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ABSTRACT 
Three dimensional chess typically uses three chess boards such that a chess piece 

can traverse the several boards according to the rules for that piece.  For example, the 
knight can remain on the board where it resides or move to another successive board, then 
move in a perpendicular fashion.  In three-dimensional chess, the Knight’s Tour is a 
sequence of moves on multiple 8x8 chess boards such that the knight visits each square 
only once.  Thus, for three boards, there would be 192 squares visited only once.  The 
paper, The Knight’s Tour in Chess – Implementing a Heuristic Solution (Gerlach 2015), 
explains a SAS® solution for finding such tours on a single chess board, starting from any 
square.  This paper discusses several scenarios and SAS solutions for generating the 
Knight’s Tour using multiple chess boards. 

INTRODUCTION 
The Knight’s Tour in three-dimensional (3-D) chess requires an understanding of how 

the knight-piece moves from one board to another.  While remaining on the same chess 
board, the knight moves in its traditional L-shaped manner: two-steps in one direction, then 
one step in another direction; otherwise, one step in one direction, then two steps in 
another direction.  However, in 3-D chess the knight moves a bit differently when it moves 
to another board.   Assuming that the knight sits on the lowest board, the knight can move 
upward to the next board, then move two steps in a perpendicular direction, staying on the 
board, of course.  Similarly, the knight can move upward two boards, then move one step, 
again in a perpendicular fashion.  Obviously, the initial step might move downward 
accordingly, depending on whether the knight started on the top or middle board.   
 

 
 

As explained in the author’s previous paper, The Knight’s Tour in Chess – 
Implementing a Heuristic Solution (Gerlach 2015), the solution to this interesting problem is 
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premised on a simple heuristic rule first proposed by the German mathematician H.C. 
Warnsdorff.  The heuristic rule states: 

Always move the knight to an adjacent, unvisited square with minimal degree. 

The term “minimal degree” indicates the minimum number of unvisited available squares. 

 This heuristic approach requires knowing how many moves the knight can make 
from any position on the chess board.  This information is stored in the data set 
KNIGHTMOVES and used as a 2-dimensional matrix, which is maintained, decremented 
accordingly for each move, as the knight attempts to complete its tour.   Table 1 shows the 
initialized matrix using the notation common in chess (i.e. Positions a8 through h1).  
Obviously, the center of the board (e.g. Position d5) offers the most possible moves while 
Position a8 has only two possible moves (b6, c7).  It is the combination of the 
KNIGHTMOVES data set and the heuristic rule that solves the Knight’s Tour problem.    
 

 
     a  b  c  d  e  f  g  h 
  8  2  3  4  4  4  4  3  2 
  7  3  4  6  6  6  6  4  3 
  6  4  6  8  8  8  8  6  4 
  5  4  6  8  8  8  8  6  4 
  4  4  6  8  8  8  8  6  4 
  3  4  6  8  8  8  8  6  4 
  2  3  4  6  6  6  6  4  3 
  1  2  3  4  4  4  4  3  2 

 

Table1.  Listing of possible knight moves for a single chess board. 

Warnsdorff’s rule does not guarantee a solution; however, the proposed SAS solution 
explained in the aforementioned paper generates 64 Knight’s Tours on a single 8x8 (hence, 
2-dimensional) chess board – with a bit of tweaking by its author.   This paper discusses 
several solutions that includes a third dimension, that is, determining the Knight’s Tour 
using three standard chess boards. 

SOLUTION #1 – A SIMPLE EXTENSION 
The first proposed solution is actually a simple extension of the so-called 2-

dimensional problem, that is, using Warnsdorff’s rule on a single chess board.  Given that 
the knight’s tour has been solved already from any starting position on a standard 8x8 
chess board, consider the following idea:   

Determine the knight’s tour for each board independently, in succession,  
using the single board solution. 

 
Simple, right?  But how do you discern the next position on the adjacent board?  Upon 
completion of the knight’s tour on Board #1, simply move the knight one level upward 
according to the rules of 3-dimensional chess, that is, moving two squares in perpendicular 
fashion, ascertain where the knight is located on the successive board, then proceed using 
the single board solution.  Wherever the knight’s tour ends on a successive board, the next 
tour is obtained using the same method.  Keep in mind that the location of the knight on the 
successive chess board is NOT the coordinate of the last step in the just completed tour; 
rather, it is the location of the legal 3-D chess move on the successive chess board.   For 
example, Table 2 displays the knight’s tour for two boards illustrating how the knight moved 
from the last step in the first tour, Position b2 on Board #1, to Position b4 on Board #2, 
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becoming Step # 65, then continuing with the tour all the way to Step #128, Position a6.  
Note:  Knight Tours in this paper include first and last steps italicized in red in order to 
facilitate reading the tour. 

 
   Board #1                           Board #2 
 
   a   b   c   d   e   f   g   h       a   b   c   d   e   f   g   h 
8  1  16  31  34   3  18  21  50   8  84 127  80  95 102  99  78  97 
7 30  35   2  17  32  49   4  19   7  81  94  83 124  79  96 105 100 
6 15  44  33  60  41  20  51  22   6 128  85 126 103 116 101  98  77 
5 36  29  42  45  54  59  48   5   5  93  82 123  90 125 104 111 106 
4 43  14  61  40  47  52  23  58   4  86  65  92 115 110 117  76 119 
3 28  37  46  53  62  55   6   9   3  71  68  89 122  91 120 107 112 
2 13  64  39  26  11   8  57  24   2  66  87  70  73 114 109 118  75 
1 38  27  12  63  56  25  10   7   1  69  72  67  88 121  74 113 108 

 

Table 2.  Display of two Knight Tours generated by Solution #1.  

Solution #1 consists of two macros: %ktour, which generates the Knight’s Tour; 
and, %nxtcoord, which discerns an appropriate coordinate where a new tour begins on the 
successive board.  The %ktour macro has three parameters defining the ith board, along 
with the row-column starting position, which is initially arbitrary, then determined by the 
rules of 3-D chess.   Because this macro is used repeatedly for successive tours, it is 
necessary to compute the appropriate Start / End position.  For example, the first tour will 
have position values ranging from 1 to 64; whereas, the third tour will have position values 
ranging from 129 to 192.   The Data Null step inside the %ktour macro accomplishes the 
task while a subsequent Data step generates the actual tour.    

