute Inc.
 SAS Campus Drive
 Cary, NC 27513
 Email: support@sas.com
 Web: support.sas.com/en/support-home.html

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

mailto:support@sas.com
https://support.sas.com/en/support-home.html

	Abstract
	Introduction
	Utility procedures
	append procedure
	compare procedure
	contents procedure
	DATASETS PROCEDURE
	format procedure
	sort procedure
	sql procedure
	transpose procedure

	STATISTICAL-ESQUE PROCEDURES
	FREQ PROCEDURE
	MEANS and summary procedures
	UNIVARIATE PROCEDURE

	REPORTING PROCEDURES
	PRINT PROCEDURE
	report procedure
	tabulate procedure

	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information

