
1

Paper SAS3040-2019

What is CASL?

Steven Sober, SAS Institute Inc., Cary, NC

ABSTRACT

This is an introductory paper to help you understand why one would want to adopt the

programming language CASL. SAS® Cloud Analytic Services language (CASL) is a language

specification used by SAS and other clients to interact with SAS Cloud Analytic Services

(CAS). CASL is a statement-based scripting language that supports the entire analytical life

cycle (data management, analytics, and scoring), as well as the monitoring of the CAS

Server. The strength of this language can be seen in how easy it is to initialize parameters

to CAS actions and to manipulate the results of these actions. The results can then be used

to prepare the parameters for execution of another action. The goal is to provide an

environment that enables a user to string together multiple actions to accomplish a specific

result. CASL provides access to popular features in SAS including Base SAS® in-database

procedures, DATA step, DS2, FedSQL, formats, and Output Delivery System (ODS). CASL is

ideal for splicing together access to the CAS server in between the use of other SAS

procedures from a SAS client or from another client, or simply to create your own custom

application.

INTRODUCTION

In this paper we will explore how to use the CAS language CASL from a SAS client as well

as another client. In addition, we will explore CASL statements that are used to do the

following:

1. Load data into CAS

2. Transform the CAS data for analytical processing

3. Model the CAS data

4. Leverage the score code generated by the CASL model

STATEMENT-BASED SCRIPTING LANGUAGE

SYNTAX

CASL is a language specification used by the SAS client and other clients to interact with

CAS. CASL is a statement-based language that is case insensitive. CASL is a scripting

language that allows us to run actions that create results that SAS and other clients can

work with. A strength of CASL is the development of analytic pipelines and running code in

CAS with user-defined actions as well as user-defined functions.

Statements can include keywords such as the name of actions and functions, and

statements can include expressions. From a SAS client, a single PROC CAS step can contain

several CASL programs. From another client, you can interweave non-CASL code, results,

and status of the success of the CASL code with non-CASL code.

ACTION SETS

CASL actions are organized with other actions in an action set and usually contain actions

that are based on common functionality. In table 1, we see the action sets grouped

alphabetically and in table 2, we see the actions sets grouped by products.

https://support.sas.com/resources/papers/proceedings17/SAS0309-2017.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0309-2017.pdf
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=allprodsactions&docsetTarget=actionSetsByName.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=allprodsactions&docsetTarget=actionSetsByName.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=allprodsactions&docsetTarget=actionSetsByProduct.htm&locale=en

2

Table 1. Actions Sets by Name

3

Table 2. Actions Sets by Product

ACTIONS

CASL actions perform a single task. CAS actions are aggregated with other actions in an

action set. You access an action by using the notation action-set.action. For example, the

table action set contains all of the actions for working with tables, such as adding a table

(table.addTable), modifying table attributes (table.attribute), loading data

(table.loadDataSource), and dropping a table (table.dropTable).

CONNECTING TO CAS

Before we can begin with CASL, we first must understand how to connect to CAS from a

client, that is, Python, R, Lua, Java, REST API, and SAS.

SAS CLIENT

From a SAS client we connect to CAS using the following syntax:

cas myCAS host="cas.server.com" port=5570;

The CAS session name is the 2nd parameter in the above syntax. In our case we are using

myCAS, but we can call our CAS session whatever we want. The default value is CASAUTO

OTHER CLIENT

The SAS Scripting Wrapper for Analytics Transfer (SWAT) package allows other clients like Python, R, and

Lua to connect to CAS and execute CASL code. The very first step we must take is to download the

appropriate SWAT package. Here are the download links for the SWAT packages as well as the syntax to

https://go.documentation.sas.com/?docsetId=pgmdiff&docsetTarget=p06ibhzb2bklaon1a86ili3wpil9.htm&docsetVersion=3.1&locale=en#n038r32gkh6lw9n1nehq3dttefg3

4

import the SWAT package and connect to CAS. In all three cases when we connect to CAS we are creating

the alias s to point to our connection to CAS.