Although the %ktour macro may seem intricate, there are only three tasks being 
performed: 

1. Assign the BOARD matrix by finding a legal “best” move based on the 
heuristic rule.  

2. Update the MOVES matrix, decrementing by 1, the number of moves 
available based on the latest position. 

3. Display the Knight’s Tour. 
 

   %macro ktour(board,row,col);  
   %* Create macro variables denoting the START / END of a tour ;;                                                                                                        
      data _null_;                                                                                                                       
         end   = &board.*64;                                                                                                             
         start = (end - 64) + 1;                                                                                                         
         call symput('start',left(put(start,8.)));                                                                                       
         call symput('end',  left(put(end,8.)));                                                                                         
      run;            
   %* Determine a Knight’s Tour ;;                                                                                                                    
      data board&board.;                                                                                                                 
         retain r &row. c &col. &svars. &mvars.;                                                                                   
         array board{8,8} &svars.;     S11, S12, . . ., S88 ;                                                                                                      
         array moves{8,8} &mvars.;     M11, M12, . . ., M88 ;                                                                                                   
         set knightmoves;                                                                                                                
         board{r,c} = &start.;                                                                                                           
         do position = (&start.+1) to &end.;                                                                                             
            nxtr   = 0;                                                                                                                  
            nxtc   = 0;                                                                                                                  
            pmoves = 9;    Highest possible number of moves ; 
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    %* Determine the best possible move per the knight’s standard moves ;;                                                                                                                  
            do step1 = -2,-1,1,2;                                                                                                        
               do step2 = -2,-1,1,2;                                                                                                     
                  if (abs(step1) ne abs(step2))                                                                                          
                     then do;                                                                                                            
                        if 1 le (r+step1) le 8 and 1 le (c+step2) le 8  
                           and board(r+step1,c+step2) eq .                                   
                           then do;                                                                                                      
                              if moves{r+step1,c+step2} lt pmoves                                                                        
                                 then do;                                                                                                
                                    nxtr  = r+step1;                                                                                     
                                    nxtc  = c+step2;                                                                                     
                                    pmoves = moves{r+step1,c+step2};                                                                     
                                    end;                                                                                                 
                              end;                                                                                                       
                        end;                                                                                                             
                  end;                                                                                                                   
               end;        
    %* Assign the position assuming it is legal ;;                                                                                                                
            if 1 le nxtr le 8 and 1 le nxtc le 8                                                                                         
               then do;                                                                                                                  
                  r = nxtr;                                                                                                              
                  c = nxtc;                                                                                                              
                  board{r,c} = position; 
    %* Update the MOVES matrix, decrementing by 1 ;;                                                
                  do step1 = -2,-1,1,2;                                                                                                  
                     do step2 = -2,-1,1,2;                                                                                               
                        if (abs(step1) ne abs(step2))                                                                                    
                           and 1 le (r+step1) le 8 and 1 le (c+step2) le 8                                                               
                              then moves{r+step1,c+step2} = 
                                 moves{r+step1,c+step2}-1;                                                    
                        end;                                                                                                             
                     end;                                                                                                                
                  end;                                                                                                                   
            end;                                                                                                                         
         keep &svars. &mvars.;                                                                                                           
      run;   
   %* Display the Knight’s Tour ;;                                                                                                                             
      %showBoard(dsn      = board&board.,                                                                                                
                 elements = &svars.,                                                                                                     
                 title    = Knights Tour on Board #&board.);                                                                                   
   %mend ktour;      
                   

The %ktour macro is actually a rehash of the original SAS solution; whereas, the 
second macro %nxtcoord is the crux of Solution #1, that is, the “Simple Extension” 
component.   Upon completion of the first tour, the data set BOARD1 contains the knight’s 
tour, stored as a two-dimensional matrix.  The macro easily locates the last step by 
traversing the matrix.  Then, adhering to the rules of 3-D chess, the next location is 
determined.  Recall that the knight moves only one level, in succession, thereby moving two 
squares in a perpendicular fashion.   If the move is legal (i.e. the knight stays on the 
board), the coordinate is stored in the global macro variables R and C, and the Data Null 
step terminates.    
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   %macro nxtcoord(board);                                                                                                               
      data _null_;                                                                                                                       
         array board{8,8} &svars.;                                                                                                       
         set board&board.(keep=s:);  
   %* Find the location of the last step in the tour ;;                                                                                                                                                                                                                            
         do j = 1 to 8;                                                                                                                  
            do k = 1 to 8;                                                                                                               
               if board{j,k} eq max(of board{*})                                                                                         
                  then do;  cur_row=j; cur_col=k; leave; end;                                                              
               end;                                                                                                                      
            end;     
   %* Find the location of the “First” step on the Successive board ;;                                                                                                                                                                                                                                                                                                                                          
         do step1 = -2,2;                                                                                                                
            do step2 = -2,2;                                                                                                             
               if 1 le (cur_row+step1) le 8                                                                                              
                  then do;                                                                                                               
                     nxt_row = cur_row + step1;                                                                                          
                     nxt_col = cur_col;                                                                                                  
                     end;                                                                                                                
                  else if 1 le (cur_col+step2) le 8                                                                                      
                     then do;                                                                                                            
                        nxt_row = cur_row;                                                                                               
                        nxt_col = cur_col + step2;                                                                                       
                        end;                                                                                                             
               if (cur_row ne nxt_row) or (cur_col ne nxt_col)                                                                           
                  then leave;                                                                                                            
               end;                                                                                                                      
            end;    
   %* Store the coordinates in macro variables used for the %ktour macro ;;                                                                                                                      
         call symput('r', trim(left(put(nxt_row,2.))));                                                                                  
         call symput('c', trim(left(put(nxt_col,2.))));                                                                                  
      run;                                                                                                                               
   %mend nxtcoord;    
 

Table 3 shows how Solution #1 generates the Knight’s Tour for three chess boards.  
The %knightmoves macro executes only once, generating the crucial KNIGHTMOVES data 
set while the %ktour and %nxtcoord macros formulate the three tours.  Notice that the 
initial tour begins at Board #1, Position a8, which is arbitrary.  Actually, the first tour can 
begin at any position.  Also, it is noteworthy that this solution can proceed ad infinitum.                                                                                                                                           

 

 
    %knightmoves; 
 
    %ktour(1,1,1);         %nxtcoord(1); 
    %ktour(2,&r.,&c.);     %nxtcoord(2); 
    %ktour(3,&r.,&c.);      
 
    %ktour(1,5,4);         %nxtcoord(1); 
    %ktour(2,&r.,&c.);     %nxtcoord(2); 
    %ktour(3,&r.,&c.);     %nxtcoord(3); 
         :     :     :     :     :  
 

    
Table 3.  Generating the Knight’s Tours using Solution #1. 
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SOLUTION #2 – THE “GLUE” METHOD 
Another proposed solution, discovered during the research for this paper, is called 

the “Glue” method, which requires a closed tour, that is, the start and end positions of the 
tour are one knight move away.  Table 4 displays two Knight’s Tours using Warnsdorff’s 
method, a closed tour where Steps #1 and #64 are one move from each other and an open 
tour where Steps #1 and #64 are not, yet still a valid tour. 

