
1

Paper 3061-2019

The Knight’s Tour in 3-Dimensional Chess
John R Gerlach; DataCeutics, Inc.

Scott M. Gerlach; Dartmouth College

ABSTRACT
Three dimensional chess typically uses three chess boards such that a chess piece

can traverse the several boards according to the rules for that piece. For example, the
knight can remain on the board where it resides or move to another successive board, then
move in a perpendicular fashion. In three-dimensional chess, the Knight’s Tour is a
sequence of moves on multiple 8x8 chess boards such that the knight visits each square
only once. Thus, for three boards, there would be 192 squares visited only once. The
paper, The Knight’s Tour in Chess – Implementing a Heuristic Solution (Gerlach 2015),
explains a SAS® solution for finding such tours on a single chess board, starting from any
square. This paper discusses several scenarios and SAS solutions for generating the
Knight’s Tour using multiple chess boards.

INTRODUCTION
The Knight’s Tour in three-dimensional (3-D) chess requires an understanding of how

the knight-piece moves from one board to another. While remaining on the same chess
board, the knight moves in its traditional L-shaped manner: two-steps in one direction, then
one step in another direction; otherwise, one step in one direction, then two steps in
another direction. However, in 3-D chess the knight moves a bit differently when it moves
to another board. Assuming that the knight sits on the lowest board, the knight can move
upward to the next board, then move two steps in a perpendicular direction, staying on the
board, of course. Similarly, the knight can move upward two boards, then move one step,
again in a perpendicular fashion. Obviously, the initial step might move downward
accordingly, depending on whether the knight started on the top or middle board.

As explained in the author’s previous paper, The Knight’s Tour in Chess –
Implementing a Heuristic Solution (Gerlach 2015), the solution to this interesting problem is

The Knight’s Tour – Implementing a Heuristic Solution, continued

2

premised on a simple heuristic rule first proposed by the German mathematician H.C.
Warnsdorff. The heuristic rule states:

Always move the knight to an adjacent, unvisited square with minimal degree.

The term “minimal degree” indicates the minimum number of unvisited available squares.

 This heuristic approach requires knowing how many moves the knight can make
from any position on the chess board. This information is stored in the data set
KNIGHTMOVES and used as a 2-dimensional matrix, which is maintained, decremented
accordingly for each move, as the knight attempts to complete its tour. Table 1 shows the
initialized matrix using the notation common in chess (i.e. Positions a8 through h1).
Obviously, the center of the board (e.g. Position d5) offers the most possible moves while
Position a8 has only two possible moves (b6, c7). It is the combination of the
KNIGHTMOVES data set and the heuristic rule that solves the Knight’s Tour problem.

 a b c d e f g h
 8 2 3 4 4 4 4 3 2
 7 3 4 6 6 6 6 4 3
 6 4 6 8 8 8 8 6 4
 5 4 6 8 8 8 8 6 4
 4 4 6 8 8 8 8 6 4
 3 4 6 8 8 8 8 6 4
 2 3 4 6 6 6 6 4 3
 1 2 3 4 4 4 4 3 2

Table1. Listing of possible knight moves for a single chess board.

Warnsdorff’s rule does not guarantee a solution; however, the proposed SAS solution
explained in the aforementioned paper generates 64 Knight’s Tours on a single 8x8 (hence,
2-dimensional) chess board – with a bit of tweaking by its author. This paper discusses
several solutions that includes a third dimension, that is, determining the Knight’s Tour
using three standard chess boards.

SOLUTION #1 – A SIMPLE EXTENSION
The first proposed solution is actually a simple extension of the so-called 2-

dimensional problem, that is, using Warnsdorff’s rule on a single chess board. Given that
the knight’s tour has been solved already from any starting position on a standard 8x8
chess board, consider the following idea:

Determine the knight’s tour for each board independently, in succession,
using the single board solution.

Simple, right? But how do you discern the next position on the adjacent board? Upon
completion of the knight’s tour on Board #1, simply move the knight one level upward
according to the rules of 3-dimensional chess, that is, moving two squares in perpendicular
fashion, ascertain where the knight is located on the successive board, then proceed using
the single board solution. Wherever the knight’s tour ends on a successive board, the next
tour is obtained using the same method. Keep in mind that the location of the knight on the
successive chess board is NOT the coordinate of the last step in the just completed tour;
rather, it is the location of the legal 3-D chess move on the successive chess board. For
example, Table 2 displays the knight’s tour for two boards illustrating how the knight moved
from the last step in the first tour, Position b2 on Board #1, to Position b4 on Board #2,

The Knight’s Tour – Implementing a Heuristic Solution, continued

3

becoming Step # 65, then continuing with the tour all the way to Step #128, Position a6.
Note: Knight Tours in this paper include first and last steps italicized in red in order to
facilitate reading the tour.

 Board #1 Board #2

 a b c d e f g h a b c d e f g h
8 1 16 31 34 3 18 21 50 8 84 127 80 95 102 99 78 97
7 30 35 2 17 32 49 4 19 7 81 94 83 124 79 96 105 100
6 15 44 33 60 41 20 51 22 6 128 85 126 103 116 101 98 77
5 36 29 42 45 54 59 48 5 5 93 82 123 90 125 104 111 106
4 43 14 61 40 47 52 23 58 4 86 65 92 115 110 117 76 119
3 28 37 46 53 62 55 6 9 3 71 68 89 122 91 120 107 112
2 13 64 39 26 11 8 57 24 2 66 87 70 73 114 109 118 75
1 38 27 12 63 56 25 10 7 1 69 72 67 88 121 74 113 108

Table 2. Display of two Knight Tours generated by Solution #1.

Solution #1 consists of two macros: %ktour, which generates the Knight’s Tour;
and, %nxtcoord, which discerns an appropriate coordinate where a new tour begins on the
successive board. The %ktour macro has three parameters defining the ith board, along
with the row-column starting position, which is initially arbitrary, then determined by the
rules of 3-D chess. Because this macro is used repeatedly for successive tours, it is
necessary to compute the appropriate Start / End position. For example, the first tour will
have position values ranging from 1 to 64; whereas, the third tour will have position values
ranging from 129 to 192. The Data Null step inside the %ktour macro accomplishes the
task while a subsequent Data step generates the actual tour.

