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ABSTRACT  

This article goes over the SAS® procedures which can fit the Rasch model, such as the IRT, 

LOGISTIC, GENMOD, GLIMMIX, NLMIXED, NLIN and MCMC procedures, and describes how 

to use them to fit the standard Rasch model and the Rasch model with all person or item 

parameters fixed. 

INTRODUCTION  

Item Response Theory (IRT; Lord, 1980) models are widely used in educational and 

psychological testing. Usually the IRT models are fitted using special computer software, 

such as WINSTEPS (Linacre, 2011b), and BILOG-MG (Zimowski, Muraki, Mislevy & Bock, 

2003). WINSTEPS implements the joint maximum likelihood (JML; Wright & Douglas, 1977; 

Wright & Panchapakesan, 1969; Wright & Stone, 1979) and can fit the Rasch model (Rasch, 

1960) or Rasch-styled models only while BILOG-MG uses the marginal maximum likelihood 

(MML) which Bock and Aitkin (1981) proposed and can fit the Rasch model, the two- and 

three-parameter logistic IRT models. 

Besides these IRT software packages, some SAS (SAS Institute, 2017a) procedures can also 

fit IRT models. For example, the LOGISTIC procedure can use the maximum likelihood (ML) 

to estimate the standard Rasch model and the parameter estimates are comparable to 

WINSTEPS’s (Pan & Chen, 2011), the IRT procedure can fit IRT models using MML (An & 

Yung, 2014), and the MCMC procedure can fit IRT models and obtain Bayesian parameter 

estimates (Stone & Zhu, 2015). Because the GENMOD, GLIMMIX, NLMIXED and NLIN 

procedures can provide the results equivalent or comparable to what the LOGISTIC 

procedure gives under some conditions, they can also fit the Rasch model. Specially, the 

GENMOD procedure with the BAYES statement can provide Bayesian parameter estimates 

for the Rasch model as well.  

Furthermore, in some studies (e.g., Uekawa, 2005; Nord, 2008; Tan, Su & Hogan, 2011) 

the person parameter of the Rasch was specified as a random effect in the NLMIXED and 

GLIMMIX procedures to fit the Rasch model, which is similar to what MML does. But their 

SAS code will not be discussed in this article because the estimation method and algorithms 

used in the two procedures are different from the description of Bock and Aitkin (1981), and 

the parameter estimates are not comparable to what the IRT software packages, such as 

WINSTEPS and BILOG-MG, obtain. 

In this article, we will go over these SAS procedures which can fit the Rasch model, 

illustrate how to use them to fit the standard Rasch model and the Rasch model with all 

person or item parameters fixed, and compare their parameter estimates with what the IRT 

software packages BILOG-MG and WINSTEPS give. 

USING SAS PROCEDURES TO FIT THE STANDARD RASCH MODEL 

A standard Rasch model could be specified as: 
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where yij is the score of person i on item j, person parameter θi is the ability of person i, and 

item parameter bj is the difficulty of item j.  

To show how to use SAS procedures to fit the Rasch model mentioned above, we first 

created a simulated test data set with nine items and 20 persons or examinees. The data 

can be input using the following SAS code: 

DATA data1; 

  INPUT id $ s1-s9; 

CARDS; 

01 1 0 1 0 0 0 0 0 0 

02 1 0 0 1 0 0 0 0 0 

… 

; 

In the data set, the nine variables ‘s1’ – ‘s9’ are item scores, and the variable ‘id’ is the ID 

numbers of persons. Then it is easy to use the IRT procedure to fit a standard Rasch model: 

PROC IRT DATA=data1 RESFUNC=RASCH QPOINTS=32 ABSFCONV=0.0001 TECH=EM 

         SCOREMETHOD=ML OUT=out1; 

  VAR s1-s9; 

RUN; 

In the code above, the options, QPOINTS, ABSFCONV and TECH, are used to estimate item 

parameters, and the SCOREMETHOD and OUT options can help get the person parameter 

estimates. We used these options intentionally so that its results can be compared with 

what BILOG-MG obtained under the same conditions. After the commands of BILOG-MG 

were adjusted accordingly, by Table 1, the differences were only 0.017 between their 

correspondent parameter estimates. Thus, their results were comparable. 