 
Closed Tour                          Open Tour 
 

     a   b   c   d   e   f   g   h        a   b   c   d   e   f   g   h 
  8 20   5  38  47  22   7  26  45     8 42  25  22   7  48  35  20   5 
  7 37  50  21   6  39  46  23   8     7 23   8  41  36  21   6  47  34 
  6  4  19  56  51  48  25  44  27     6 26  43  24  49  46  57   4  19 
  5 55  36  49  32  57  40   9  24     5  9  40  45  56  37  50  33  58 
  4 18   3  54  61  52  43  28  41     4 44  27  52  39  62  59  18   3 
  3 35  64  33  58  31  60  13  10     3 13  10  55  60  51  38  63  32     
  2  2  17  62  53  12  15  42  29     2 28  53  12  15  30  61   2  17  
  1 63  34   1  16  59  30  11  14     1 11  14  29  54   1  16  31  64 
 

   
Table 4.  A closed knight’s tour and an open knight’s tour.  
 

This method seems more like cheating because it does little more than clone an 
existing closed tour: it does not truly generate a knight’s tour.   Instead, the process 
recodes the numerical sequence (i.e. steps) in the tour based on the last step and the 
subsequent legal move to the next board.  So, given a closed tour, how does it recode the 
sequence of values?  First of all, it must discern a legal move with respect to 3-D chess.  For 
example, as shown in Table 5, the knight can move from Board #1, Position b3, to Board 
#2, Position d3, which denotes the knight’s move on the next board, followed by two 
squares in perpendicular fashion.  There are other possible moves, but for this discussion, 
the point is to illustrate the cloning process.   

As shown in Table 5, Position d3 on Board #1 denotes Step #58 (the array element 
board{6,4}), which becomes the pivotal value for the cloning process.  Because of an 
inherent property of a closed tour, it is possible to recode the Step values by computing two 
incremental values using the following formulas: 

• INCR1 = MAX(of board{*}) – board{6,4} + 1  =  64 – 58 = 7 
• INCR2 = MAX(of board{*}) – board{6,4} + 65 =   6 + 65 = 71  

 
 
Board #1: Initial (Closed) Tour      Board #2: Successive Tour 
 

      a   b   c   d   e   f   g   h        a   b   c   d   e   f   g   h 
  8  20   5  38  47  22   7  26  45    8  91  76 109 118  93  78  97 116 
  7  37  50  21   6  39  46  23   8    7 108 121  92  77 110 117  94  79 
  6   4  19  56  51  48  25  44  27    6  75  90 127 122 119  96 115  98 
  5  55  36  49  32  57  40   9  24    5 126 107 120 103 128 111  80  95 
  4  18   3  54  61  52  43  28  41    4  89  74 125  68 123 114  99 112 
  3  35  64  33  58  31  60  13  10    3 106  71 104  65 102  67  84  81     
  2   2  17  62  53  12  15  42  29    2  73  88  69 124  83  86 113 100 
  1  63  34   1  16  59  30  11  14    1  70 105  72  87  66 101  82  85 
 

   
Table 5.  An initial closed knight’s tour and its successor beginning at a proper starting position. 
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Following the example in Table 5, the variables INCR1 and INCR2 will have the values 7 and 
71, respectively.  Then, simply traverse the first tour (matrix) and increment accordingly, 
that is, pivoting on the value 58.  Thus, steps ranging from 58 to 64 are incremented by 7, 
thereby ranging from 65 (which is the first step on the successive board) to 71; whereas, 
those steps below Step #58 are incremented by 71.  Thus, Steps #1 through #57 will range 
from 72 to 128, as shown in Example #1 of Table 6.  And, it works!   

Even more ironic concerning this method – Given a closed tour, Examples 2 and 3 in 
Table 6 illustrate that any position can be selected as the pivotal position for the recoding 
process, albeit not following the rules for 3-D chess.  Also, notice that the result is always 
another closed tour.   

Although the implementation emulates the Solution #1 using the KNIGHTMOVES 
data set and the heuristic rule, it is necessary to designate the starting position (row, 
column) knowing that the result will be a closed tour.   Then, the %glue macro generates 
the subsequent tour by transforming the values of the first (closed) tour into a new Knight’s 
Tour.   
 

 
     Board #1: (Closed) Tour                        Board #2: Example #1 

 
     a   b   c   d   e   f   g   h        a   b   c   d   e   f   g   h 
  8 20   5  38  47  22   7  26  45    8  91  76 109 118  93  78  97 116 
  7 37  50  21   6  39  46  23   8    7 108 121  92  77 110 117  94  79 
  6  4  19  56  51  48  25  44  27    6  75  90 127 122 119  96 115  98 
  5 55  36  49  32  57  40   9  24    5 126 107 120 103 128 111  80  95 
  4 18   3  54  61  52  43  28  41    4  89  74 125  68 123 114  99 112 
  3 35  64  33  58  31  60  13  10    3 106  71 104  65 102  67  84  81     
  2  2  17  62  53  12  15  42  29    2  73  88  69 124  83  86 113 100 
  1 63  34   1  16  59  30  11  14    1  70 105  72  87  66 101  82  85 
 
        Board #2: Example #2                             Board #2, Example #3 
 
     a   b   c   d   e   f   g   h        a   b   c   d   e   f   g   h 
 8  89  74 107 116  91  76  95 114    8 104  89 122  67 106  91 110  65      
 7 106 119  90  75 108 115  92  77    7 121  70 105  90 123  66 107  92 
 6  73  88 125 120 117  94 113  96    6  88 103  76  71  68 109 128 111 
 5 124 105 118 101 126 109  78  93    5  75 120  69 116  77 124  93 108 
 4  87  72 123  66 121 112  97 112    4 102  87  74  81  72 127 112 125 
 3 104  69 102 127 100  65  82  79    3 119  84 117  78 115  80  97  94 
 2  71  86  67 122  81  84 111  98    2  86 101  82  73  96  99 126 113 
 1  68 103  70  85 128  99  80  83    1  83 118  85 100  79 114  95  98 
 

  
Table 6.  A closed knight’s tour with three successive closed tours. 
 

The %glue macro, shown below, obtains the Step-value of the knight’s next 
position, generates a new tour using the “Glue” method, then displays the new  tour. 