Although the %ktour macro may seem intricate, there are only three tasks being
performed:

1. Assign the BOARD matrix by finding a legal “best” move based on the
heuristic rule.

2. Update the MOVES matrix, decrementing by 1, the number of moves
available based on the latest position.

3. Display the Knight’s Tour.

 %macro ktour(board,row,col);
 %* Create macro variables denoting the START / END of a tour ;;
 data _null_;
 end = &board.*64;
 start = (end - 64) + 1;
 call symput('start',left(put(start,8.)));
 call symput('end', left(put(end,8.)));
 run;
 %* Determine a Knight’s Tour ;;
 data board&board.;
 retain r &row. c &col. &svars. &mvars.;
 array board{8,8} &svars.;  S11, S12, . . ., S88 ;
 array moves{8,8} &mvars.;  M11, M12, . . ., M88 ;
 set knightmoves;
 board{r,c} = &start.;
 do position = (&start.+1) to &end.;
 nxtr = 0;
 nxtc = 0;
 pmoves = 9;  Highest possible number of moves ;

The Knight’s Tour – Implementing a Heuristic Solution, continued

4

 %* Determine the best possible move per the knight’s standard moves ;;
 do step1 = -2,-1,1,2;
 do step2 = -2,-1,1,2;
 if (abs(step1) ne abs(step2))
 then do;
 if 1 le (r+step1) le 8 and 1 le (c+step2) le 8
 and board(r+step1,c+step2) eq .
 then do;
 if moves{r+step1,c+step2} lt pmoves
 then do;
 nxtr = r+step1;
 nxtc = c+step2;
 pmoves = moves{r+step1,c+step2};
 end;
 end;
 end;
 end;
 end;
 %* Assign the position assuming it is legal ;;
 if 1 le nxtr le 8 and 1 le nxtc le 8
 then do;
 r = nxtr;
 c = nxtc;
 board{r,c} = position;
 %* Update the MOVES matrix, decrementing by 1 ;;
 do step1 = -2,-1,1,2;
 do step2 = -2,-1,1,2;
 if (abs(step1) ne abs(step2))
 and 1 le (r+step1) le 8 and 1 le (c+step2) le 8
 then moves{r+step1,c+step2} =
 moves{r+step1,c+step2}-1;
 end;
 end;
 end;
 end;
 keep &svars. &mvars.;
 run;
 %* Display the Knight’s Tour ;;
 %showBoard(dsn = board&board.,
 elements = &svars.,
 title = Knights Tour on Board #&board.);
 %mend ktour;

The %ktour macro is actually a rehash of the original SAS solution; whereas, the
second macro %nxtcoord is the crux of Solution #1, that is, the “Simple Extension”
component. Upon completion of the first tour, the data set BOARD1 contains the knight’s
tour, stored as a two-dimensional matrix. The macro easily locates the last step by
traversing the matrix. Then, adhering to the rules of 3-D chess, the next location is
determined. Recall that the knight moves only one level, in succession, thereby moving two
squares in a perpendicular fashion. If the move is legal (i.e. the knight stays on the
board), the coordinate is stored in the global macro variables R and C, and the Data Null
step terminates.

The Knight’s Tour – Implementing a Heuristic Solution, continued

5

 %macro nxtcoord(board);
 data _null_;
 array board{8,8} &svars.;
 set board&board.(keep=s:);
 %* Find the location of the last step in the tour ;;
 do j = 1 to 8;
 do k = 1 to 8;
 if board{j,k} eq max(of board{*})
 then do; cur_row=j; cur_col=k; leave; end;
 end;
 end;
 %* Find the location of the “First” step on the Successive board ;;
 do step1 = -2,2;
 do step2 = -2,2;
 if 1 le (cur_row+step1) le 8
 then do;
 nxt_row = cur_row + step1;
 nxt_col = cur_col;
 end;
 else if 1 le (cur_col+step2) le 8
 then do;
 nxt_row = cur_row;
 nxt_col = cur_col + step2;
 end;
 if (cur_row ne nxt_row) or (cur_col ne nxt_col)
 then leave;
 end;
 end;
 %* Store the coordinates in macro variables used for the %ktour macro ;;
 call symput('r', trim(left(put(nxt_row,2.))));
 call symput('c', trim(left(put(nxt_col,2.))));
 run;
 %mend nxtcoord;

Table 3 shows how Solution #1 generates the Knight’s Tour for three chess boards.
The %knightmoves macro executes only once, generating the crucial KNIGHTMOVES data
set while the %ktour and %nxtcoord macros formulate the three tours. Notice that the
initial tour begins at Board #1, Position a8, which is arbitrary. Actually, the first tour can
begin at any position. Also, it is noteworthy that this solution can proceed ad infinitum.

 %knightmoves;

 %ktour(1,1,1); %nxtcoord(1);
 %ktour(2,&r.,&c.); %nxtcoord(2);
 %ktour(3,&r.,&c.);

 %ktour(1,5,4); %nxtcoord(1);
 %ktour(2,&r.,&c.); %nxtcoord(2);
 %ktour(3,&r.,&c.); %nxtcoord(3);
 : : : : :

Table 3. Generating the Knight’s Tours using Solution #1.

The Knight’s Tour – Implementing a Heuristic Solution, continued

6

SOLUTION #2 – THE “GLUE” METHOD
Another proposed solution, discovered during the research for this paper, is called

the “Glue” method, which requires a closed tour, that is, the start and end positions of the
tour are one knight move away. Table 4 displays two Knight’s Tours using Warnsdorff’s
method, a closed tour where Steps #1 and #64 are one move from each other and an open
tour where Steps #1 and #64 are not, yet still a valid tour.

Closed Tour Open Tour

 a b c d e f g h a b c d e f g h
 8 20 5 38 47 22 7 26 45 8 42 25 22 7 48 35 20 5
 7 37 50 21 6 39 46 23 8 7 23 8 41 36 21 6 47 34
 6 4 19 56 51 48 25 44 27 6 26 43 24 49 46 57 4 19
 5 55 36 49 32 57 40 9 24 5 9 40 45 56 37 50 33 58
 4 18 3 54 61 52 43 28 41 4 44 27 52 39 62 59 18 3
 3 35 64 33 58 31 60 13 10 3 13 10 55 60 51 38 63 32
 2 2 17 62 53 12 15 42 29 2 28 53 12 15 30 61 2 17
 1 63 34 1 16 59 30 11 14 1 11 14 29 54 1 16 31 64

Table 4. A closed knight’s tour and an open knight’s tour.