Python SWAT Download

In [1]: import swat

In [2]: s = swat.CAS('cas.server.com', 5570, 'username', 'password')

R SWAT download

library(swat)

s <- CAS("cloud.example.com", 8777, protocol='http')

LUA SWAT download

> swat = require 'swat'

> s = swat.CAS('cas.server.com', 5570, 'username', 'password')

Java - For Java the SWAT package is not used. Instead, access to CAS is by socket

protocols and pure Java. For additional information about using Java and REST API to

leverage CASL, read the SAS Global Forum 2017 SAS Paper “I Am Multilingual: A

Comparison of the Python, Java, Lua, and REST Interfaces to SAS® Viya®” by Xiangxiang

Meng and Kevin D Smith, SAS Institute Inc.

CASL

Let’s take a closer look at a CASL statement. The first example is written from a SAS client.

In this example, we are using the action set “table” and its action “loadTable” to load a

SAS7BDAT data set called “source_table2.sas7bdat” into the CASLIB “casuser.” Caslibs

provide a way to organize in-memory tables and an associated data source, that is, Hadoop,

Oracle…

SAS CLIENT EXAMPLE

To leverage CASL from a SAS client is very easy. We use the procedure PROC CAS, which

ends with a QUIT statement. You can place multiple CASL statements prior to the QUIT

statement. We use a RUN statement to execute blocks of CASL code:

PROC CAS;

table.loadTable / path="source_table.sas7bdat" casout={caslib="casuser",

 name="source_table2", replace=true};

RUN;

table.loadTable / path="source_table2.sas7bdat" casout={caslib="casuser",

 name="source_table2", replace=true};

RUN;

QUIT;

PYTHON CLIENT EXAMPLE

Now let’s look at the same CASL statement from a Python client. As we can see, we are

using the exact same action set, action, and parameters. However, the CASL code is written

using the syntax of Python:

s.table.loadTable(path="source_table.sas7bdat",

Python%20SWAT%20Download
https://github.com/sassoftware/R-swat
https://support.sas.com/downloads/package.htm?pid=1975
https://support.sas.com/resources/papers/proceedings17/SAS0668-2017.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0668-2017.pdf
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-table-loadtable.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casref&docsetTarget=n0lgusu0v43zxwn1kc5m6cvtnzey.htm&locale=en#n1ptuq43zvj344n158fv1inpkqxh

5

 casOut={"caslib":"casuser", "name":"source_table2",

 "replace":"True"},

)

)

s.table.loadTable(path="source_table2.sas7bdat",

 casOut={"caslib":"casuser", "name":"source_table2",

 "replace":"True"},

)

)

STATUS

Status provides information about success or failure of the action. To help us understand

status, we will use a modeling example using the action dtreeTrain, which is part of the

decisionTree action set. For this example, we will use a SAS client to write our CASL code.

In this example, we are using the status=rc; “rc” is the variable containing the severity

code. Notice we can use the new variable “rc” in an IF THEN DO block to control if we

should continue to execute the code within the IF THEN DO block:

proc cas;

 decisionTree.dtreeTrain result=dt status=rc /

 table="iris"

 inputs={"sepallength", "sepalwidth"}

 target="petallength";

run;

 if (0 == rc.severity) then do;

 /* Begin by printing the results. */

 describe dt;

 print dt;

 saveresult dt caslib=casuser casout="irisResults";

 end;

run;

The status= parameter returns a severity code. A severity code indicates whether an action

succeeded or failed. Table 3 lists the possible values and the meaning of each:

Severity
Code

Severity Level
Indicated

Description

0 Normal Indicates that the action completed successfully.

1 Warning Indicates a minor issue that did not prevent the action from
completing successfully. The reason code might provide
additional information.

6

2 Error Indicates an error that prevented the action from completing
successfully. The reason code provides additional information.

Table 3. Severity Code Values and Meanings

A reason code provides general information about the status code. Table 4 lists the possible

values and the meaning of each.