Pan (2011; 2018) argued that under ML the standard Rasch model is equivalent to a special 

binary logistic regression model in which the intercept is not specified, item scores are the 

dependent variable, items are effect-coded, and all persons are dummy-coded to be the 

independent variables. Then, any SAS procedure fitting logistic regression models can fit the 

standard Rasch model, such as the LOGISTIC, GENMOD, GLIMMIX, NLMIXED or NLIN 

procedure. The LOGISTIC procedure fits logistic regression models. Although usually the 

GENMOD and GLIMMIX procedures fit generalized linear models (GLM) and generalized 

linear mixed models (GLMM) respectively, they can also fit a logistic regression model 

because logistic regression models are a type of GLM and can be treated as a special case of 

GLMM, i.e., GLMM without G-side random effects. Moreover, a logistic regression model can 

also be specified using the flexible programming statements in the NLMIXED and NLIN 

procedure. 

Because a binary logistic regression model has only one dependent variable, the simulated 

data abovementioned cannot be used in these SAS procedures. The data need to be 

transposed to put all item scores in one variable or input using the following code:  

DATA data2; 

  INPUT score total item id $; 

CARDS; 

1 2 1 01 

0 2 2 01 

… 

0 6 8 20 

0 6 9 20 

;  

This SAS data set, ‘data2’, has the following variables: ‘item’ is the item sequence numbers, 

‘id’ is the ID numbers of examinees, ‘score’ is examinees’ item scores, and ‘total’ is 

examinees’ total raw scores on the test. 
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Table 1. Comparisons of Parameter Estimates Between SAS Procedures, BILOG-MG and 
WINSTEPS 

Parameters 
BILOG
-MG 

WINSTEPS 

SAS Procedures 

IRT 

LOGISTIC 
GENMOD 
GLIMMIX 
NLMIXED 

NLIN 

LOGISTIC 

with 
FIRTH 

GENMOD 
with 

BAYES 
MCMC 

Items Item Parameter Estimates 

1 -1.7162 -1.9730 -1.7335 -1.9731 -1.9729 -1.6062 -1.8122 -1.7757 

2 -0.7706 -0.9028 -0.7879 -0.9028 -0.9027 -0.7415 -0.8834 -0.7693 

3 -0.5001 -0.5854 -0.5174 -0.5855 -0.5854 -0.4807 -0.5253 -0.4881 

4 -1.3674 -1.5866 -1.3847 -1.5867 -1.5866 -1.2974 -1.4706 -1.3921 

5 -0.2389 -0.2771 -0.2562 -0.2771 -0.2771 -0.2262 -0.2861 -0.1783 

6 0.5352 0.6327 0.5179 0.6328 0.6328 0.5259 0.5625 0.5680 

7 0.8054 0.9457 0.7881 0.9458 0.9457 0.7828 0.8484 0.8113 

8 1.0911 1.2736 1.0738 1.2737 1.2736 1.0497 1.1761 1.0484 

9 2.1614 2.4729 2.1441 2.4729* 2.4726* 1.9936* 2.3906* 2.1341 

Total 
Scores 

Person Parameter Estimates 

1 -2.5648 -2.6852 -2.5475 -2.6853 -2.6850 -2.1170 -1.4253 − 

2 -1.6199 -1.7078 -1.6026 -1.7079 -1.7078 -1.3920 -1.4984 − 

3 -0.9353 -0.9870 -0.9180 -0.9870 -0.9869 -0.8121 -0.5629 − 

4 -0.3337 -0.3458 -0.3164 -0.3459 -0.3458 -0.2837 -0.2682 − 

5 0.2506 0.2808 0.2679 0.2808 0.2808 0.2354 0.2125 − 

6 0.2506 0.2808 0.2679 0.2808 0.9397 0.7770 0.7977 − 

7 0.8656 0.9397 0.8829 0.9398 1.6988 1.3837 1.2512 − 

8 2.5717 2.7411 2.5891 2.7412 2.7407 2.1512 1.8101 − 

Note: * indicates the parameter estimate was obtained through the sum-to-zero constraint. 

Then, in terms of Pan and Chen (2011), we need 20 indicator variables for 20 persons or 

examinees and eight effect-coded variables for nine items to fit the standard Rasch model. 

Thus, we created the effect-coded variables ‘i1’ – ‘i8’ corresponding to Items 1 – 8 

respectively, and the last item, Item 9, was used as the reference. If the standard effect-

coding is used, then the item parameter estimates obtained using the LOGISTIC procedure 

will have the opposite signs to the estimates from WINSTEPS as what Pan and Chen (2011) 

got. To avoid it, we reversed the signs of numbers used in the standard effect coding when 

creating the coded variables ‘i1’ – ‘i8’ for items, i.e., the values of a coded variable for an 

item were equal to –1 when a score was from this item, 1 when a score was from the 

reference item, and 0 when a score was from the other items. This coding still put the sum-

to-zero constraint on the item parameters. Then, the below LOGISTIC code can be used to 

obtain item parameter estimates comparable to WINSTEPS’s without any transformation. 

