Paper 3068-2019

It's All about the Base—Procedures
Jane Eslinger, SAS Institute Inc.

ABSTRACT

As a Base SAS® programmer, you spend your day manipulating data and creating reports.
You know there is a procedure that can give you what you want. As a matter of fact, there
is probably more than one procedure to accomplish the task. Which one should you use?
How do you remember which procedure is best for which task?

This paperis all about the Base procedures. It explores the strengths of the commonly
used, nongraphing procedures. It discusses the challenges of using each procedure and
compares it to other procedures that accomplish similar tasks. The first section of the paper
looks at utility procedures that gatherand structure data: APPEND, COMPARE, CONTENTS,
DATASETS, FORMAT, SORT, SQL, and TRANSPOSE. The next section discusses the Base
SAS procedures that work with statistics: FREQ, MEANS/SUMMARY, and UNIVARIATE. The
final section provides information about reporting procedures: PRINT, REPORT, and
TABULATE.

INTRODUCTION

The beauty of SAS is that usually there is more than one method to get what you need.
That is a good thing! It can also be a challenge—you might not know if there is a more
efficient method ora method that requires a lot less code.

This paper provides brief descriptions of the most frequently used Base SAS procedures.
More importantly, it provides ideas for the best way to use the procedure and a comparison
of when another procedure or technique might be betterto use. Not every functionality of
every procedure can be listed here. Nor can every comparison be made. Hopefully this
paper will provide ideas on how to accomplish the tasks you need to accomplish, and it
might encourage you to try multiple methods foraccomplishing those tasks.

Please note that, due to space considerations, this paperfocuses on using these procedures
for SAS®9 data sets (and not for database tables).

UTILITY PROCEDURES

Forthe purposes of this paper, the utility procedures are those that enable you to get
information about the dataorto complete pre-analysis tasks such as restructuring the data.

APPEND PROCEDURE

Description: PROC APPEND is designed to add the observationsin one data set (DATA=
data set) to the bottomof another data set (BASE= data set). This process is also known as
concatenating data sets.

Challenges:

e The data structure of the two data sets must match. The variable names, lengths, and
types must be the same in the two data sets. By default, if the structures do not match,
PROC APPEND will not append the observations. The FORCE option will force the append
process to occurif the structure is different. However, in this case, variables in the
DATA= data set that are not in the BASE= data set are not in the resulting data set.

e Youcannot make changes to the observations in the BASE= data set orto the
observations being added. The observations are simply appended.

Best Use Case: PROC APPEND has a very narrow focus—to add observations fromone data
set to another. It does not open the data set being added to. Therefore, it uses a limited
amount of I/O. The ideal circumstance for using PROC APPEND is when you have routine or
cyclical data and you need to add the latest datato the historical data.

Example Code:

data work.prdsal2;

set sashelp.prdsal?2;
run;

data sale2000;
length country $10 state $22 county $20 prodtype product $10;
input country $ state $ county actual predict prodtype $ product
S year
quarter monyr monyy.;
month=month (monyr) ;
datalines;
U.S.A California . 1702.50 40.00 FURNITURE BED 2000 1 JANOO

run;

proc append base=prdsal2 data=sale2000;
run;

Comparisons: A DATA step that uses the SET statement can accomplish the same task as
PROC APPEND. With PROC APPEND, the I/O to produce the bigger data setis a lot lower
than when using a DATA step. The advantages of using a SET statementin a DATA step
include the ability to rename the variables from each data set, change lengths orother
attributes, or manipulate the data.

Example Code:

data allsale;
set prdsal2(rename=(predict=orig predict))
sale2000 (rename= (predict=orig predict));

predict=orig predict*1.01;
run;

COMPARE PROCEDURE

Description: PROC COMPARE compares the variable values and attributes of two data sets
and generates a report of the differences.

Challenges:

e Thereports that are generated by PROC COMPARE contain the differences between the
two data sets. It does not display values that are the same.

¢ When specified, the COMPARE procedure compares the data sets according to the BY
and ID values. However, it does not provide a simple list of BY or ID values that are in
one data set but not the other, orthat are in both.

e There are no options with PROC COMPARE that will prevent the numeric values from
being displayed in scientific notation or character values frombeing truncated at 20

characters. PROC COMPARE does not have an underlying table template that can be
modified with PROC TEMPLATE to change the formatting of the printed output. An output
data set must be created and then printed to control the formatting for long values.

e It is difficult to look among all the differences for many records and variables that could
all be different.

Best Use Case: Use PROC COMPARE when you are confident that the data sets are very
nearly the same and you want to find the one or two variables that might have differences.