                                                                                                            
   %macro glue(board,r,c);  
   %* Obtain Step-value of the knight’s next position ;;                                                                                                                  
      data _null_;                                                                                                                       
         retain r &r. c &c.;                                                                                                             
         array board{8,8} s11-s18 s21-s28 . . .  s81-s88                                                                                                      
         set board%eval(&board.-1);                                                                                                                 
         call symput('pval',trim(left(put(board{r,c},3.))));                                                                             
      run;         
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   %* Generate new tour by “Glue” method ;;                                                                                                                        
      data board%eval(&board.+1);                                                                                                        
         retain &svars. &mvars. pval &pval. incr1 incr2;                                                                                 
         array board{8,8} &svars.;                                                                                                       
         set board%eval(&board.-1);     Process previous tour.                                                                                                               
         if _n_ eq 1                                                                                                                     
            then do;    L.T. and G.E. Pivotal value                                                                                                                   
               incr1 = max(of board{*}) - board{&r.,&c.} + 1;    
               incr2 = max(of board{*}) - board{&r.,&c.} + 65;                
               end;                                                                                                                      
         do r = 1 to 8;       Recode board, accordingly.                                                                                                            
            do c = 1 to 8;                                                                                                               
               if board{r,c} ge &pval.                                                                                                   
                  then board{r,c} = board{r,c} + incr1;                                                                                  
                  else board{r,c} = board{r,c} + incr2;                                                                                  
               end;                                                                                                                      
            end;                                                                                                                         
         drop r c incr1 incr2 pval;                                                                                                           
      run;     
   %* Display the new tour ;;                                                                                                                           
      %ShowBoard(dsn      = board%eval&board.,                                                                                       
                 elements = &svars.,                                                                                                     
                 title    = Knights Tour on Board #%eval(&board.+1));                                                                    
   %mend glue;  
 
Table 8 shows a closed tour beginning on Board #1, Position b1.  As an exercise for the 
reader, formulate the successive tour (i.e. Board #2) using the following criteria: Pivotal 
Value=60, INCR1=5, and INCR2=69.  Keep in mind that the Pivotal Value was 
determined by the rules of 3-D chess; whereas, the incremental variables were computed 
using formulas. 

 
 
 
     Board #1: (Initial Closed Tour)               Board #2 (Next Tour) 
 
     a   b   c   d   e   f   g   h         a   b   c   d   e   f   g   h 
  8 25  22   5  34  27  12   7  10     8  94  91  74 103  96  81  76  79 
  7  4  35  26  23   6   9  28  13     7  73 104  95  92  75  78  97  82 
  6 21  24  45  36  33  30  11   8     6  90  93 114 105 102  99  80  77 
  5 44   3  58  31  50  37  14  29     5 113  72 127 100 119 106  83  98 
  4 59  20  51  46  63  32  49  38     4 128  89 120 115  68 101 118 107 
  3  2  43  62  57  52  47  54  15     3  71 112  67 126 121 116 123  84 
  2 19  60  41  64  17  56  39  48     2  88  65 110  69  86 125 108 117 
  1 42   1  18  61  40  53  16  55     1 111  70  87  66 109 122  85 124 
 

    
Table 7.  Board #2 created from Board #1 using Step #60 (Position b2) as the pivotal 
value. 
 

SOLUTION #3 – TRAVERSING THE BOARDS DURING THE TOUR 
The first two solutions produce valid tours, albeit in a limited way.  The first solution 

merely extended Warnsdorff’s heuristic rule by generating tours independently for each 
board, then moving the knight to a successive board according the rules of 3-D chess and 
finding the next tour.  The second solution, the so-called “Glue” method, is a scheme to 
recode a given closed tour in order to produce a new tour.  It does not generate a Knight’s 
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Tour from scratch.  The “Glue” method is little more than an isomorphism – and a sham.  
Neither solution generates the Knight’s Tour as one might imagine, that is, traversing 
several chess boards during the tour.    

The proposed solution takes Warnsdoff’s heuristic rule to new heights.  The idea is 
the same: creating and updating the KNIGHTMOVES data set in tandem with the heuristic 
rule for discerning the next knight move.  However, this time the number of possible moves 
represents three chess boards, not just one.   In this situation, it is necessary to know a 
priori the number of possible knight moves from any of 192 possible squares (i.e.  3 
chess boards each having 64 squares), because now there is a third factor called the Level: 
Board #1, #2, and #3.   

Table 8 displays the three boards in juxtaposition and includes several examples of 
how the knight moves from its initial position to all possible moves. The coding convention 
clearly indicates rows 1 through 8 and columns a through h that facilitates enumerating the 
possible moves.  Keep in mind the rules for 3-D chess. 

 

 

                Board #1                                         Board #2                                        Board #3 

                     
 
            # Possible   -------------------- To Position --------------------- 

From Position          Moves       Board #1               Board #2           Board #3 
 
Board #1 / Position a8    6       b6, c7             a6, c8                     a7, b8 
Board #2 / Position d5  16       b5, f5, d7, d3         b4, b6, c3, c7,          b5, f5, d7, d3 
                                                                                e3, e7, f4, f6  
Board #3 / Position b3  10       b2, b4, c3             b1, b5, d3                a1, a5, c1, c5,              
                                                                                                               d2, d4                       

 
Table 8.  Listing of possible knight moves.  
 

Consider the following important points before proceeding:   

1. The Knight’s Tour is displayed as a sequence of integers, ranging from 1 to 192.  
Theoretically, for example, Step #1 begins at Board #1, Position a8 and Step 
#192 lands on Board #3, Position e1. 

2. Using three boards, the knight’s second step depends on its initial step, that is, 
whether the piece moves one or two levels will depend on its initial location.   For 
example, the knight cannot jump two levels if it resides initially on the middle 
chess board, since there are only three boards. 
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3. The number of possible moves for the knight ranges from 6 to 16 (See Table 9), 
which is significantly more than the Knight’s Tour problem using a single board.  

4. When moving to another board, the knight lands on the same-named square 
(e.g. a8 on one board moves to a8 onto another board) before moving to its final 
destination, accordingly.  

5. If the initial move begins from Board #2, the knight can move only one level. 

6. Obviously, the move must be legal and the knight remains on the board. 

The first task is to calculate the number of possible knight moves from any square on 
any board, as shown in Table 9.  This information would be stored in a data set called 
KNIGHTMOVES, which becomes the only input to the proposed SAS solution, implemented 
as a 3-dimensinal array, called the MOVES matrix.  The knight begins its tour from a given 
starting position, seeks the most reasonable next move, and then updates the MOVES 
matrix, by decrementing by 1 those places where the knight could go from the new position.   
 