This method seems more like cheating because it does little more than clone an
existing closed tour: it does not truly generate a knight’s tour. Instead, the process
recodes the numerical sequence (i.e. steps) in the tour based on the last step and the
subsequent legal move to the next board. So, given a closed tour, how does it recode the
sequence of values? First of all, it must discern a legal move with respect to 3-D chess. For
example, as shown in Table 5, the knight can move from Board #1, Position b3, to Board
#2, Position d3, which denotes the knight’s move on the next board, followed by two
squares in perpendicular fashion. There are other possible moves, but for this discussion,
the point is to illustrate the cloning process.

As shown in Table 5, Position d3 on Board #1 denotes Step #58 (the array element
board{6,4}), which becomes the pivotal value for the cloning process. Because of an
inherent property of a closed tour, it is possible to recode the Step values by computing two
incremental values using the following formulas:

• INCR1 = MAX(of board{*}) – board{6,4} + 1 = 64 – 58 = 7
• INCR2 = MAX(of board{*}) – board{6,4} + 65 = 6 + 65 = 71

Board #1: Initial (Closed) Tour Board #2: Successive Tour

 a b c d e f g h a b c d e f g h
 8 20 5 38 47 22 7 26 45 8 91 76 109 118 93 78 97 116
 7 37 50 21 6 39 46 23 8 7 108 121 92 77 110 117 94 79
 6 4 19 56 51 48 25 44 27 6 75 90 127 122 119 96 115 98
 5 55 36 49 32 57 40 9 24 5 126 107 120 103 128 111 80 95
 4 18 3 54 61 52 43 28 41 4 89 74 125 68 123 114 99 112
 3 35 64 33 58 31 60 13 10 3 106 71 104 65 102 67 84 81
 2 2 17 62 53 12 15 42 29 2 73 88 69 124 83 86 113 100
 1 63 34 1 16 59 30 11 14 1 70 105 72 87 66 101 82 85

Table 5. An initial closed knight’s tour and its successor beginning at a proper starting position.

The Knight’s Tour – Implementing a Heuristic Solution, continued

7

Following the example in Table 5, the variables INCR1 and INCR2 will have the values 7 and
71, respectively. Then, simply traverse the first tour (matrix) and increment accordingly,
that is, pivoting on the value 58. Thus, steps ranging from 58 to 64 are incremented by 7,
thereby ranging from 65 (which is the first step on the successive board) to 71; whereas,
those steps below Step #58 are incremented by 71. Thus, Steps #1 through #57 will range
from 72 to 128, as shown in Example #1 of Table 6. And, it works!

Even more ironic concerning this method – Given a closed tour, Examples 2 and 3 in
Table 6 illustrate that any position can be selected as the pivotal position for the recoding
process, albeit not following the rules for 3-D chess. Also, notice that the result is always
another closed tour.

Although the implementation emulates the Solution #1 using the KNIGHTMOVES
data set and the heuristic rule, it is necessary to designate the starting position (row,
column) knowing that the result will be a closed tour. Then, the %glue macro generates
the subsequent tour by transforming the values of the first (closed) tour into a new Knight’s
Tour.

 Board #1: (Closed) Tour Board #2: Example #1

 a b c d e f g h a b c d e f g h
 8 20 5 38 47 22 7 26 45 8 91 76 109 118 93 78 97 116
 7 37 50 21 6 39 46 23 8 7 108 121 92 77 110 117 94 79
 6 4 19 56 51 48 25 44 27 6 75 90 127 122 119 96 115 98
 5 55 36 49 32 57 40 9 24 5 126 107 120 103 128 111 80 95
 4 18 3 54 61 52 43 28 41 4 89 74 125 68 123 114 99 112
 3 35 64 33 58 31 60 13 10 3 106 71 104 65 102 67 84 81
 2 2 17 62 53 12 15 42 29 2 73 88 69 124 83 86 113 100
 1 63 34 1 16 59 30 11 14 1 70 105 72 87 66 101 82 85

 Board #2: Example #2 Board #2, Example #3

 a b c d e f g h a b c d e f g h
 8 89 74 107 116 91 76 95 114 8 104 89 122 67 106 91 110 65
 7 106 119 90 75 108 115 92 77 7 121 70 105 90 123 66 107 92
 6 73 88 125 120 117 94 113 96 6 88 103 76 71 68 109 128 111
 5 124 105 118 101 126 109 78 93 5 75 120 69 116 77 124 93 108
 4 87 72 123 66 121 112 97 112 4 102 87 74 81 72 127 112 125
 3 104 69 102 127 100 65 82 79 3 119 84 117 78 115 80 97 94
 2 71 86 67 122 81 84 111 98 2 86 101 82 73 96 99 126 113
 1 68 103 70 85 128 99 80 83 1 83 118 85 100 79 114 95 98

Table 6. A closed knight’s tour with three successive closed tours.

The %glue macro, shown below, obtains the Step-value of the knight’s next
position, generates a new tour using the “Glue” method, then displays the new tour.