When developing the program or when expecting a large number of differences, it might be
best to suppress the output generated by PROC COMPARE by using the NOPRINT option.
Instead, create a data set and then print that.

Example Code:

proc compare data=sashelp.prdsal2 comp=allsale noprint outdif
outcomp outnoequal outbase out=diffs;
run;

Comparisons: There is no other procedure that has similar functionality to PROC
COMPARE. It is possible to merge data sets and use assignment logic to compare the values
of two data sets. That would be a substantial programming challenge, based on the number
of variables and their type along with the desired structure of the final data set.

Alternatively, in theory, you can compare the twofiles by converting the data sets totext
files and then using a comparison tool that is not offered by SAS.

CONTENTS PROCEDURE

Description: PROC CONTENTS provides data set attribute information and engine and host
information, as well as a list of variables within the data set. The attribute information
includes the number of observations, the number of variables, whether a data set is sorted,
whetherit has indexes, and what its encoding is. The engine and host information section
provides the file size and the version of SAS and the operating systemthat created the data
set. Forthe list of variables, PROC CONTENTS provides details about types, lengths,
formats, informats, and labels.

PROC CONTENTS does not read or process the data. It reads only the data set header
information.

Challenges:
e PROC CONTENTS does not report the number of observations fora DATA step view.

e The Created by and Last Modified by characteristics are unique to z/0OS sequential
access bound libraries. PROC CONTENTS does not provide these characteristics in UNIX
or Microsoft Windows environments.

e PROC CONTENTS does not provide the humber of observationsthat are contained in an
external database, such as an Oracle table.

Best Use Case: Use PROC CONTENTS to check that your data set has the variables that
you expect it to have, including their labels, types, and formats (Output 1 shows an
example of a list of variables). The generated report is also a good way to see the SAS
version and the encoding that was used to create the data set, which is critical information

if you get a cross-environment data access error afteryou try to use the data set.

Example Code:

proc contents data=sashelp.prdsal2 out=contents;

run;
Alphabetic List of Variables and Attributes

Variable Type Len Format Informat | Label

4 ACTUAL MNum 8 DOLLAR12:2 Actual Sales
1| COUNTRY | Char = 10 3CHAR10. Country

3| COUNTY Char | 20| 3CHAR20. County
10 | MONTH MNum g MOMNAMES. Month
11 | MONYR HNum 8 MONYY. MOMNYY . | Month/Year
5| PREDICT HNum 8 DOLLAR122 Predicted Sales
6 PRODTYPE Char | 10 $CHAR10. Product Type
T | PRODUCT | Char = 10 3$CHAR10. Product

9 | QUARTER | Num 88 Quarter

2 | STATE Char | 22 JCHARZ2. State/Province
8 | YEAR MNum 84 Year

Output 1. Variable List Created with PROC CONTENTS

Comparisons: A PROC SQL step that references a DICTIONARY table (columns, indexes,
members, and tables) can provide much of the same information that PROC CONTENTS
does.

DICTIONARY.INDEXES provides more information about indexes than PROC CONTENTS. The
below code demonstrates the PROC SQL step.

Example Code:

ods output indexes=indexzipl;
proc contents data=sashelp.zipcode out=contentszip;
run;

proc sqgl;

create table indexzip?2

as select *

from dictionary.indexes

where libname='SASHELP' and memname='ZIPCODE';
quit;

DATASETS PROCEDURE

Description: PROC DATASETS enables you to change variable attributes, rename variables,
createindexes, and see the contents of a data set.

Challenges:

e PROC DATASETS enables you to copy and rename variables only. It cannot drop
variables.

e It does not provide the number of observations that are contained in an external
databasetable.

Best Use Case:

e PROC DATASETS s often used to delete allthe data setsin a library. However, be
careful when you do this, because once deleted, you cannot get themback.

Example Code:

proc datasets library=work kill;
quit;
e Use PROC DATASETS to modify formats and labels without having to run a DATA step—it

is less resource-intensive (Output 2 shows a log that confirms that modification is
successful).

Example Code:

data work.prdsal2;
set sashelp.prdsal?2;
run;

proc datasets library=work nolist;
modify prdsal2;
label product='Product Name';
format country $char20.;

quit;

f****Best Use Case®***/

[*Modify labels and formats®/

proc datasets library=work nolist;
NOTE: Writing HTML Body file: sashtml.htm

1+
5]
7
8

9 modify prdsal2;

10 label product='Product Name';
11 format country Schar20.:

12 quit;

MOTE: MODIFY was successful for WORK.FRDSALZ.DATA.
I[NOTE: PROCEDURE DATASETS used (Total process time):
real time 0.20 seconds
cpu time 0.12 seconds

Output 2. Log Showing That a PROC DATASETS Modification Is Successful

Comparisons:
e PROC DATASETS and PROC CONTENTS provide the same information about either a data

set or all the data setsin a library. For content information, use the procedure that you
are most comfortable with.