The objective is to create a data set that contains 1 observation having 192 variables 
whose naming convention intuitively indicates a 3-dimensional array denoting the LEVEL, 
ROW, and COLUMN.  These m-variables (m denotes MOVES) contain the number of possible 
moves from all 192 positions.   The abridged Data step below uses three DO-loops to 
address each element in the 3-dimensional - moves{level,r,c}.    

 
In order to count the number of possible knight moves, we first focus on the board 

where the knight resides; thereby considering the traditional L-shaped movements, which 
are implemented using two DO-loops and their respective loop control variables: STEP1 and 
STEP2.  Given that the step is legal, the COUNTER variable is incremented.  Then, in order 
to count the possible moves onto the other boards, from the same location, there are only 
two scenarios:   

 
1. The knight jumps to the next board, then moves TWO squares in a 

perpendicular fashion. 
2. The knight jumps to the second board, then moves ONE square in 

perpendicular fashion.   
 
If the knight resides on level 1 or 3, then both scenarios prevail; however, if the knight 
resides on level 2, then only the first scenario prevails.  Of course, the move must be legal 
in order to increment the COUNTER.    
 
   data knightmoves;    One observation, keeping only the M-variables. 
      array moves{3,8,8}  m111-m118 . . m188 m211-m218 . . m288  
                          m311-m318 . . m388; 
      do level = 1 to 3;     Process all three 8x8 boards.                                                                                                            
         do r = 1 to 8;                                                                                                               
            do c = 1 to 8;   For a given knight position {r,c}.                                                                                                         
               counter=0;    Initialize the counter to zero.  
 
    Knight moves in L-shaped fashion. If legal move then increment counter.  
               select(level);     Knight moves one level or two levels.  
                  when(1,3)       If legal move then increment counter.  
                  when(2)         If legal move then increment counter.     
                  end; 
               moves{level,r,c} = counter;    Assign # possible moves.  
         end; end; end; 
   run;                                                                                                                   
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             Board #1   Board #2                 Board #3 
     
     a  b  c  d  e  f  g  h       a  b  c  d  e  f  g  h       a  b  c  d  e  f  g  h 
 8  6  8 10 10 10 10  8  6    8  6  7 10 10 10 10  7  6    8  6  8 10 10 10 10  8  6     
 7  8 10 13 13 13 13 10  8    7  7  8 12 12 12 12  8  7    7  8 10 13 13 13 13 10  8 
 6 10 13 16 16 16 16 13 10    6 10 12 16 16 16 16 12 10    6 10 13 16 16 16 16 13 10 
 5 10 13 16 16 16 16 13 10    5 10 12 16 16 16 16 12 10    5 10 13 16 16 16 16 13 10 
 4 10 13 16 16 16 16 13 10    4 10 12 16 16 16 16 12 10    4 10 13 16 16 16 16 13 10 
 3 10 13 16 16 16 16 13 10    3 10 12 16 16 16 16 12 10    3 10 13 16 16 16 16 13 10 
 2  8 10 13 13 13 13 10  8    2  7  8 12 12 12 12  8  7    2  8 10 13 13 13 13 10  8 
 1  6  8 10 10 10 10  8  6    1  6  7 10 10 10 10  7  6    1  6  8 10 10 10 10  8  6 
 

 
Table 9.  The KNIGHTMOVES metadata for three chess boards.  Notice the symmetry. 
 

Solution #3 is implemented as a single macro with no parameters.  It is designed to 
traverse all 192 squares in search of the Knight’s Tour, starting from each position.  This 
lengthy macro follows the same approach of utilizing the KNIGHTMOVES data set and 
moving the knight on the board where it resides, then considering the other levels, 
accordingly.   Thus, for a given starting position (Level, Row, Column), a Data step attempts 
to generate the Knight’s Tour by initializing the BOARD 3-dimensional matrix with the value 
1 (denoting Step #1) then traversing the matrix to determine the position of Step #2, and 
so on.  The Data step considers the L-shaped moves on the board where the knight resides, 
obtaining the “minimal degree” in accordance to the heuristic rule, then considers the 3-D 
chess moves to the other boards, likewise.   Depending on the level where the knight 
resides will determine the subsequent checks in search of the “minimal degree.”    
 
 The following Data _null_ step determines whether the attempt to formulate the 
Knight’s Tour was successful.  If so, then a 3-D version of the %showboard macro 
generates the report.  Table 10 shows an example of a successful and a failed tour, the 
latter tour getting stuck at Step #189. 
 
   data _null_;                                                                                                              
      array board{3,8,8} s111-s118 … s181-s188 … s311-s318 … s381-s388;                    
      set solution;                                                                                                          
      call symput('solved',left(put(n(of board{*}) eq 192,1.))); 
   run;    
 
 
 
 
         Successful Knight’s Tour                                      Failed Knight’s Tour                   
                              Board #1                        Board #1 
       a   b   c   d   e   f   g   h             a   b   c   d   e   f   g   h 
   8  24  29  26  21  46  35  40  43         8  23  16  41  32  91  72  65  70  
   7  31  22  81  74  83 106  47  38         7  18  31  90  83  88  77  92  63 
   6  80  73 100 105 180 157 118 107         6  13  40 109 102 115 136  87  74 
   5  69 104 141 156 183 136 181  48         5  30 101 114 137   . 174 128 135 
   4  18 101 146 173 192 185 158 119         4  35 108 103 177 139   . 161  86 
   3 103  68 153 184 159 182 135  86         3 100  55 138 186 185 178 175 129 
   2  10  17 128 145 174 177  62  91         2   7  52 107 104 176 162 145 154 
   1  38  27  12  63  56  25  10   7         1   2   9   6 121 146 157 148 143 
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             BOARD #2         BOARD #2 
      a   b   c   d   e   f   g   h              a   b   c   d   e   f   g   h 
  8  27  20  55  34  41  50 109  36          8  14  33  22  27  60  69  44  73         
  7  54  33  76 115 110  37  84  49          7  21  26  59  78  45  84  61  68  
  6  19  96 111  78  99 114 139 120          6  34  15  46 111  96  79 126  85       
  5  32  77 148 113 140 163  58  85          5  25  58  97 164 127 152 173  62     
  4  95 112 127 144 179 176 123 138          4  12  51 110 119 170 163 132 153    
  3  14   7 142 149 162 137 160  59          3  57  38 123  98 165 168 151 142  
  2   1  94  15 178 143 150 175 122          2  36  11 118 169 140 131 166 133 
  1   6  13   2  93  66 161  60  87          1   5  56  37  10 167 150 141 130   