Reason
Code

Reason
Category

Description

0 Success Indicates that the action completed successfully.

1 Authorization Indicates a permission problem.

2 Network Indicates a network problem during connection or a network
connection failure.

3 Memory Indicates an insufficient memory condition.

4 Authentication Indicates an authentication error.

5 Exception Indicates an unexpected error condition that prevented the
action from completing successfully.

6 Termination Indicates a severe error condition that causes the action to
terminate.

Table 4. Status Reason Code Values and Meanings

DESCRIBE

When results are saved to a variable, the DESCRIBE statement writes a description of the

variable to the SAS log. The description shows the expanded arrays and dictionaries to view

the depth of the variable.

proc cas;

 decisionTree.dtreeTrain result=dt status=rc /

 table="iris"

 inputs={"sepallength", "sepalwidth"}

 target="petallength";

run;

 if (0 == rc.severity) then do;

 /* Describe writes information to the SAS log */

 describe dt;

 /* print utilizes SAS Output Delivery System to publish the results */

 print dt;

 saveresult dt caslib=casuser casout="irisResults";

 end;

run;

7

quit;

Table 5 shows us the information written to the SAS log when using the DESCRIBE

statement. Notice the table name “ModelInfo”. The majority of CASL actions return tables,

and the DESCRIBE statement is the best way to obtain the table name. The table ModelInfo

contains 13 rows and two columns.

Table 5. Status Reason Code Values and Meanings

RESULTS

As we have seen with the DESCRIBE statement, the results are sent back as an array of

dictionaries. A dictionary is associated with a result table to provide additional information

about the table. Table 6 contains the dictionary entries.

Property Description Syntax

Nrows This property contains the number of rows in the table. result-

table.nrows;

Ncols This property contains the number of columns in the table. result-

table.ncols;

Attrs This property contains action-specific attributes for the

table. This property is not added by all actions.

result-

table.attrs;

Name This property contains the name of the table. In most cases,

it is the same as the dictionary key that is used to access

the table from the results.

result-

table.name;

Title This property contains the title of the table.

Table 6. Result Table Dictionary Entries

When using a SAS client, CASL leverages the SAS Output Delivery System (ODS) to display

the results. ODS enables the SAS end users to publish the results in a wide variety of

formats. Table 7 displays the results saved to the variable “dt” in the ODS default format:

proc cas;

 decisionTree.dtreeTrain result=dt status=rc /

 table="iris"

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=odsug&docsetTarget=p0ydi4m5gper2on1mhl5trhsj3hb.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=odsug&docsetTarget=p0ydi4m5gper2on1mhl5trhsj3hb.htm&locale=en

8

 inputs={"sepallength", "sepalwidth"}

 target="petallength";

run;

 if (0 == rc.severity) then do;

 /* Describe writes information to the SAS log */

 describe dt;

 /* print utilizes SAS Output Delivery System to publish the results */

 print dt;

 saveresult dt caslib=casuser casout="irisResults";

 end;

run;

quit;

Table 7. Displaying the Results Using SAS Output Delivery System (ODS)

SAVERESULT

9

Now we will use Python to save our results as well as display the results using pandas. In

Python it is very simple to save the results from our decision tree model. We simply assign

a new variable. In our case, our new variable is “r”; we can also leverage the status’s

severity in an IF statement. We do this because we want to print the results and create a

pandas DataFrame only if our model ran successfully:

r=s.decisionTree.dtreeTrain(

 table="iris",

 inputs={"sepallength", "sepalwidth"},

 target="petallength")

if r.severity == 0:

 print(r)

 df=r['ModelInfo']

In table 8 we see the results of the print(r) statement

Table 8. Using Pandas to Display the Results

10

As we have seen, saving the results in Python is very straight forward. Now let’s look at

saving the results using a SAS client. In this example, we will save the model results as a

CAS table called irisResults:

proc cas;

 decisionTree.dtreeTrain result=dt status=rc /

 table="iris"

 inputs={"sepallength", "sepalwidth"}

 target="petallength";

run;

 if (0 == rc.severity) then do;