Example Code:

proc datasets library=work;
contents data=prdsal?2;
quit;

proc contents data=prdsal2;
run;

e PROC SQL provides data set information and enables you to change a variable name at
the same time. Keep in mind that PROC SQL will process the entire data set, not just the
headerinformation.

Example Code:

proc datasets library=work nolist;
modify prdsal2;
index create state / nomiss;
format monyr yymon7.;

quit;

proc sgl noprint;
create table prdsal2b as
select country, state, county, actual, predict, prodtype, product,
year, quarter as gtr, month, monyr format=yymon7.
from sashelp.prdsal?2;
create index state on prdsal2b(state);
quit;

FORMAT PROCEDURE

Description: PROC FORMAT creates informats, which are instructions for how Base SAS
should read and interpret raw values. It also creates formats and picture formats, which are
instructions for how to display data values.

Formats are created either by hardcoding the values or by using a CNTLIN= data set, which
contains variables with the desired value-label combinations.

Challenges: Forethought is necessary: you must know how you want your data values
displayed.

Best Use Case:

e Generally, PROC FORMAT is used to create a format so that raw values, such as zero
and one, are displayed as another value, such as No and Yes.

Example Code:

data work.prdsal2;
set sashelp.prdsal?2;
run;

proc format;
value $ typ
'FURNITURE'='Residential'
'OFFICE'="'Commercial'
other='0Other';
run;
(code continued)

data prdsalza;

length prodtype $12;

format prodtype $12.;

set prdsal?2;

prodtype=put (prodtype, Styp.) ;
run;

e Creating a format is also needed when you want to reassign values (in a DATA step); to
group values or categories when calculating statistics or creating reports in other
procedures; orto generate rows or placeholders for categories that are not present in
the data. The code below demonstrates using a format to group values in PROC FREQ

output.
Example Code:

proc format;
value $ func
'BED', 'SOFA'='Soft'
'DESK', '"CHAIR'="Hard';
run;

proc freq data=sashelp.prdsal?2;
format product $func.;
table product;

run;

Comparisons: There is no other procedure that has similar functionality to PROC FORMAT.
In a DATA step, you can choose to use IF-THEN or IF-THEN/ELSE statements to
conditionally assign a new value based on an old value. To an extent, one method is not

betterthan theother, because you still must type out both the new and old values.

Example Code:

data work.prdsal2;
set sashelp.prdsal?2;
run;

data prdsal2b;
length prodtype $12;
set prdsal?2;
if prodtype='FURNITURE' then prodtype='Residential';
else if prodtype='OFFICE' then prodtype='Commercial';
else prodtype='Other';

run;

SORT PROCEDURE
Description: The SORT procedure sorts data and can remove duplicate observations.

Challenges: Sorting data is a common, necessary practice. However, PROC SORT will
createa temporary utility file that is approximately twice the size of the original data set.
The amount of memory and disk space used by PROC SORT can be problematic for large
data sets.

Best Use Case: You should sort your data with PROC SORT when the other procedures that
you are using for analytics and reporting require sorting. However, data that is sorted or
grouped prior to being brought into SAS does not need re-sorting. In most procedures, you
can take advantage of the NOTSORTED option in the BY statement. This option will group

together observations that have the same BY value. However, it does not put theminto any
specific order, such as by numeric value. Also, using a CLASS statement within a procedure
does not require the data to be presorted.

Example Code:

proc sort data=sashelp.prdsal2 out=prdsal2;
by year product country;
run;

Comparisons: PROC SQL can sort data sets. The code below demonstrates using both
PROC SORT and PROC SQL to sort a data set and keep only the unigue combinations of
COUNTRY, STATE, and PRODUCT. The two steps generate identical data sets.

Example Code:

proc sort data=sashelp.prdsal2 out=ungprdl (keep=country state product)
nodupkey;
by country state product;
run;

proc sgl noprint;
create table ungprd2 as
select distinct country, state, product
from sashelp.prdsal?2
order by country, state, product;
quit;

SQL PROCEDURE

Description: PROC SQL is kind of a super utility procedure. It lets you sort data, merge
data sets, create indexes, and rename variables. You can also create macro variables and
calculate statistics. The procedure accesses DICTIONARY tables, which are special read-only
PROC SQL tables orviews that contain information about all the SAS libraries and SAS data
sets.