          BOARD #3          BOARD #3 
      a   b   c   d   e   f   g   h              a   b   c   d   e   f   g   h 
    8     30  25  28  51  56  45  42  39          8  17  28  47  82  43  76  71  64 
  7  23  52  71  82  75 116  57  44          7  24  19  42  89  94  81  66  75 
  6  70  79  98 155 132 165 108 117          6  29  48  95 116 125 112  93  80 
  5  53  72 131 166 187 190 133 165          5  20  39 124 113 183 188 160  67 
  4 102  97 154 189 170 167 186 121          4  49  54 117 187   . 179 182 134 
  3   5 130 147 172 191 188 169 134          3   4  99 106 180 189 184 172 159 
  2  16  11 126 151 168 171 124  63          2   1  50  53 120 171 181 155 144 
  1   9   4 129  12 125  88  65  90          1   8   3 122 105 156 147 158 149 
 

 
Table 10.  A successful tour and a failed tour (stopping at step #189). 

FOUR CHESS BOARDS 
Warnsdorff heuristic rule works for a single chess board and three chess boards, the 

latter adhering to 3-D chess rules.  What about four chess boards?  Is Warnsdorff’s heuristic 
rule strong enough?   It turns out – Yes!  Not surprisingly, however, the 4-board solution 
requires a fresh study of how the knight moves between 4-boards.  For example, if the 
knight sits on Board #1, it cannot legally jump to Board #4; that is, it must first jump to 
either Board #2 or Board #3 during the tour in order to get to Board #4, which must be 
included as part of the solution. Hence, one might think that this hurdle would make the 
heuristic rule too weak or biased.  Surprisingly, the rule was able to generate 38 tours out 
of a possible 256 tours; a 46.9% success rate, rather impressive.   Also, adding a fourth 
level affects the logic concerning the creation of the KNIGHTMOVES data set.   In this case, 
all four levels must consider perpendicular moves both one step and two steps, unlike the 3-
board problem. The code below highlights the portion where the knight is moving to another 
board to discern a legal move in order to increment the COUNTER variable. 

 
      data knightmoves                                                                                                                
         array moves{4,8,8} %gen_vars(m,4);                                                                                              
         do level = 1 to 4;                                                                                                              
            do r = 1 to 8;                                                                                                               
               do c = 1 to 8;                                                                                                            
                  counter=0;       
                                                                                                       
         Consider L-shaped moves where the knight resides (not shown). 
         Consider knight moves to the other levels using SELECT/WHEN.  
 
                  select(level);                                                                                                         
                     when(1,2,3,4) do;   
                        do step2 = -2,2;                                                                                                 
                           if 1 le (r+step2) le 8  then counter+1;                                                                       
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                           if 1 le (c+step2) le 8  then counter+1;                                                                       
                           end;                                                                                                                                                                
                        do step2 = -1,1;                                                                                                 
                           if 1 le (r+step2) le 8  then counter+1;                                                                       
                           if 1 le (c+step2) le 8  then counter+1;                                                                       
                           end;                                                                                                          
                        end;                                                                                                             
                     otherwise;                                                                                                          
                     end;                                                                                                                
                  moves{level,r,c} = counter;                                                                                            
                  end;                                                                                                                   
               end;                                                                                                                      
            end;                                                                                                                         
         keep m:;                                                                                             

run;     

 
It is interesting to note that the MOVES matrix for 4-boards contains the same 

values for each level, as shown in Table 11, which makes sense because each level 
manifests the same movements on their respective boards, as well as to other appropriate 
boards.   For example, the value of the array element moves{n,3,4} (Position d4 in chess 
notation) indicates 16 possible moves regardless of which level the knight resides initially.   

 
  

 
            Boards #1 and #4                                      Boards #2 and #3 
 
        a   b   c   d   e   f   g   h          a   b   c   d   e   f   g   h 
     8  6   8  10  10  10  10   8   6      8   8  10  13  13  13  13  10   8 
     7  7  10  13  13  13  13  10   9      7  10  12  16  16  16  16  12  10 
     6  9  13  16  16  16  16  13  11      6  13  16  20  20  20  20  16  13 
     5  9  13  16  16  16  16  13  11      5  13  16  20  20  20  20  16  13 
     4  9  13  16  16  16  16  13  11      4  13  16  20  20  20  20  16  13 
     3  9  13  16  16  16  16  13  11      3  13  16  20  20  20  20  16  13 
     2  7  10  13  13  13  13  10   9      2  10  12  16  16  16  16  12  10 
     1  6   8  10  10  10  10   8   6      1   8  10  13  13  13  13  10   8 

 
Table 11.  Possible knight moves for four boards. 

 
The solution to the 4-board problem consists of a lengthy Data step (not shown) 

because of all the steps the knight might consider during the tour.  The method is the same 
as Solution #3, just more involved.  The Knight’s Tour, shown in Table 12, begins at Board 
#1, Position e8.  As mentioned previously, the Steps: 1, 64, 65, 128, 129, 192, 193, 256 
are highlighted in red in order to facilitate reading the tour.   Notice that the knight’s 
movement traverses all four boards, almost immediately.   For example, Step #2 to Step 
#3: the knight moves from Board #2 to Board #4.   Although the integer values indicate 
higher values in Board #4, the knight’s tour shown below is valid.  
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    Board #1                                                 Board #2 
 
    a   b   c   d   e   f   g   h        a   b   c   d   e   f   g   h 
8  81  88  85 118   1  10  13   6    8  84  77  80 111  98   5   2   9 
7  86  95 124 109 120 117  22  11    7  79 110 121 116 155 150  99   4 
6 125 108 201 160 169 158  73  20    6  92 161 154 157 148 115  18  25 
5 176 131 178 185 200 151 144  23    5 129 192 183 166 153 156 149 100 
4  91 196 199 202 179 172  39  72    4 162 107 164 173 170 147 114  19 
3 130 175 184 197 194 143  68  31    3  49 132 193 182 165 152 101  28 
2  55  52 195 138 171  40  71  38    2  60 163 106 133 102 137  34  41 
1  50  57 104  43 140 135  64  29    1  47  44  61 136 105  42  67  32 
 
    Board #3                                                 Board #4 
 
    a   b   c   d   e   f   g   h        a   b   c   d   e   f   g   h 
8  87  82  97  76  15 112   7  12    8  78 127 238 211 224 229  16   3 
7  96  89  94 119 122  75  14  21    7  93 212 223 228 251 210 225  26 
6  83 126 123 168 159 146 113   8    6 128 239 250 237 230 227 242  17 
5  90 177 204 191 180 167  74  27    5 213 222 231 254 241 252 209 226 
4  59 174 189 186 205 142 145  24    4 232 249 240 247 236 255 206 243 
3  54 187 198 203 190 181  36  69    3 221 214 235 256 253 246 217 208 
2  51  58 103 188 141 134  63  30    2  48 233 248 219 216 207 244  33 
1  56  53  46 139  62  65  70  37    1  45 220 215 234 245 218  35  66 
 

   
Table 12.  The Knight’s Tour using four chess boards.   Steps #1, 64, 65, 128, 129, 192, 
193, and 256 are highlighted in red to facilitate reading the tour. 
 