 /* Describe writes information to the SAS log */

 describe dt;

 /* print utilizes SAS Output Delivery System to publish the results */

 print dt;

 saveresult dt caslib=casuser casout="irisResults";

 end;

run;

quit;

Table 9. Using the SAS Client CASL to Save Model Results as the CAS Table irisResults

ANALYTICAL LIFE CYCLE

In this section we explore how to use CASL for analytical data transformations, modeling,

and scoring. All CASL examples in this section will be from a Python client. Note: the CASL

documentation provides many examples of CASL code using PROC CAS, Python, R, and Lua.

In table 9 we see CASL code that has been written using an R client.

Table 10. CASL Code for Running a DATA Step from an R Client

DATA STEP

One of my favorite things about CASL is that we can leverage DATA step code to transform

our data for analytical modeling. The DATA step consists of a group of SAS statements that

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=n1jheotvdx20ran1x4lpjii2a3jx.htm&locale=en
https://go.documentation.sas.com/?docsetId=basess&docsetTarget=n053a58fwk57v7n14h8x7y7u34y4.htm&docsetVersion=9.4&locale=en

11

begins with a DATA statement and ends with a RUN statement. In its simplest form, the

DATA step is a loop with an automatic output and return action.

The DATA Step code in this example is just an example. The code creates new variables and

bins the data into categories. What we need to focus on is how to run the DATA step via

CASL, not the DATA step code itself. To leverage DATA step we use the

“dataStep.runCode” action:

Execute Data Step code

s.dataStep.runCode("""

 data cars_data_step (replace = yes);

 set cars;

 array numvars{2} msrp invoice;

 array sqrtvars{2} sqrt_msrp sqrt_invoice;

 array logvars{2} log_msrp log_invoice;

 array sqrdvars{2} sqrd_msrp sqrd_invoice;

 array invvars{2} inv_msrp inv_invoice;

 do i=1 to dim(numvars);

 sqrtvars{i} = sqrt(numvars{i});

 logvars{i} = log(numvars{i});

 sqrdvars{i} = (numvars{i}**2);

 invvars{i} = (1 / numvars{i});

 end;

 avg_mileage = round(sum(mpg_city, mpg_highway) / 2);

 if 0 <= avg_mileage <= 20 then mileage_cat = 'Poor'; else

 if 21 <= avg_mileage <= 30 then mileage_cat = 'Fair'; else

 mileage_cat = 'Good';

 if 0 <= msrp <= 20000 then class = 'Economy '; else

 if 20001 <= msrp <= 40000 then class = 'Standard'; else

 class = 'Luxury';

 run;

""")

DS2

In addition to the DATA step, we can also leverage the SAS language DS2. DS2 is a true

object-oriented programing language that can run in CAS as well as in-database, that is,

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=casdspgm&docsetTarget=titlepage.htm&locale=en

12

Hadoop. With DS2 code, we create a THREAD that contains the source data (CARS in this

example) and logic to create new variables and bin the data into categories. To leverage the

thread to create the output table (CARS_DS2) we will use a DS2 DATA program. In the DS2

DATA program we declare the DS2 THREAD and then execute that THREAD distributed in

CAS using a SET statement.

To leverage DS2 in CAS we use the “ds2.runDS2” action:

Run DS2 code via CASL:

s.ds2.runDS2("""

thread mythread / overwrite = yes;

vararray double numvars[2] msrp invoice;

vararray double sqrtvars[2] sqrt_msrp sqrt_invoice;

vararray double logvars[2] log_msrp log_invoice;

vararray double sqrdvars[2] sqrd_msrp sqrd_invoice;

vararray double invvars[2] inv_msrp inv_invoice;

dcl double sqrt_msrp sqrt_invoice log_msrp log_invoice sqrd_msrp sqrd_invoice inv_msrp

inv_invoice avg_mileage;

dcl char(4) mileage_cat;

dcl char(8) class;