Challenges:

e It is not a standard SAS procedure that requires a certain set of statements or options.
There is a learning curve to understand the syntax and take full advantages of its
capabilities.

e It does not create a production-quality report, and you cannot manipulate the printed
table with style overrides.

Best Use Case:

e Forthe average SAS programmer, PROC SQL is best used for generating macro
variables in one step, such as a list of unique variable values, population totals, or
minimum and maximum values.

Example Code:

proc sgl noprint;

select count (country) into :usa from sashelp.prdsal?
where country="U.S.A.";

select count (country) into :mex from sashelp.prdsal?
where country="Mexico";

(code continued)

select count (country) into :can from sashelp.prdsal?2
where country="Canada";
quit;

proc sgl noprint;
select distinct (state) into :stlistl separated by ', '
from sashelp.prdsal?2;
quit;
e Accessto DICTIONARY tablesis also very useful when you need information about
libraries, data sets, and variables.

Example Code:

proc sqgl;
select *
from dictionary.tables
where libname='WORK';
quit;

Comparisons: PROC SQL functionality overlaps that of the DATASETS, CONTENTS, FREQ,
MEANS, and SORT procedures. It also has some of the same capabilities as the DATA step.

It is difficult to provide a set rule for when to use it over other procedures. If you need a
Cartesian product, use PROC SQL. If you understand merging with the IN= operator more
than joins, use a DATA step with the MERGE statement.

The code below demonstrates generating the same counts with both PROC SQL and PROC
FREQ.

Example Code:

proc sqgl;
select product, count (product) as n
from sashelp.prdsal?
group by product
order by product;
quit;

proc freq data=sashelp.prdsal?2;
tables product /nopercent nocum;
run;

TRANSPOSE PROCEDURE

Description: PROC TRANSPOSE restructures data. It changes data setsfromlong and
narrow to wide and short, or vice versa.

Challenges:
e It usually requires that data be sorted first.

e Controlling the resulting variable names can be challenging; to do that, sometimes you
must use two PROC TRANSPOSE steps.

Best Use Case: Use PROC TRANSPOSE with a data set that is unique—either within a set of
BY variables or over the entire data set—where you need to create new numeric variables
named afterthe value of a categorical variable.

Example Code:

proc transpose data=sashelp.stocks out=test;
where year (date)=2005;
by stock;
id date;
var close;
run;

Comparisons: Using a DATA step can transpose data with the use of ARRAY, DO, and
OUTPUT statements. It often provides more control over the resulting variables, and you
caninclude any other DATA step functionality that you need. Using a DATA step as an
alternative to PROC TRANSPOSE is daunting for some programmers because of the use of

arrays.

Transposing multiple variables is a challenging task. The code below provides a comparison
of the steps needed to use PROC TRANSPOSE and a DATA step that accomplishes the same

task.

Transposing multiple variables with PROC TRANSPOSE requires multiple steps: a PROC
SORT step, two PROC TRANSPOSE steps, and a DATA step.

Example Code:

proc sort data=sashelp.prdsale out=prdsale;
where product='SOFA' and year=1993 and region='EAST';
by country division prodtype;

run;

proc transpose data=prdsale out=salel prefix=predict ;
by country division prodtype;
id month;
var predict;

run;

proc transpose data=prdsale out=sale2 prefix=actual ;
by country division prodtype;
id month;
var actual;

run;

data alll;
merge salel sale2;
by country division prodtype;
run;,
The DATA step code below accomplishes the same task of transposing the dataas the
previous four steps.

Example Code:

data all2;
set prdsale;
by country division prodtype;

(code continued)

10

array pred{1l2} predict Jan predict Feb predict Mar predict Apr
predict May predict Jun predict Jul predict Aug
predict Sep predict Oct predict Nov predict Dec;

array actl{12} actual Jan actual Feb actual Mar actual Apr
actual May actual Jun actual Jul actual Aug
actual Sep actual Oct actual Nov actual Dec;

array vals{1l2} $ ('Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Aug'

'Sep' 'Oct' 'Nov' 'Dec');
retain predict: actual :;

do i=1 to 12;
if put (month,monname3.)=vals{i} then do;
pred{i}=predict;
actl{i}=actual;
end;
end;
if last.prodtype;
drop actual predict quarter year vals: 1i;
run;

STATISTICAL-ESQUE PROCEDURES

Forthe purposes of this paper, statistical-esque procedures are those that enable you to
summarize your data and calculate various statistics. The results might or might not be in

final, report-quality form.
FREQ PROCEDURE

Description: PROC FREQ gives counts and percentages. It can also generate statistics, like
Fisher's exact test or the chi-square test.