 %macro glue(board,r,c);
 %* Obtain Step-value of the knight’s next position ;;
 data _null_;
 retain r &r. c &c.;
 array board{8,8} s11-s18 s21-s28 . . . s81-s88
 set board%eval(&board.-1);
 call symput('pval',trim(left(put(board{r,c},3.))));
 run;

The Knight’s Tour – Implementing a Heuristic Solution, continued

8

 %* Generate new tour by “Glue” method ;;
 data board%eval(&board.+1);
 retain &svars. &mvars. pval &pval. incr1 incr2;
 array board{8,8} &svars.;
 set board%eval(&board.-1);  Process previous tour.
 if _n_ eq 1
 then do;  L.T. and G.E. Pivotal value
 incr1 = max(of board{*}) - board{&r.,&c.} + 1;
 incr2 = max(of board{*}) - board{&r.,&c.} + 65;
 end;
 do r = 1 to 8;  Recode board, accordingly.
 do c = 1 to 8;
 if board{r,c} ge &pval.
 then board{r,c} = board{r,c} + incr1;
 else board{r,c} = board{r,c} + incr2;
 end;
 end;
 drop r c incr1 incr2 pval;
 run;
 %* Display the new tour ;;
 %ShowBoard(dsn = board%eval&board.,
 elements = &svars.,
 title = Knights Tour on Board #%eval(&board.+1));
 %mend glue;

Table 8 shows a closed tour beginning on Board #1, Position b1. As an exercise for the
reader, formulate the successive tour (i.e. Board #2) using the following criteria: Pivotal
Value=60, INCR1=5, and INCR2=69. Keep in mind that the Pivotal Value was
determined by the rules of 3-D chess; whereas, the incremental variables were computed
using formulas.

 Board #1: (Initial Closed Tour) Board #2 (Next Tour)

 a b c d e f g h a b c d e f g h
 8 25 22 5 34 27 12 7 10 8 94 91 74 103 96 81 76 79
 7 4 35 26 23 6 9 28 13 7 73 104 95 92 75 78 97 82
 6 21 24 45 36 33 30 11 8 6 90 93 114 105 102 99 80 77
 5 44 3 58 31 50 37 14 29 5 113 72 127 100 119 106 83 98
 4 59 20 51 46 63 32 49 38 4 128 89 120 115 68 101 118 107
 3 2 43 62 57 52 47 54 15 3 71 112 67 126 121 116 123 84
 2 19 60 41 64 17 56 39 48 2 88 65 110 69 86 125 108 117
 1 42 1 18 61 40 53 16 55 1 111 70 87 66 109 122 85 124

Table 7. Board #2 created from Board #1 using Step #60 (Position b2) as the pivotal
value.

SOLUTION #3 – TRAVERSING THE BOARDS DURING THE TOUR
The first two solutions produce valid tours, albeit in a limited way. The first solution

merely extended Warnsdorff’s heuristic rule by generating tours independently for each
board, then moving the knight to a successive board according the rules of 3-D chess and
finding the next tour. The second solution, the so-called “Glue” method, is a scheme to
recode a given closed tour in order to produce a new tour. It does not generate a Knight’s

The Knight’s Tour – Implementing a Heuristic Solution, continued

9

Tour from scratch. The “Glue” method is little more than an isomorphism – and a sham.
Neither solution generates the Knight’s Tour as one might imagine, that is, traversing
several chess boards during the tour.

The proposed solution takes Warnsdoff’s heuristic rule to new heights. The idea is
the same: creating and updating the KNIGHTMOVES data set in tandem with the heuristic
rule for discerning the next knight move. However, this time the number of possible moves
represents three chess boards, not just one. In this situation, it is necessary to know a
priori the number of possible knight moves from any of 192 possible squares (i.e. 3
chess boards each having 64 squares), because now there is a third factor called the Level:
Board #1, #2, and #3.

Table 8 displays the three boards in juxtaposition and includes several examples of
how the knight moves from its initial position to all possible moves. The coding convention
clearly indicates rows 1 through 8 and columns a through h that facilitates enumerating the
possible moves. Keep in mind the rules for 3-D chess.

 Board #1 Board #2 Board #3

 # Possible -------------------- To Position ---------------------

From Position Moves Board #1 Board #2 Board #3

Board #1 / Position a8 6 b6, c7 a6, c8 a7, b8
Board #2 / Position d5 16 b5, f5, d7, d3 b4, b6, c3, c7, b5, f5, d7, d3
 e3, e7, f4, f6
Board #3 / Position b3 10 b2, b4, c3 b1, b5, d3 a1, a5, c1, c5,
 d2, d4

Table 8. Listing of possible knight moves.

Consider the following important points before proceeding:

1. The Knight’s Tour is displayed as a sequence of integers, ranging from 1 to 192.
Theoretically, for example, Step #1 begins at Board #1, Position a8 and Step
#192 lands on Board #3, Position e1.

2. Using three boards, the knight’s second step depends on its initial step, that is,
whether the piece moves one or two levels will depend on its initial location. For
example, the knight cannot jump two levels if it resides initially on the middle
chess board, since there are only three boards.

The Knight’s Tour – Implementing a Heuristic Solution, continued

10

3. The number of possible moves for the knight ranges from 6 to 16 (See Table 9),
which is significantly more than the Knight’s Tour problem using a single board.

4. When moving to another board, the knight lands on the same-named square
(e.g. a8 on one board moves to a8 onto another board) before moving to its final
destination, accordingly.

5. If the initial move begins from Board #2, the knight can move only one level.

6. Obviously, the move must be legal and the knight remains on the board.

The first task is to calculate the number of possible knight moves from any square on
any board, as shown in Table 9. This information would be stored in a data set called
KNIGHTMOVES, which becomes the only input to the proposed SAS solution, implemented
as a 3-dimensinal array, called the MOVES matrix. The knight begins its tour from a given
starting position, seeks the most reasonable next move, and then updates the MOVES
matrix, by decrementing by 1 those places where the knight could go from the new position.

The objective is to create a data set that contains 1 observation having 192 variables
whose naming convention intuitively indicates a 3-dimensional array denoting the LEVEL,
ROW, and COLUMN. These m-variables (m denotes MOVES) contain the number of possible
moves from all 192 positions. The abridged Data step below uses three DO-loops to
address each element in the 3-dimensional - moves{level,r,c}.

In order to count the number of possible knight moves, we first focus on the board

where the knight resides; thereby considering the traditional L-shaped movements, which
are implemented using two DO-loops and their respective loop control variables: STEP1 and
STEP2. Given that the step is legal, the COUNTER variable is incremented. Then, in order
to count the possible moves onto the other boards, from the same location, there are only
two scenarios:

1. The knight jumps to the next board, then moves TWO squares in a

perpendicular fashion.
2. The knight jumps to the second board, then moves ONE square in

perpendicular fashion.