PROC LOGISTIC DATA=data2 DESCENDING; 

  CLASS id / PARAM=GLM; 

  MODEL score = id i1-i8 / NOINT TECH=NEWTON ABSFCONV=0.0001; 

RUN; 

In the code above, the DESCENDING option will reverse the sort order for the levels of the 

response variable when the LOGISTIC procedure does modeling, and here it forces this 

procedure to model the probability that ‘score’ = 1 as the Rasch model does; the NOINT 
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option is used to fit a model without an intercept as the model has no intercept; the option 

PARAM=GLM forces the procedure to dummy-code every class level of the classification 

variable specified in the CLASS statement and create the indicator variables needed; for the 

purpose of the comparison, the options TECH and ABSFCONV specify the optimization 

algorithm (Newton-Raphson) and convergence criterion (0.0001) respectively. Accordingly, 

the code of other SAS procedures mentioned later and the WINSTEPS commands were 

adjusted too. 

Because the person parameter estimates are the same for examinees taking the same item 

set and receiving the same total score in the Rasch model, the variable ‘total’ can replace 

the variable ‘id’ in the above SAS code, and the code can run much faster if there are 

hundreds of examinees (Pan & Chen, 2011). Then, the code can be revised as follows: 

PROC LOGISTIC DATA = data2 DESCENDING; 

  CLASS total / PARAM=GLM; 

  MODEL score = total i1-i8 / NOINT TECH=NEWTON ABSFCONV=0.0001; 

RUN; 

Table 1 shows that the differences between parameter estimates of the LOGISTIC procedure 

and WINSTEPS was only 0.0001 as Pan (2011; 2018) obtained.  

When the GENMOD and GLIMMIX procedures were used, the below SAS code gave the same 

parameter estimates as the above LOGISTIC code obtained. 

PROC GENMOD DATA=data2 DESCENDING; 

  CLASS total; 

  MODEL score = total i1-i8 / NOINT DIST=BIN LINK=LOGIT CONVERGE=0.0001; 

RUN; 

PROC GLIMMIX DATA=data2; 

  CLASS total; 

  MODEL score (DESCENDING) = total i1-i8 / NOINT DIST=BINARY LINK=LOGIT S; 

  NLOPTIONS TECH=NEWRAP ABSFCONV=0.0001; 

RUN;  

The option PARAM=GLM is not needed in the above code because the GENMOD procedure 

uses it by default, and the GLIMMIX procedure uses this coding only; the options DIST and 

LINK are used to specify a logistic regression model. 

If the NLMIXED and NLIN procedures are applied, besides the coded variables ‘i1’ – ‘i8’ for 

items, the indicator variables for all different total scores need to be created as the two 

procedures do not have the CLASS statement. Because the values of total scores were 1 to 

8 in the simulated data as Table 1 shows, we needed to create eight indicator variables, ‘t1’ 

– ‘t8’, which are correspondent to eight total scores respectively.  

The below NLMIXED code gave the same estimates as the LOGISTIC, GENMOD, and 

GLIMMIX procedures obtained: 

PROC NLMIXED DATA=data2 TECH=NEWRAP ABSFCONV=0.0001 NOAD; 

  PARMS a1=0 a2=0 a3=0 a4=0 a5=0 a6=0 a7=0 a8=0 

        b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 b8=0; 

  eta = a1*t1+a2*t2+a3*t3+a4*t4+a5*t5+a6*t6+a7*t7+a8*t8 

       +b1*i1+b2*i2+b3*i3+b4*i4+b5*i5+b6*i6+b7*i7+b8*i8; 

  pi = EXP(eta)/(1+EXP(eta)); 

  MODEL score ~ BINARY(pi); 

RUN; 

In the above code, the PARMS statement provides starting values of all parameters 

specified, and defines points in the parameter spaces of the model specified; the MODEL 

statement specifies that the variable ‘score’ follows a binary (Bernoulli) distribution with the 

probability ‘pi’; In the programming statements, ‘eta’ creates the linear predictors of a 

logistic regression model, and ‘pi’ is the logistic transformation of ‘eta’; the coefficients ‘a1’ 
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– ‘a8’ represent the person parameters with different total raw scores respectively; the 

coefficients ‘b1’ – ‘b8’ represent the parameters of the first eight items respectively, and the 

ninth-item parameter can still be obtained through the sum-to-zero constraint.  