Challenges:

e PROC FREQ will not insert categoriesthat are not presentin the data with a count of
zero, even when you apply a format that contains the category that does not exist in the
data.

e The OUT=and ODS output data sets do not contain the same variables or structure.

e It is not easy to changethe format of the statistics for one-way tables. For example, you
cannot display the counts with commas without making a change to the underlying table
template.

¢ Youcanget overall percentages fora whole data set or within a BY group, but you
cannot generate customized percentages.

Best Use Case:

e PROC FREQ is often used to create data setswith total counts that can be used lateras
denominators, when merged with detail data.

e PROC FREQ is also extremely useful for checking your data to ensure that it contains all
expected categories. An example is shown in Output 3.

Example Code:

proc freq data=sashelp.prdsal?2;
tables country*product / list out=fregs;
run;

11

The FREQ Procedure

Cumulative | Cumulative
COUNTRY | PRODUCT | Frequency | Percent | Frequency Percent
Canada | BED 1152 5.00 1152 5.00
Canada | CHAIR 1152 5.00 2304 10.00
Canada | DESK 1152 5.00 3456 16.00
Canada SOFA 1152 5.00 4608 20.00
Mexico BED 1152 5.00 5760 25.00
Mexico CHAIR 1152 5.00 5912 30.00
Mexico DESK 1152 5.00 8064 35.00
Mexico SOFA 1152 5.00 9216 40.00
U.5.A. BED 3456 15.00 12672 55.00
LL5.A. CHAIR 3456 16.00 16128 70.00
LU.S.A. DESK 3458 16.00 19584 85.00
LU.5.A. SOFA 3456 15.00 23040 100.00

Output 3. PROC FREQ Output

Comparisons: PROC REPORT and PROC TABULATE also calculate counts and percentages.
They might require more coding to get the same information, but they enable you to have
more control over formatting and table structure.

The PRELOADFMT option, in both the REPORT and TABULATE procedures, will display values
that are present in the format but are not present in the data set.

PROC TABULATE can calculate subtotals, which PROC FREQ cannot.

Example Code:

proc tabulate data=sashelp.prdsal?2 format=8.;

class country product;

table country*(product all='SubTotal') all='Total', N;
runy,

MEANS AND SUMMARY PROCEDURES

Description: PROC MEANS calculates statistics, such as N, sum, mean, minimum,
maximum, standard error, and percentiles. PROC SUMMARY is very similar to PROC MEANS:
it computes the same descriptive statistics. By default, the SUMMARY procedure does not
produce printed output. Also, if the VAR statement is omitted, PROC SUMMARY produces a
simple count of observations.

Challenges:
e The proceduresdo not calculate percentages.
e The structure of the report output is either difficult orimpossible to change.

12

Best Use Case: Use PROC MEANS when you want to generate data sets with statistics,
totals, and overall. Simultaneously, use it to add records, with a count of zero, for values
that are not present in the data. See Output 4 for an example of the PROC MEANS output.

Example Code:

proc format;
value S$prod 'BED'='BED' 'CHAIR'='CHAIR'

'DESK'='DESK' 'SOFA'='SOFA' 'TABLE'='TABLE';

run;

proc means data=sashelp.prdsal?2 completetypes nway;

format product $prod.;

class product / preloadfmt;

var actual predict;

output out=means mean= sum= n= /autoname;

run;
The MEANS Procedure
Product | N Obs | Variable | Label N Mean Std Dev | Minimum | Maximum
BED 5760 | ACTUAL | Actual Sales 5760 644 1409447 654 5324375 0.0615385 3440.80
PREDICT Predicted Sales 6760 | 678.7320144 672.2739927] 3605.70
CHAIR 5760 | ACTUAL | Actual Sales 5760 641.5596563 6405110277] 3376.20
PREDICT Predicted Sales 6760 | 6941324808 6£91.6989891] 356490
DESK 5760 | ACTUAL | Actual Sales 5760 6455484375 | 656.2886439] 3415.30
PREDICT Predicted Sales 6760 | 696.0894495 687.8018861] 360910
SOFA 5760 | ACTUAL | Actual Sales 5760 674.3381707 | 673.9880104] 3515.60
PREDICT Predicted Sales 5760 | 6954524014 688.4784453] 363460

TABLE 0| ACTUAL @ Actual Sales]
PREDICT | Predicted Sales]

Output 4. PROC MEANS Output

Comparisons:

e PROC TABULATE calculates the same statistics as the MEANS and SUMMARY procedures,

as well as percentages.