If the knight resides on level 1 or 3, then both scenarios prevail; however, if the knight
resides on level 2, then only the first scenario prevails. Of course, the move must be legal
in order to increment the COUNTER.

 data knightmoves; One observation, keeping only the M-variables.
 array moves{3,8,8} m111-m118 . . m188 m211-m218 . . m288
 m311-m318 . . m388;
 do level = 1 to 3; Process all three 8x8 boards.
 do r = 1 to 8;
 do c = 1 to 8; For a given knight position {r,c}.
 counter=0; Initialize the counter to zero.

 Knight moves in L-shaped fashion. If legal move then increment counter.
 select(level); Knight moves one level or two levels.
 when(1,3) If legal move then increment counter.
 when(2) If legal move then increment counter.
 end;
 moves{level,r,c} = counter; Assign # possible moves.
 end; end; end;
 run;

The Knight’s Tour – Implementing a Heuristic Solution, continued

11

 Board #1 Board #2 Board #3

 a b c d e f g h a b c d e f g h a b c d e f g h
 8 6 8 10 10 10 10 8 6 8 6 7 10 10 10 10 7 6 8 6 8 10 10 10 10 8 6
 7 8 10 13 13 13 13 10 8 7 7 8 12 12 12 12 8 7 7 8 10 13 13 13 13 10 8
 6 10 13 16 16 16 16 13 10 6 10 12 16 16 16 16 12 10 6 10 13 16 16 16 16 13 10
 5 10 13 16 16 16 16 13 10 5 10 12 16 16 16 16 12 10 5 10 13 16 16 16 16 13 10
 4 10 13 16 16 16 16 13 10 4 10 12 16 16 16 16 12 10 4 10 13 16 16 16 16 13 10
 3 10 13 16 16 16 16 13 10 3 10 12 16 16 16 16 12 10 3 10 13 16 16 16 16 13 10
 2 8 10 13 13 13 13 10 8 2 7 8 12 12 12 12 8 7 2 8 10 13 13 13 13 10 8
 1 6 8 10 10 10 10 8 6 1 6 7 10 10 10 10 7 6 1 6 8 10 10 10 10 8 6

Table 9. The KNIGHTMOVES metadata for three chess boards. Notice the symmetry.

Solution #3 is implemented as a single macro with no parameters. It is designed to
traverse all 192 squares in search of the Knight’s Tour, starting from each position. This
lengthy macro follows the same approach of utilizing the KNIGHTMOVES data set and
moving the knight on the board where it resides, then considering the other levels,
accordingly. Thus, for a given starting position (Level, Row, Column), a Data step attempts
to generate the Knight’s Tour by initializing the BOARD 3-dimensional matrix with the value
1 (denoting Step #1) then traversing the matrix to determine the position of Step #2, and
so on. The Data step considers the L-shaped moves on the board where the knight resides,
obtaining the “minimal degree” in accordance to the heuristic rule, then considers the 3-D
chess moves to the other boards, likewise. Depending on the level where the knight
resides will determine the subsequent checks in search of the “minimal degree.”

 The following Data _null_ step determines whether the attempt to formulate the
Knight’s Tour was successful. If so, then a 3-D version of the %showboard macro
generates the report. Table 10 shows an example of a successful and a failed tour, the
latter tour getting stuck at Step #189.

 data _null_;
 array board{3,8,8} s111-s118 … s181-s188 … s311-s318 … s381-s388;
 set solution;
 call symput('solved',left(put(n(of board{*}) eq 192,1.)));
 run;

 Successful Knight’s Tour Failed Knight’s Tour
 Board #1 Board #1
 a b c d e f g h a b c d e f g h
 8 24 29 26 21 46 35 40 43 8 23 16 41 32 91 72 65 70
 7 31 22 81 74 83 106 47 38 7 18 31 90 83 88 77 92 63
 6 80 73 100 105 180 157 118 107 6 13 40 109 102 115 136 87 74
 5 69 104 141 156 183 136 181 48 5 30 101 114 137 . 174 128 135
 4 18 101 146 173 192 185 158 119 4 35 108 103 177 139 . 161 86
 3 103 68 153 184 159 182 135 86 3 100 55 138 186 185 178 175 129
 2 10 17 128 145 174 177 62 91 2 7 52 107 104 176 162 145 154
 1 38 27 12 63 56 25 10 7 1 2 9 6 121 146 157 148 143

The Knight’s Tour – Implementing a Heuristic Solution, continued

12

 BOARD #2 BOARD #2
 a b c d e f g h a b c d e f g h
 8 27 20 55 34 41 50 109 36 8 14 33 22 27 60 69 44 73
 7 54 33 76 115 110 37 84 49 7 21 26 59 78 45 84 61 68
 6 19 96 111 78 99 114 139 120 6 34 15 46 111 96 79 126 85
 5 32 77 148 113 140 163 58 85 5 25 58 97 164 127 152 173 62
 4 95 112 127 144 179 176 123 138 4 12 51 110 119 170 163 132 153
 3 14 7 142 149 162 137 160 59 3 57 38 123 98 165 168 151 142
 2 1 94 15 178 143 150 175 122 2 36 11 118 169 140 131 166 133
 1 6 13 2 93 66 161 60 87 1 5 56 37 10 167 150 141 130

 BOARD #3 BOARD #3
 a b c d e f g h a b c d e f g h
 8 30 25 28 51 56 45 42 39 8 17 28 47 82 43 76 71 64
 7 23 52 71 82 75 116 57 44 7 24 19 42 89 94 81 66 75
 6 70 79 98 155 132 165 108 117 6 29 48 95 116 125 112 93 80
 5 53 72 131 166 187 190 133 165 5 20 39 124 113 183 188 160 67
 4 102 97 154 189 170 167 186 121 4 49 54 117 187 . 179 182 134
 3 5 130 147 172 191 188 169 134 3 4 99 106 180 189 184 172 159
 2 16 11 126 151 168 171 124 63 2 1 50 53 120 171 181 155 144
 1 9 4 129 12 125 88 65 90 1 8 3 122 105 156 147 158 149

Table 10. A successful tour and a failed tour (stopping at step #189).