It is a little complicated to use the NLIN procedure and fit the Rasch model. SAS/STAT® 

user’s guide (SAS Institute, 2017b) provides a NLIN code example to fit a probit model by 

minimizing twice the negative of the log-likelihood function. Based on the example, we first 

created a ‘dummy’ response variable ‘lk’, whose values are equal to zeros for all 

observations. Then, the similar programming statements can be used to specify the model, 

but ‘pi’ should be revised to provide different transformations of ‘eta’ when the variable 

‘score’ is equal to 0 and 1, and the MODEL statement specifies twice the negative of the log-

likelihood function. The NLIN code is shown as below:  

PROC NLIN DATA=data2 METHOD=NEWTON CONVERGE=0.0001; 

  PARMS a1=0 a2=0 a3=0 a4=0 a5=0 a6=0 a7=0 a8=0 

        b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 b8=0; 

  eta = a1*t1+a2*t2+a3*t3+a4*t4+a5*t5+a6*t6+a7*t7+a8*t8 

       +b1*i1+b2*i2+b3*i3+b4*i4+b5*i5+b6*i6+b7*i7+b8*i8; 

  pi = EXP(eta*score)/(1+EXP(eta)); 

  MODEL lk = SQRT(-2*LOG(pi)); 

RUN; 

Table 1 shows that its parameter estimates were very close to what was obtained using the 

LOGISTIC, GENMOD, GLIMMIX and NLMIXED procedures. 

However, ML or JML estimates for the Rasch model are biased (Ghosh, 1995, Wright & 

Douglas, 1977). To reduce the bias, Pan (2011; 2018) suggested using the penalized 

maximum likelihood (PML; Firth, 1993). With the FIRTH option, the following LOGISTIC code 

uses PML to fit the standard Rasch model, and the results are shown in Table 1. 

PROC LOGISTIC DATA = data2 DESCENDING; 

  CLASS total / PARAM=GLM; 

  MODEL score = total i1-i8 / NOINT FIRTH TECH=NEWTON ABSFCONV=0.0001; 

RUN; 

Another choice is the Bayesian method. The below GENMOD code with the BAYES statement 

obtains full Bayesian estimates for the Rasch model. In the code, a data set is first created 

with the means and variances of the prior distributions Stone and Zhu (2014) used. 

DATA priors; 

  INPUT _type_ $ total1-total8 i1-i8; 

CARDS; 

Mean 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Var 1 1 1 1 1 1 1 1 25 25 25 25 25 25 25 25 

; 

PROC GENMOD DATA=data2 DESCENDING; 

  CLASS total; 

  MODEL score = total i1-i8 / NOINT DIST=BIN LINK=LOGIT; 

  BAYES COEFFPRIOR=NORMAL(INPUT=priors) NBI=2000 NMC=10000 SEED=1; 

RUN; 

In addition, the MCMC procedure can also provide Bayesian estimates for the IRT models 

(Stone & Zhu, 2014). The code below can obtain Bayesian estimates for the Rasch model: 

PROC MCMC DATA=data1 NBI=2000 NMC=10000 SEED=1; 

  ARRAY b[9]; ARRAY s[9]; ARRAY p[9]; 

  PARMS b: 0;  

  PRIOR b: ~ NORMAL(0, VAR=25) ;    

  RANDOM theta ~ NORMAL(0, VAR=1) SUBJECT=id;   

  DO j=1 TO 9;   

    p[j] = 1/(1+exp(-(theta - b[j])));    
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  END;    

  MODEL s1 ~ BINARY(p1); 

  MODEL s2 ~ BINARY(p2); 

  MODEL s3 ~ BINARY(p3); 

  MODEL s4 ~ BINARY(p4); 

  MODEL s5 ~ BINARY(p5); 

  MODEL s6 ~ BINARY(p6); 

  MODEL s7 ~ BINARY(p7); 

  MODEL s8 ~ BINARY(p8); 

  MODEL s9 ~ BINARY(p9); 

RUN; 

As Table 1 shows, the Bayesian results of the MCMC and GENMOD procedure are different 

but close although their input data have different structures. The differences of item 

parameter estimates may be due to different sampling methods and random errors. 