Example Code:

proc tabulate data=sashelp.prdsal?2;
class year country;
var actual;

table country='"', year*actual=''* (mean median);

run;

e PROC SQL calculates statistics and has the additional capability of generating macro

variables with the calculated values.

13

Example Code:

proc sgl noprint;
select max (actual) into :actmax from sashelp.prdsal?2;
quit;

UNIVARIATE PROCEDURE

Description: PROC UNIVARIATE calculates summary statistics, generates quantiles and
percentiles, performs tests for goodness of fit, and produces probability plots.

Challenges:

e The default output contains a large number of tables and data. To limit the generated
output, you have touse an ODS SELECT statement oran ODS EXCLUDE statement.

e There are no options in the PROC UNIVARIATE statement for subsetting to get only the
statisticsthat you are interestedin. You have to create an output data set and
manipulate it to get only the statistics that you need.

Best Use Case: Use it to generate custom (nondefault) percentiles.
Example Code:

proc univariate data=sashelp.prdsal2;

var actual;

output out=univ pctlpts=15 25 35 pctlpre=actual p;
run;

Comparisons: PROC MEANS calculates the same summary statistics as PROC UNIVARIATE.
If you do not need the statistical testing or plotting capabilities, either procedure canbe
used. It is a matter of programmer preference.

Example Code:

proc means data=sashelp.prdsal?2 min max mean mode;
class product;
var predict actual;
output out=stats mean= sum= /autoname;

run;

REPORTING PROCEDURES

For the purposes of this paper, reporting procedures are those that are used to create final,
publication-quality report tables.

PRINT PROCEDURE

Description: The PRINT procedure displays data. Summary totals can be requested for
numeric variables.

Challenges:

e The amount of customization in the final table is limited. For example, PROC PRINT
cannot either apply formatting based on another column or include additional text.

e The values of numeric columns are simply displayed. Their values cannot be added,
subtracted, multiplied, or divided against each other.

e An output dataset cannot be created. There is no OUT = data set option, and PROC
PRINT does not support the ODS OUTPUT statement.

14

Best Use Case:

e Use PROC PRINT when you need a quick view of your data to ensure it has the variables
and values that you expect.

Example Code:

proc print data=sashelp.prdsal2 (obs=30);
var country state product actual predict;
run;

e PROC PRINT is the easiest way to get a report when your data set contains everything
you need and it does not require additional formatting, or you have a small amount of
data and want a grand total. Output 5 provides an example with a summary row at the
end.

Example Code:

proc print data=sashelp.class grandtotal label='Grand Total';
var name age height weight;
sum height weight;

run;

Obs | Name | Age Height Weight
1| Alfred 14 69.0 1125
2 | Alice 13 56.5 84.0
3 | Barbara | 13 65.3 98.0
4 Carol 14 62.8| 1025
5 | Henry 14 635 1025
6 | James 12 57.3 83.0
T | Jane 12 59.8 84.5
& | Janet 15 625, M25
9 Jeffrey 13 62.5 84.0
10 | John 12 59.0 99.5
11 | Joyce 1 51.3 50.5
12 | Judy 14 64.3 90.0
13 Louise 12 56.3 77.0
14 | Mary 15 66.5 1120
15 | Philip 16 720 1500
16 | Robert 12 64.8 128.0
17 | Ronald 15 67.0 133.0
18 | Thomas | 11 575 85.0
19 | William 15 66.5 1120

Grand Total 1184.4 | 1900.5

Output 5. PROC PRINT Output with a Summary Row

15

Comparisons: PROC REPORT can simply display data, but it can also apply custom
formatting and transpose the data.

Example Code:

proc report data=sashelp.prdsal2;
column country product predict actual;
define country / group;
define product / group;
break after country / summarize;
compute actual;
if actual.sum > predict.sum then

call define('actual.sum', 'style',
'style=[foreground=green]');
endcomp;
run;
REPORT PROCEDURE

Description: PROC REPORT generates both detailed and summary reports, meaning it can
print all observations from your data set or group theminto categories. It can calculate
statistics, create new variables, and transpose data.

Challenges:

e Thereis alearning curve to using the compute block, the most powerful aspect of PROC
REPORT.

e It does not provide a subtotals breakdown like PROC TABULATE can generate.

Best Use Case: Use it to create a final report that includes customized headers and text,
coloring based on certain values (trafficlighting), and calculations based on various columns.
See Output 6 for an example of a report that uses a customized header.