FOUR CHESS BOARDS
Warnsdorff heuristic rule works for a single chess board and three chess boards, the

latter adhering to 3-D chess rules. What about four chess boards? Is Warnsdorff’s heuristic
rule strong enough? It turns out – Yes! Not surprisingly, however, the 4-board solution
requires a fresh study of how the knight moves between 4-boards. For example, if the
knight sits on Board #1, it cannot legally jump to Board #4; that is, it must first jump to
either Board #2 or Board #3 during the tour in order to get to Board #4, which must be
included as part of the solution. Hence, one might think that this hurdle would make the
heuristic rule too weak or biased. Surprisingly, the rule was able to generate 38 tours out
of a possible 256 tours; a 46.9% success rate, rather impressive. Also, adding a fourth
level affects the logic concerning the creation of the KNIGHTMOVES data set. In this case,
all four levels must consider perpendicular moves both one step and two steps, unlike the 3-
board problem. The code below highlights the portion where the knight is moving to another
board to discern a legal move in order to increment the COUNTER variable.

 data knightmoves
 array moves{4,8,8} %gen_vars(m,4);
 do level = 1 to 4;
 do r = 1 to 8;
 do c = 1 to 8;
 counter=0;

 Consider L-shaped moves where the knight resides (not shown).
 Consider knight moves to the other levels using SELECT/WHEN.

 select(level);
 when(1,2,3,4) do;
 do step2 = -2,2;
 if 1 le (r+step2) le 8 then counter+1;

The Knight’s Tour – Implementing a Heuristic Solution, continued

13

 if 1 le (c+step2) le 8 then counter+1;
 end;
 do step2 = -1,1;
 if 1 le (r+step2) le 8 then counter+1;
 if 1 le (c+step2) le 8 then counter+1;
 end;
 end;
 otherwise;
 end;
 moves{level,r,c} = counter;
 end;
 end;
 end;
 keep m:;

run;

It is interesting to note that the MOVES matrix for 4-boards contains the same

values for each level, as shown in Table 11, which makes sense because each level
manifests the same movements on their respective boards, as well as to other appropriate
boards. For example, the value of the array element moves{n,3,4} (Position d4 in chess
notation) indicates 16 possible moves regardless of which level the knight resides initially.

 Boards #1 and #4 Boards #2 and #3

 a b c d e f g h a b c d e f g h
 8 6 8 10 10 10 10 8 6 8 8 10 13 13 13 13 10 8
 7 7 10 13 13 13 13 10 9 7 10 12 16 16 16 16 12 10
 6 9 13 16 16 16 16 13 11 6 13 16 20 20 20 20 16 13
 5 9 13 16 16 16 16 13 11 5 13 16 20 20 20 20 16 13
 4 9 13 16 16 16 16 13 11 4 13 16 20 20 20 20 16 13
 3 9 13 16 16 16 16 13 11 3 13 16 20 20 20 20 16 13
 2 7 10 13 13 13 13 10 9 2 10 12 16 16 16 16 12 10
 1 6 8 10 10 10 10 8 6 1 8 10 13 13 13 13 10 8

Table 11. Possible knight moves for four boards.

The solution to the 4-board problem consists of a lengthy Data step (not shown)

because of all the steps the knight might consider during the tour. The method is the same
as Solution #3, just more involved. The Knight’s Tour, shown in Table 12, begins at Board
#1, Position e8. As mentioned previously, the Steps: 1, 64, 65, 128, 129, 192, 193, 256
are highlighted in red in order to facilitate reading the tour. Notice that the knight’s
movement traverses all four boards, almost immediately. For example, Step #2 to Step
#3: the knight moves from Board #2 to Board #4. Although the integer values indicate
higher values in Board #4, the knight’s tour shown below is valid.

The Knight’s Tour – Implementing a Heuristic Solution, continued

14

 Board #1 Board #2

 a b c d e f g h a b c d e f g h
8 81 88 85 118 1 10 13 6 8 84 77 80 111 98 5 2 9
7 86 95 124 109 120 117 22 11 7 79 110 121 116 155 150 99 4
6 125 108 201 160 169 158 73 20 6 92 161 154 157 148 115 18 25
5 176 131 178 185 200 151 144 23 5 129 192 183 166 153 156 149 100
4 91 196 199 202 179 172 39 72 4 162 107 164 173 170 147 114 19
3 130 175 184 197 194 143 68 31 3 49 132 193 182 165 152 101 28
2 55 52 195 138 171 40 71 38 2 60 163 106 133 102 137 34 41
1 50 57 104 43 140 135 64 29 1 47 44 61 136 105 42 67 32

 Board #3 Board #4

 a b c d e f g h a b c d e f g h
8 87 82 97 76 15 112 7 12 8 78 127 238 211 224 229 16 3
7 96 89 94 119 122 75 14 21 7 93 212 223 228 251 210 225 26
6 83 126 123 168 159 146 113 8 6 128 239 250 237 230 227 242 17
5 90 177 204 191 180 167 74 27 5 213 222 231 254 241 252 209 226
4 59 174 189 186 205 142 145 24 4 232 249 240 247 236 255 206 243
3 54 187 198 203 190 181 36 69 3 221 214 235 256 253 246 217 208
2 51 58 103 188 141 134 63 30 2 48 233 248 219 216 207 244 33
1 56 53 46 139 62 65 70 37 1 45 220 215 234 245 218 35 66

Table 12. The Knight’s Tour using four chess boards. Steps #1, 64, 65, 128, 129, 192,
193, and 256 are highlighted in red to facilitate reading the tour.

USEFUL UTILITIES – SUPPLEMENTAL
There are several utilities that facilitate the SAS solution for the Knight’s Tour. One

such utility enumerates the variables representing the 3-dimensional array, rather than
listing all 192 variables (e.g. s111 . . . s118). Notice the following intuitive naming
convention for the MOVES and SOLUTION variables:

<M | S><Level><Row><Column> (e.g. m238, s341)

where M and S denote the Moves and Solution 3-dimensional matrices. Level denotes the
board in tier fashion. Row and Column indicate the coordinate on a given board (level).
Thus, the element m238 denotes the number of knight moves from Board #2, Position h6
(row 3, column 8); whereas, the array element s341 denotes the nth move at position
Board #3, Position a5 (row 4, column 1). The following utility generates these variables
easily. Obviously, this utility can be used for more than three chess boards.