Comparatively, the GENMOD code is much simpler than the MCMC code, and the GENMOD 

procedure gives Bayesian estimates for both item and person parameters but the MCMC 

code of Stone and Zhu (2014) only gives Bayesian estimates of item parameters. However, 

a data set is needed to input the means and variances of the customized prior normal 

distributions in the GENMOD procedure. 

USING SAS TO FIT THE RASCH MODEL WITH ALL PERSON OR ITEM 
PARAMETERS FIXED 

In the previous section, we discussed how to use SAS to estimate the standard Rasch 

model. However, sometimes anchored items or persons are used to do equating, scaling, or 

even differential item functioning (DIF) analysis in practice. The IRT programs, e.g., 

WINSTEPS and BILOG-MG, can do calibration with fixed parameters easily. When WINSTEPS 

does DIF analysis, it does the joint run of all persons to obtain item and person parameters 

first, and then each group is run with person parameters anchored at their joint-run values 

to produce item parameter estimates of every group (Linacre, 2011a). How do we do it in 

these SAS procedures? We can specify a Rasch model with all person parameters fixed in 

these SAS procedures if the fixed values of the person parameters are in the data ‘data2’. 

Let’s assume that the 20 persons in the simulated data set belong to two groups, i.e., 

Groups 1 and 2, which have odd- and even-numbered ID numbers respectively. To compare 

the results with WINSTEPS’s, we merged the person parameter estimates gotten from 

WINSTEPS with the simulated data and named this new variable ‘theta’. In this case, the 

sum-to-zero constraint is not used, but it is needed to create the nine indicator variables, 

‘item1’ – ‘item9’, for the nine items. Usually the indicator variables are created using the 

dummy codes 0 and 1. However, we used –1 to replace 1 and create the nine variables, 

which can cause the estimates to have the same sign as what WINSTEPS gives. Then when 

the OFFSET option and the new variable ‘theta’ are used with the LOGISTIC, GENMOD and 

GLIMMIX procedures, we can obtain item parameter estimates with all person parameters 

fixed. Their parameter estimates were still the same, and very close to what WINSTEPS 

obtained. The code is shown as below, and the results are in Table 2. 

PROC LOGISTIC DATA=data2 DESCENDING; 

  WHERE group=1; 

  MODEL score = item1-item9 / NOINT TECH=NEWTON ABSFCONV=0.0001 

                              OFFSET=theta; 

RUN; 

PROC GENMOD DATA=data2 DESCENDING; 

  WHERE group=2; 

  MODEL score = item1-item9 / NOINT DIST=BIN LINK=LOGIT CONVERGE=0.0001 

                              OFFSET=theta; 

RUN; 
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Table 2. Comparisons of Item Parameter Estimates Between SAS Procedures and WINSTEPS 
by Groups 

Items WINSTEPS LOGISTIC 
GENMOD 
GLIMMIX 
NLMIXED 

NLIN 

Group 1 

1 -1.8493 -1.8493 -1.8493 

2 -0.5033 -0.5033 -0.5033 

3 -1.1364 -1.1363 -1.1363 

4 -1.1364 -1.1363 -1.1363 

5 -0.5033 -0.5033 -0.5033 

6 0.7349 0.7349 0.7349 

7 0.7349 0.7349 0.7349 

8 1.4227 1.4227 1.4227 

9 2.2347 2.2347 2.2347 

Group 2 

1 -2.1003 -2.1003 -2.1003 

2 -1.3365 -1.3365 -1.3365 

3 -0.0535 -0.0535 -0.0535 

4 -2.1003 -2.1003 -2.1003 

5 -0.0535 -0.0535 -0.0535 

6 0.5390 0.5390 0.5390 

7 1.1431 1.1431 1.1431 

8 1.1431 1.1431 1.1431 

9 2.7561 2.7571 2.7564 

PROC GLIMMIX DATA=data2; 

  WHERE group=2; 

  MODEL score(DESCENDING) = item1-item9 / NOINT DIST=BINARY LINK=LOGIT S 

                                          OFFSET=theta; 

  NLOPTIONS TECH=NEWRAP ABSFCONV=0.0001; 

RUN; 

In the code above, the WHERE statement is used with these SAS procedures so that each 

group can be analyzed separately. 