Example Code:

proc report data=sashelp.prdsal2;
column country state product predict actual diff;
define country / group noprint;
define state / group;
define product / group;
define diff / computed 'Dif=Pred-Act' format=dollarl0.2;
break after country / summarize;

compute before country;
line 'Section for ' country $20.;

endcomp;

compute after country;
state='Total';

endcomp;

compute diff;
diff=predict.sum-actual.sum;

endcomp;

run;

16

State Product | Predicted Sales | Actual Sales Dif=Pred-Act
Province
Section for Canada

British Columbia BED $226,369.00 $197,706.60 $27.662.40
CHAIR 5204,264 00 3200,905.20 $3,358.80

DESK $194,682.60 $186,262 20 $8.420.40

SOFA $230,587.20 | $216,282.60 514,304.60

Ontario BED 3210,796.20 | 319449360 $16,302.60
CHAIR 3206,632.80 $179,892.00 526,740.80

DESK 5206,857.80 $208,778.40 $-1,920.60

SOFA 3221.410.80 | $196,882.20 524,528.60

Quebec BED 3219,006.00 | 320473740 514.268.60
CHAIR 5226,808.20 $199,751.40 $26,056.80

DESK 5215,080.20 520255580 $12.524 40

SOFA 3227,037.60 | $200,777.40 526,260.20

Saskatchewan BED 519542960 $193,568.40 $1,861.20
CHAIR $210,690.00 $201,580.20 $9,109.80

DESK $228,223.80 $208,481.40 $19,742.40

SOFA 5209,140.20 3205,178.40 $3,961.80

Total $3431016.00 $3197833.20 $233182.80

Output 6. PROC REPORT Output (Partial)

Comparisons: PROC REPORT combines a lot of the capabilities of the PRINT and TABULATE
procedures. PROC PRINT should be used for small, simple reports. PROC TABULATE easily
generates subtotals and percentages that require a large amount of code in PROC REPORT.

Example Code:

proc format;
picture mypct low-high='009.9%"';
run;

proc tabulate data=sashelp.prdsal2;
class prodtype product;
var actual;
table prodtype*product, actual* (sum*f=dollarl2.
pctsum<product>*f=mypct.);
run;

17

TABULATE PROCEDURE

Description: The TABULATE procedure calculates statistics and percentages. It is capable
of summarizing at a categoricallevel and generating overall totals. It cancreate columns
from values in the input data set.

Challenges:

e The syntaxforthe TABLE statement has a learning curve. The statement can be long,
and it might be confusing due to the asterisks, brackets, and denominator definitions.

e The procedure cannot performbasic mathematical calculations, such as adding,
subtracting, multiplying, or dividing analysis variables. However, thereis a special case
where you can calculate a ratio by using two analysis variables and the PCTSUM
statistic.

e Youcan apply formatting to a variable, but that formatting cannot be based on the value
of another column.

e Youcannotinsert textin the middle of the table.

Best Use Case: PROC TABULATE generates percentages with very little code. It can also
calculate totals and subtotals for various combinations of class variables. Output 7 shows an
example.

Example Code:

proc tabulate data=sashelp.prdsal?2;
class country product;
var actual;
tables country*product all='TOTALS'*product="",
actual*(sum*f=dollarl2. pctsum<product>);
run;

18

Actual Sales
Sum PctSum
Country | Product
Canada | BED 5790.506 2472
CHAIR 5782,129 2448
DESK 5806,078 2521
SOFA 5819121 2561
Mexico | BED 5535408 2537
CHAIR $515,390 2442
DESK $523.075 2478
SOFA $536.,870 2544
U.S.A. |BED $2,384,338 24 58
CHAIR | $2,3597.564 2472
DESK | $2.383.207 24 63
SOFA | 52528197 26.06
TOTALS BED $3,710,252 2472
CHAIR | $3.695.384 24 62
DESK | 53,718,359 2478
S50FA | $3.884.188 25.88

Output 7. PROC TABULATE Output

Comparisons: PROC REPORT generates the same statistics as PROC TABULATE. Its
additional capabilities are manipulating cell values and formatting based on other columns.

Example Code:

proc report data=sashelp.prdsal2;
column country product predict actual diff;
define country / group;
define product / group;
define diff / computed 'Dif=Pred-Act' format=dollarl0.2;
break after country / summarize;
compute diff;
diff=predict.sum-actual.sum;
if break ~= "'' then do;
if country='U.S.A.' then call define('diff', 'style’',
'style=[background=lightblue] ') ;
else if country='Mexico' then call define('diff', 'style’,
'style=[background=lightgreen] ') ;
else if country='Canada' then call define('diff', 'style’,
'style=[background=lightred] ") ;
end;
endcomp;
run;

19

CONCLUSION

This paper focused on commonly used Base SAS procedures. The capability of most
procedures overlaps with at least one other procedure. Each procedure has its strengths and
its challenges.