%macro gen_vars(type, levels);
 %do level = 1 %to &levels.;
 %do row = 1 %to 8;
 %do column = 1 %to 8;
 &type.&level.&row.&column.
 %end;
 %end;
 %end;
%mend gen_vars;

The Knight’s Tour – Implementing a Heuristic Solution, continued

15

The %Show_Boards macro, another invaluable utility, generates a report showing
the three chess boards in vertical juxtaposition. The BOARD matrix can represent either
the Moves or Solution matrix as defined by the elements parameter. Keep in mind that
these variables actually reside in a single observation data set, each consisting of 192
variables. The utility converts the matrix into a readable format listing row and columns for
each board level. It is a good exercise to enhance the macro to handle N chess boards.

 %macro Show_Boards(dsn = solution,
 elements = %gen_vars(s,3),
 title = 3-D Chess Board);
 data board;
 array board{3,8,8} &elements.;
 array cols{8} c1-c8;
 set &dsn.;
 do level = 1 to 3;
 do r = 1 to 8;
 do c = 1 to 8;
 cols{c} = board{level,r,c};
 end;
 output;
 end;
 end;
 keep level c1-c8;
 run;
 proc report data=board nowindows headskip;
 columns level c1-c8;
 define level / order width=5 'Level';
 define c1 / display width=3 ''; define c2 / display width=3 '';
 define c3 / display width=3 ''; define c4 / display width=3 '';
 define c5 / display width=3 ''; define c6 / display width=3 '';
 define c7 / display width=3 ''; define c8 / display width=3 '';
 break after level / skip;
 format c1-c8 best3.1;
 title2 "&title.";
 run;
 %mend Show_Boards;

%Show_Boards(dsn=solution, title=Knight Tour);

CONCLUSION
The Knight’s Tour problem has been around for centuries and has been investigated

by famous mathematicians including Leonhard Euler. The heuristic rule proposed by the
mathematician H.C. Warnsdorf has been very successful in generating numerous tours,
even using more than three boards. The first two proposed solutions were mere extensions
of the single board problem; whereas, the third solution represents a bona fide tour that
traverses all the boards during a successful tour. The creation and maintenance of the
KNIGHTMOVES data set, along with the intricate movement of the knight in search of
“minimal degree” posed quite a challenge, especially when applying the heuristic rule to
more than three chess boards. Does Warnsdorff’s heuristic rule hold for five, six boards?
Yes, it does. More than six? Probably.

The Knight’s Tour – Implementing a Heuristic Solution, continued

16

REFERENCES
https://www.futilitycloset.com/2014/11/10/warnsdorffs-rule/

Gerlach, John R. The Knight’s Tour in Chess – Implementing a Heuristic Solution, SAS
Global Forum, 2015.

Keen, M.R. The Knight’s Tour. http://www.markkeen.com/knight/index.html.

Kumar, Awani, et.al. Non-crossing Knight’s Tour n 3-Dimension.

Neilan, Fredrick Scott. (Knight)3: A Graphical Perspective of the Knight’s Tour on a Multi-
Layered Chess Board, Bridgewater State University, 2016.

Squirrel, Douglas; Cull, P. (1996). A Warnsdorff-Rule Algorithm for Knight’s Tours on
Square Boards.

CONTACT INFORMATION
Name: John R. Gerlach Scott M. Gerlach
Enterprise: DataCeutics, Inc. Dartmouth College
E-mail: gerlachj@dataceutics.com Scott.M.Gerlach@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX A – KNIGHTMOVES DATA SET - SINGLE CHESS BOARD

 data knightmoves;
 array board{8,8} m11-m18 m21-m28 m31-m38 m41-m48
 m51-m58 m61-m68 m71-m78 m81-m88;
 do r = 1 to 8;
 do c = 1 to 8;
 counter=0;
 do step1 = -2,-1,1,2;
 do step2 = -2,-1,1,2;
 if (abs(step1) ne abs(step2))
 then do;
 if 1 le (r+step1) le 8 and 1 le (c+step2) le 8
 then counter+1;
 end;
 end;
 end;
 board{r,c} = counter;
 end;
 end;
 drop r c step1 step2 counter;
 run;

https://www.futilitycloset.com/2014/11/10/warnsdorffs-rule/
http://www.markkeen.com/knight/index.html
mailto:gerlachj@dataceutics.com

The Knight’s Tour – Implementing a Heuristic Solution, continued

17

APPENDIX B – TWO KNIGHT TOURS USING A SINGLE CHESS BOARD

 Tour #1 Tour #2

 a b c d e f g h a b c d e f g h
 8 1 16 31 34 3 18 21 50 8 20 33 16 1 26 31 14 39
 7 30 35 2 17 32 49 4 19 7 17 2 19 32 15 38 27 30
 6 15 44 33 60 41 20 51 22 6 34 21 42 25 36 29 40 13
 5 36 29 42 45 54 59 48 5 5 3 18 35 54 41 50 37 28
 4 43 14 61 40 47 52 23 58 4 22 43 24 49 62 55 12 51
 3 28 37 46 53 62 55 6 9 3 7 4 59 46 53 48 63 56
 2 13 64 39 26 11 8 57 24 2 44 23 6 9 58 61 52 11
 1 38 27 12 63 56 25 10 7 1 5 8 45 60 47 10 57 64

APPENDIX C – TWO KNIGHT’S TOURS USING THREE CHESS BOARDS

SOLUTION #1 SOLUTION #2 - “GLUE” METHOD
 Start: Board #1, Position a8 Start: Board #1, Positon a2
 End: Board #4, Position e1 End: Board #4, Postion b8

 BOARD #1 BOARD #1
 a b c d e f g h a b c d e f g h
 8 1 16 31 34 3 18 21 50 8 19 62 15 30 37 34 13 32
 7 30 35 2 17 32 49 4 19 7 16 29 18 59 14 31 40 35
 6 15 44 33 60 41 20 51 22 6 63 20 61 38 51 36 33 12
 5 36 29 42 45 54 59 48 5 5 28 17 58 25 60 39 46 41
 4 43 14 61 40 47 52 23 58 4 21 64 27 50 45 52 11 54
 3 28 37 46 53 62 55 6 9 3 6 3 24 57 26 55 42 47
 2 13 64 39 26 11 8 57 24 2 1 22 5 8 49 44 53 10
 1 38 27 12 63 56 25 10 7 1 4 7 2 23 56 9 48 43