USEFUL UTILITIES – SUPPLEMENTAL 
There are several utilities that facilitate the SAS solution for the Knight’s Tour.  One 

such utility enumerates the variables representing the 3-dimensional array, rather than 
listing all 192 variables (e.g. s111 . . . s118).  Notice the following intuitive naming 
convention for the MOVES and SOLUTION variables:  

<M | S><Level><Row><Column>  (e.g. m238, s341) 

where M and S denote the Moves and Solution 3-dimensional matrices.  Level denotes the 
board in tier fashion.  Row and Column indicate the coordinate on a given board (level).  
Thus, the element m238 denotes the number of knight moves from Board #2, Position h6 
(row 3, column 8); whereas, the array element s341 denotes the nth move at position 
Board #3, Position a5 (row 4, column 1).   The following utility generates these variables 
easily.   Obviously, this utility can be used for more than three chess boards. 

 
%macro gen_vars(type, levels); 
   %do level = 1 %to &levels.; 
      %do row = 1 %to 8; 
         %do column = 1 %to 8; 
            &type.&level.&row.&column. 
            %end; 
         %end; 
      %end; 
%mend gen_vars; 
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The %Show_Boards macro, another invaluable utility, generates a report showing 
the three chess boards in vertical juxtaposition.   The BOARD matrix can represent either 
the Moves or Solution matrix as defined by the elements parameter.  Keep in mind that 
these variables actually reside in a single observation data set, each consisting of 192 
variables.  The utility converts the matrix into a readable format listing row and columns for 
each board level.  It is a good exercise to enhance the macro to handle N chess boards.  
 
   %macro Show_Boards(dsn      = solution, 
                      elements = %gen_vars(s,3),  
                      title    = 3-D Chess Board); 
      data board; 
         array board{3,8,8} &elements.; 
         array cols{8} c1-c8; 
         set &dsn.; 
         do level = 1 to 3; 
            do r = 1 to 8; 
               do c = 1 to 8; 
                  cols{c} = board{level,r,c}; 
                  end; 
               output; 
               end; 
             end; 
         keep level c1-c8; 
      run; 
      proc report data=board nowindows headskip; 
         columns level c1-c8; 
         define level / order   width=5  'Level'; 
         define c1 / display width=3  '';   define c2 / display width=3 ''; 
         define c3 / display width=3  '';   define c4 / display width=3 ''; 
         define c5 / display width=3  '';   define c6 / display width=3 ''; 
         define c7 / display width=3  '';   define c8 / display width=3 ''; 
         break after level / skip;  
         format c1-c8 best3.1; 
         title2 "&title."; 
      run; 
   %mend Show_Boards; 
 
%Show_Boards(dsn=solution, title=Knight Tour);    
 

CONCLUSION 
The Knight’s Tour problem has been around for centuries and has been investigated 

by famous mathematicians including Leonhard Euler.  The heuristic rule proposed by the 
mathematician H.C. Warnsdorf has been very successful in generating numerous tours, 
even using more than three boards.  The first two proposed solutions were mere extensions 
of the single board problem; whereas, the third solution represents a bona fide tour that 
traverses all the boards during a successful tour.   The creation and maintenance of the 
KNIGHTMOVES data set, along with the intricate movement of the knight in search of 
“minimal degree” posed quite a challenge, especially when applying the heuristic rule to 
more than three chess boards.  Does Warnsdorff’s heuristic rule hold for five, six boards?  
Yes, it does.  More than six?  Probably.  
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APPENDIX A – KNIGHTMOVES DATA SET - SINGLE CHESS BOARD 
 
   data knightmoves;                                                                                                                     
      array board{8,8} m11-m18 m21-m28 m31-m38 m41-m48  
                       m51-m58 m61-m68 m71-m78 m81-m88;                                                  
      do r = 1 to 8;                                                                                                                     
         do c = 1 to 8;                                                                                                                  
            counter=0;                                                                                                                   
            do step1 = -2,-1,1,2;                                                                                                        
               do step2 = -2,-1,1,2;                                                                                                     
                  if (abs(step1) ne abs(step2))                                                                                          
                     then do;                                                                                                            
                        if 1 le (r+step1) le 8 and 1 le (c+step2) le 8                                                                   
                           then counter+1;                                                                                               
                        end;                                                                                                             
                  end;                                                                                                                   
               end;                                                                                                                      
            board{r,c} = counter;                                                                                                        
            end;                                                                                                                         
         end;                                                                                                                            
      drop r c step1 step2 counter;                                                                                                      
   run;        

            

 

 

                                                                                                                

https://www.futilitycloset.com/2014/11/10/warnsdorffs-rule/
http://www.markkeen.com/knight/index.html
mailto:gerlachj@dataceutics.com
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APPENDIX B – TWO KNIGHT TOURS USING A SINGLE CHESS BOARD  
 
     Tour #1                                                                  Tour #2 
 
     a   b   c   d   e   f   g   h                a   b   c   d   e   f   g   h 
  8  1  16  31  34   3  18  21  50             8 20  33  16   1  26  31  14  39 
  7 30  35   2  17  32  49   4  19             7 17   2  19  32  15  38  27  30 
  6 15  44  33  60  41  20  51  22             6 34  21  42  25  36  29  40  13 
  5 36  29  42  45  54  59  48   5             5  3  18  35  54  41  50  37  28 
  4 43  14  61  40  47  52  23  58             4 22  43  24  49  62  55  12  51 
  3 28  37  46  53  62  55   6   9             3  7   4  59  46  53  48  63  56  
  2 13  64  39  26  11   8  57  24             2 44  23   6   9  58  61  52  11 
  1 38  27  12  63  56  25  10   7             1  5   8  45  60  47  10  57  64
 
 

APPENDIX C – TWO KNIGHT’S TOURS USING THREE CHESS BOARDS 

SOLUTION #1      SOLUTION #2 - “GLUE” METHOD  
     Start:  Board #1, Position a8                       Start:  Board #1, Positon a2 
     End:   Board #4, Position e1                       End:   Board #4, Postion b8 