Use the information in this paperto help you decide whether it would be easierto
accomplish a task with a different procedure. Or you can confirm that you are already doing
the right thing!

REFERENCES

McLawhorn, Kathryn. 2011. "Choosing the Road Less Traveled: Performing Similar Tasks
with either SAS® DATA Step Processing or with Base SAS® Procedures.” In Proceedings of
the SAS Global 2011 Conference. Cary, NC: SAS Institute Inc. Available at

support.sas.com/resources/papers/proceedingsll/259-2011.pdf.

McLawhorn, Kathryn. 2013. “Tips for Generating Percentages Using the SAS® TABULATE
Procedure.” In Proceedings of the SAS Global 2013 Conference. Cary, NC: SAS Institute Inc.
Available at support. sas. com/resources/papers/proceedings13/134-2013.pdf.

McLawhorn, Kathryn. 2014. "Which Base procedure is best for simple statistics?” Available
atblogs.sas.com/content/sgf/2014/05/09/which-base-procedure-is-best-for-
simple-statistics/. Last modified October 1, 2014. Accessedon January 1, 2019.

SAS Institute Inc. SAS Note 52520. “Tips for determining which Base SAS® procedure to
choose.” Available at support.sas.com/kb/52/520.html.

ACKNOWLEDGMENTS

The authoris immensely grateful to Marcia Surratt, Kathryn McLawhorn, Sharon Hamrick,
and Jerry Leonard for contributing to this paper, and to Chris Dahlin, who edited the paper.

RECOMMENDED READING

e Eslinger, Jane. 2015. “"The REPORT Procedure: A Primer for the Compute Block.” In
Proceedings of the SAS Global 2015 Conference. Cary, NC: SAS Institute Inc. Available
at support. sas.com/resources/papers/proceedings15/SAS1642-2015.pdf.

e McLawhorn, Kathryn. 2017. “Tables and Graphics That Wil 'FREQ’ You Out.” In
Proceedings of the SAS Global 2017 Conference. Cary, NC: SAS Institute Inc. Available
at support. sas.com/resources/papers/proceedings17/SAS0404-2017.pdf

e OQOlson, Diane. 2014. “Nitty Gritty Data Set Attributes.” In Proceedings of the SAS Global
2014 Conference. Cary, NC: SAS Institute Inc. Available at
support.sas.com/resources/papers/proceedingsl4/SAS164-2014.pdf.

e SAS InstituteInc. 2018. Base SAS® 9.4 Procedures Guide, Seventh Edition. Cary, NC:
SAS Institute Inc. Available at
go.documentation.sas.com/?docsetId=proc&docsetTarget=titlepage.htm&docsetV

ersion=9.4&locale=en.

20

https://support.sas.com/resources/papers/proceedings11/259-2011.pdf
http://support.sas.com/resources/papers/proceedings13/134-2013.pdf
https://blogs.sas.com/content/sgf/2014/05/09/which-base-procedure-is-best-for-simple-statistics/
https://blogs.sas.com/content/sgf/2014/05/09/which-base-procedure-is-best-for-simple-statistics/
http://support.sas.com/kb/52/520.html
http://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0404-2017.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0404-2017.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0404-2017.pdf
https://support.sas.com/resources/papers/proceedings14/SAS164-2014.pdf
https://go.documentation.sas.com/?docsetId=proc&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en
https://go.documentation.sas.com/?docsetId=proc&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en

CONTACT INFORMATION

Yourcomments and questions are valued and encouraged. Contact the author at:

Jane Eslinger

SAS Institute Inc.

SAS Campus Drive

Cary, NC 27513

Email: support@sas.com

Web: support. sas.com/en/support-home. html

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

21

mailto:support@sas.com
https://support.sas.com/en/support-home.html

	Abstract
	Introduction
	Utility procedures
	append procedure
	compare procedure
	contents procedure
	DATASETS PROCEDURE
	format procedure
	sort procedure
	sql procedure
	transpose procedure

	STATISTICAL-ESQUE PROCEDURES
	FREQ PROCEDURE
	MEANS and summary procedures
	UNIVARIATE PROCEDURE

	REPORTING PROCEDURES
	PRINT PROCEDURE
	report procedure
	tabulate procedure

	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information