BOARD #2 BOARD #2
 a b c d e f g h a b c d e f g h
 8 84 127 80 95 102 99 78 97 8 126 105 122 73 80 77 120 75
 7 81 94 83 124 79 96 105 100 7 123 72 125 102 121 74 83 78
 6 128 85 126 103 116 101 98 77 6 106 127 104 81 94 79 76 119
 5 93 82 123 90 125 104 111 106 5 71 124 101 68 103 82 89 84
 4 86 65 92 115 110 117 76 119 4 128 107 70 93 88 95 118 97
 3 71 68 89 122 91 120 107 112 3 113 110 67 100 69 98 85 90
 2 66 87 70 73 114 109 118 75 2 108 65 112 115 92 87 96 117
 1 69 72 67 88 121 74 113 108 1 111 114 109 66 99 116 91 86

BOARD #3 BOARD #3
 a b c d e f g h a b c d e f g h
 8 139 156 141 164 137 154 161 176 8 149 192 145 160 167 164 143 162
 7 142 165 138 155 162 175 136 153 7 146 159 148 189 144 161 170 165
 6 157 140 163 168 181 160 177 174 6 129 150 191 168 181 166 163 142
 5 166 143 182 159 178 187 152 135 5 158 147 188 155 190 169 176 171
 4 129 158 167 186 169 180 173 190 4 151 130 157 180 175 182 141 184
 3 144 183 146 179 188 191 134 151 3 136 133 154 187 156 185 172 177
 2 147 130 185 170 149 132 189 172 2 131 152 135 138 179 174 183 140
 1 184 145 148 131 192 171 150 133 1 134 137 132 153 186 139 178 173

The Knight’s Tour – Implementing a Heuristic Solution, continued

18

APPENDIX D – TWO KNIGHT’S TOURS USING FOUR CHESS BOARDS

 Start: Board #3, Position e3 Start: Board #4, Position h1
 End: Board #4, Position d3 End: Board #4, Position e3

 BOARD #1 BOARD #1
 a b c d e f g h a b c d e f g h
 8 44 47 50 79 42 73 20 25 8 66 71 74 59 44 51 40 33
 7 49 56 83 72 99 64 41 18 7 73 68 103 98 101 58 35 38
 6 154 161 142 135 124 95 74 21 6 90 97 130 135 122 113 52 41
 5 55 180 198 187 143 102 61 40 5 85 134 187 158 139 108 57 26
 4 162 186 184 194 138 121 94 31 4 96 157 172 147 186 123 112 47
 3 179 193 188 197 127 130 69 16 3 163 188 185 196 177 140 25 20
 2 152 117 185 149 174 93 32 5 2 166 171 178 189 146 115 14 11
 1 115 148 151 108 129 6 3 14 1 87 164 195 176 141 12 19 4

 BOARD #2 BOARD #2
 a b c d e f g h a b c d e f g h
 8 51 78 43 46 59 38 29 22 8 63 60 81 70 55 32 45 30
 7 54 157 98 77 82 71 60 39 7 82 127 100 93 80 107 56 27
 6 141 134 125 166 97 76 37 30 6 65 94 121 128 105 54 111 46
 5 158 200 156 133 126 131 70 17 5 150 159 126 133 120 79 106 37
 4 153 170 165 182 175 96 75 36 4 89 154 151 160 145 114 53 16
 3 114 181 199 171 132 103 88 67 3 86 181 192 155 142 119 78 9
 2 163 172 183 176 145 120 35 10 2 153 156 161 182 191 144 17 2
 1 112 109 146 119 104 89 68 7 1 162 193 180 143 18 3 24 7

 BOARD #3 BOARD #3
 a b c d e f g h a b c d e f g h
 8 48 45 58 85 80 27 24 19 8 72 69 62 75 50 43 34 39
 7 57 84 81 100 63 86 65 26 7 67 92 83 102 99 76 49 36
 6 52 167 140 123 136 101 62 23 6 84 129 104 131 136 109 42 29
 5 155 160 190 195 139 122 87 66 5 91 132 149 138 125 118 77 48
 4 168 192 189 177 144 137 34 9 4 152 95 198 173 148 137 110 21
 3 159 178 196 191 1 106 91 12 3 167 170 179 184 197 124 117 6
 2 116 169 164 173 128 33 2 15 2 88 183 190 169 174 13 22 15
 1 147 118 111 150 107 92 13 4 1 165 168 175 194 23 116 5 10

 BOARD #4 BOARD #4
 a b c d e f g h a b c d e f g h
 8 53 211 208 203 224 235 206 28 8 61 210 247 230 219 212 31 28
 7 209 202 225 242 207 204 223 236 7 64 231 228 211 248 215 220 213
 6 212 243 210 227 234 251 240 205 6 209 246 249 254 229 218 239 216
 5 201 226 255 250 241 228 237 222 5 232 227 242 245 250 253 214 221
 4 244 213 246 233 254 239 252 229 4 199 208 255 252 243 240 217 238
 3 215 218 249 256 247 232 221 238 3 226 233 244 241 256 251 222 203
 2 113 245 214 217 220 253 230 8 2 207 200 235 224 205 202 237 8
 1 110 216 219 248 231 105 90 11 1 234 225 206 201 236 223 204 1

	Abstract
	Introduction
	Solution #1 – A simple extension
	solution #2 – the “glue” method
	solution #3 – traversing the boards during the tour
	 BOARD #2 BOARD #2
	 BOARD #3 BOARD #3
	Four Chess Boards
	useful utilities – supplemental
	conclusion
	References
	Contact Information
	appendix a – knightmoves data set - single chess board
	Appendix B – two knight tourS using a single Chess board
	Appendix C – two Knight’s Tours using three chess boards
	solution #1 Solution #2 - “Glue” method
	Board #1 Board #1
	Board #2 Board #2
	Board #3 Board #3
	Appendix D – two Knight’s Tours Using four chess boards
	Board #1 Board #1
	Board #2 Board #2
	Board #3 Board #3
	Board #4 Board #4