   BOARD #1      BOARD #1 
     a   b   c   d   e   f   g   h                a   b   c   d   e   f   g   h 
 8   1  16  31  34   3  18  21  50            8  19  62  15  30  37  34  13  32  
 7  30  35   2  17  32  49   4  19            7  16  29  18  59  14  31  40  35 
 6  15  44  33  60  41  20  51  22            6  63  20  61  38  51  36  33  12 
 5  36  29  42  45  54  59  48   5            5  28  17  58  25  60  39  46  41 
 4  43  14  61  40  47  52  23  58            4  21  64  27  50  45  52  11  54 
 3  28  37  46  53  62  55   6   9            3   6   3  24  57  26  55  42  47 
 2  13  64  39  26  11   8  57  24            2   1  22   5   8  49  44  53  10 
 1  38  27  12  63  56  25  10   7            1   4   7   2  23  56   9  48  43 

BOARD #2      BOARD #2 
     a   b   c   d   e   f   g   h                a   b   c   d   e   f   g   h 
 8  84 127  80  95 102  99  78  97            8 126 105 122  73  80  77 120  75         
 7  81  94  83 124  79  96 105 100            7 123  72 125 102 121  74  83  78  
 6 128  85 126 103 116 101  98  77            6 106 127 104  81  94  79  76 119       
 5  93  82 123  90 125 104 111 106            5  71 124 101  68 103  82  89  84     
 4  86  65  92 115 110 117  76 119            4 128 107  70  93  88  95 118  97    
 3  71  68  89 122  91 120 107 112            3 113 110  67 100  69  98  85  90  
 2  66  87  70  73 114 109 118  75            2 108  65 112 115  92  87  96 117 
 1  69  72  67  88 121  74 113 108            1 111 114 109  66  99 116  91  86   
 

BOARD #3       BOARD #3 
     a   b   c   d   e   f   g   h                a   b   c   d   e   f   g   h 
  8  139 156 141 164 137 154 161 176            8 149 192 145 160 167 164 143 162 
 7 142 165 138 155 162 175 136 153            7 146 159 148 189 144 161 170 165 
 6 157 140 163 168 181 160 177 174            6 129 150 191 168 181 166 163 142 
 5 166 143 182 159 178 187 152 135            5 158 147 188 155 190 169 176 171 
 4 129 158 167 186 169 180 173 190            4 151 130 157 180 175 182 141 184 
 3 144 183 146 179 188 191 134 151            3 136 133 154 187 156 185 172 177 
 2 147 130 185 170 149 132 189 172            2 131 152 135 138 179 174 183 140 
 1 184 145 148 131 192 171 150 133            1 134 137 132 153 186 139 178 173 
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APPENDIX D – TWO KNIGHT’S TOURS USING FOUR CHESS BOARDS 
 
     Start:  Board #3, Position e3     Start:  Board #4, Position h1 
     End:    Board #4, Position d3     End:    Board #4, Position e3      

            BOARD #1                                                   BOARD #1                         
       a   b   c   d   e   f   g   h          a   b   c   d   e   f   g   h 
   8  44  47  50  79  42  73  20  25      8  66  71  74  59  44  51  40  33 
   7  49  56  83  72  99  64  41  18      7  73  68 103  98 101  58  35  38 
   6 154 161 142 135 124  95  74  21      6  90  97 130 135 122 113  52  41 
   5  55 180 198 187 143 102  61  40      5  85 134 187 158 139 108  57  26 
   4 162 186 184 194 138 121  94  31      4  96 157 172 147 186 123 112  47 
   3 179 193 188 197 127 130  69  16      3 163 188 185 196 177 140  25  20 
   2 152 117 185 149 174  93  32   5      2 166 171 178 189 146 115  14  11 
   1 115 148 151 108 129   6   3  14      1  87 164 195 176 141  12  19   4 

               BOARD #2                BOARD #2 
       a   b   c   d   e   f   g   h          a   b   c   d   e   f   g   h 
   8  51  78  43  46  59  38  29  22      8  63  60  81  70  55  32  45  30 
   7  54 157  98  77  82  71  60  39      7  82 127 100  93  80 107  56  27 
   6 141 134 125 166  97  76  37  30      6  65  94 121 128 105  54 111  46 
   5 158 200 156 133 126 131  70  17      5 150 159 126 133 120  79 106  37 
   4 153 170 165 182 175  96  75  36      4  89 154 151 160 145 114  53  16 
   3 114 181 199 171 132 103  88  67      3  86 181 192 155 142 119  78   9 
   2 163 172 183 176 145 120  35  10      2 153 156 161 182 191 144  17   2 
   1 112 109 146 119 104  89  68   7      1 162 193 180 143  18   3  24   7 

               BOARD #3                BOARD #3 
       a   b   c   d   e   f   g   h          a   b   c   d   e   f   g   h 
   8  48  45  58  85  80  27  24  19      8  72  69  62  75  50  43  34  39 
   7  57  84  81 100  63  86  65  26      7  67  92  83 102  99  76  49  36 
   6  52 167 140 123 136 101  62  23      6  84 129 104 131 136 109  42  29 
   5 155 160 190 195 139 122  87  66      5  91 132 149 138 125 118  77  48 
   4 168 192 189 177 144 137  34   9      4 152  95 198 173 148 137 110  21 
   3 159 178 196 191   1 106  91  12      3 167 170 179 184 197 124 117   6 
   2 116 169 164 173 128  33   2  15      2  88 183 190 169 174  13  22  15 
   1 147 118 111 150 107  92  13   4      1 165 168 175 194  23 116   5  10 

               BOARD #4               BOARD #4 
       a   b   c   d   e   f   g   h          a   b   c   d   e   f   g   h 
   8  53 211 208 203 224 235 206  28      8  61 210 247 230 219 212  31  28 
   7 209 202 225 242 207 204 223 236      7  64 231 228 211 248 215 220 213 
   6 212 243 210 227 234 251 240 205      6 209 246 249 254 229 218 239 216 
   5 201 226 255 250 241 228 237 222      5 232 227 242 245 250 253 214 221 
   4 244 213 246 233 254 239 252 229      4 199 208 255 252 243 240 217 238 
   3 215 218 249 256 247 232 221 238      3 226 233 244 241 256 251 222 203 
   2 113 245 214 217 220 253 230   8      2 207 200 235 224 205 202 237   8 
   1 110 216 219 248 231 105  90  11      1 234 225 206 201 236 223 204   1 
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