These coded variables ‘item1’ – ‘item9’ and the variable ‘theta’ can also be used to specify 

the Rasch model with all person parameters fixed in the NLMIXED and NLIN procedures. In 

the NLMIXED and NLIN code below, the coefficients ‘b1’ – ‘b9’ represent the parameters of 

the nine items respectively. Table 2 shows their estimates and compares them with the 

ones of WINSTEPS DIF analysis. 

PROC NLMIXED DATA=data2 TECH=NEWRAP ABSFCONV=0.0001 NOAD; 

  WHERE group=1; 

  PARMS b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 b8=0 b9=0; 

  eta = theta+b1*item1+b2*item2+b3*item3+b4*item4 

       +b5*item5+b6*item6+b7*item7+b8*item8+b9*item9; 

  pi = EXP(eta)/(1+EXP(eta)); 

  MODEL score ~ BINARY(pi); 

RUN; 
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PROC NLIN DATA=data2 METHOD=NEWTON CONVERGE=0.0001; 

  WHERE group=2; 

  PARMS b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 b8=0 b9=0; 

  eta = theta+b1*item1+b2*item2+b3*item3+b4*item4 

       +b5*item5+b6*item6+b7*item7+b8*item8+b9*item9; 

  pi  = EXP(eta*score)/(1+EXP(eta)); 

  MODEL lk = SQRT(-2*LOG(pi)); 

RUN; 

By Table 2, we can find that the item parameter estimates of the NLIN procedure were the 

same as the other four procedures obtained except for the last item of Group 2, and the 

difference is smaller than 0.01. These results were also comparable to What WINSTEPS 

gave. 

Obviously, these SAS code examples can be revised to estimate the person parameters 

when all item parameters are given. What we need to do is to replace the person ability 

with an item difficulty parameter and the indicator variables for items with the ones for 

persons or total scores, and then these procedures can also fit the Rasch model with all item 

parameters fixed. 

CONCLUSION 

This article goes over the SAS procedures which can fit the Rasch model and shows that 

these procedures can provide the comparable results to what BILOG-MG and WINSTEPS 

give. However, as Pan and Chen (2011) mentioned, two potential problems need to be 

noted when these procedures using: 

At first, when a person or an item has a zero or full responses, i.e., a person answers all 

test items (in)correctly or all persons answer an item (in)correctly, ML may fail to converge. 

In WINSTEPS, data are checked and then these persons or items are excluded. Therefore, 

they should also be excluded when these SAS procedures are used. However, when the 

LOGISTIC procedure is applied, PML (Firth, 1993) can solve this issue (Pan, 2011; 2018). It 

is implemented in the LOGISTIC procedure using the MODEL statement option FIRTH as 

mentioned before. Heinze and Schemper (2002) showed that the method of Firth’s always 

yields finite estimates of parameters under complete or quasi-complete separation. The 

parameters of the persons and items with zero or full responses can be estimated using 

PML. If the GENMOD procedure is applied, the BAYES statement may need to be used 

because it can deal with these persons or items too. 

Second, when examinees take different item sets in a test, persons receiving the same total 

raw score but taking different item sets will have different parameter estimates in the Rasch 

model. It happens when omitted responses are treated as missing. For example, two 

examinees receive 39 points on a 40-item test, but one gets an item wrong and the other 

skips an item, and then their parameter estimates should be different in the Rasch model. 

Thus, the total score is inappropriate to be used in these SAS procedures under this 

condition. Pan and Chen (2011) suggested creating a new variable to differentiate 

examinees by their total scores and the item sets they take and using the new variable to 

replace the variable ‘total’ in these SAS procedures. 

Generally, it is convenient for SAS users to estimate the Rasch model using the LOGISTIC, 

GENMOD, and GLIMMIX procedures, and then they can understand the Rasch model and the 

relationship between the Rasch model and logistic regression better. These SAS procedures, 

however, are not able to replace WINSTEPS. The standard errors of parameter estimates 

provided by these SAS procedures and WINSTEPS are different because logistic regression 

and the Rasch model use different approaches to calculate the standard errors of parameter 

estimates (Pan, 2011; 2018). These SAS procedures also do not provide fit statistics for 

items or persons as WINSTEPS does. SAS users would need to write their own SAS code to 
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calculate these fit statistics or use the code of Nord (2008) when they use these SAS 

procedures to fit the standard Rasch model. 

Additionally, it seems that the NLIN and NLMIXED procedures can also fit the Rasch model 

with some person or item parameters fixed. However, the parameter estimates are 

completely different from WINSTEPS’s under this condition. The reason may be that they 

implement different computation algorithms. But further studies are needed. 
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