method run();

 dcl double i;

 set cars;

 do i=1 to dim(numvars);

 sqrtvars[i] = sqrt(numvars[i]);

 logvars[i] = log(numvars[i]);

 sqrdvars[i] = (numvars[i]**2);

 invvars[i] = (1 / numvars[i]);

 end;

 avg_mileage = round(sum(mpg_city, mpg_highway) / 2);

 if 0 <= avg_mileage <= 20 then mileage_cat = 'Poor'; else

 if 21 <= avg_mileage <= 30 then mileage_cat = 'Fair'; else

 mileage_cat = 'Good';

 if 0 <= msrp <= 20000 then class = 'Economy '; else

 if 20001 <= msrp <= 40000 then class = 'Standard'; else

 class = 'Luxury';

13

end;

endthread;

data cars_ds2 / overwrite=yes;

dcl thread mythread t;

method run();

 set from t;

end;

enddata;

""")

FEDSQL

In addition to DATA Step and DS2 we can also leverage FedSQL FedSQL is the SAS

implementation of the ANSI SQL:1999 core standard. To leverage FedSQL from CASL we

use the “fedSql.execDirect” action:

Create a new table using FedSQL

s.fedSql.execDirect(query="""

 create table cars_fedsql{options replace=true} as select

 make, model, mileage_cat, class, avg_mileage, sqrt_msrp, sqrt_invoice,

 log_msrp, log_invoice, sqrd_msrp, sqrd_invoice, inv_msrp, inv_invoice

 from cars_data_step

 where origin = 'USA'

""")

s.fedSql.execDirect(query="""

 create table fact_dim_joined{options replace=true} as select

 a_fact, b_fact, c_fact, a_dim, b_dim, c_dim from fact a join dim b on a.i

= b.i

""")

TRANSPOSE

With analytical data preparation we sometimes need to ensure all attributes for a given

subject are assigned to that subject. To accomplish this we will use the

“transpose.transpose” action:

Transpose data for analytical modeling

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=fedsqlref&docsetTarget=p05743vytj2lwrn1mxwy4s2xrjir.htm&locale=en

14

s.transpose.transpose(table={"caslib":"casuser", "name":"cars_fedsql",

"groupBy":[{"name":"mileage_cat"}]},

 transpose={"avg_mileage"},

 id={"model"},

 casOut={"caslib":"casuser", "name":"cars_transposed", "replace":True})

MODELING

For our modeling example we will use the logistic regression action. In this example, we are

saving the score code generated by the model in “myModel” using the “store=” statement.

Note: the store= statement stores the regression models to a blob (binary large object), which
we refer to as an “ASTORE”, which we can leverage in a 2nd CASL step that is used to score data:

m=s.logistic(

 table='source_table',

 classvars='C',

 model={'depvar':'y',

 'effects':{'C', 'x2', 'x8'}},

 store={'name':'myModel', 'replace':'true'},

 output={'casOut':{'name':'out1', 'replace':'true'},

 'pred':'pred', 'resChi':'reschi', 'into':'Predicted Response

Level','copyVars':{'y', 'id'}})

a=s.fetch(table={'name':'out1','orderby':'id'}, to='5')

print(a)

Results from the “print(b)” CASL statement are displayed in table 8.

Table 11. Results from Modeling the Table source_table

https://go.documentation.sas.com/?docsetId=masag&docsetTarget=n1oajxsgx5pvbrn10bpdufb1axjz.htm&docsetVersion=5.1&locale=en#p0av9q6xwuwrvnn1bwi5i803fhyr

15

SCORING

Now that we have saved our score code, let’s use the “logisticScore” action to score the

source table source_table2. Notice we use the “restore=” statement to identify which score

(ASTORE) code to use (“myModel”):

m=s.logisticScore(

 table='source_table2',

 restore='myModel',

 fitData='false',

 casOut={'name':'out2', 'replace':'true'},

 copyVars={'y', 'id'},

 pred='pred', resChi='reschi', into='Predicted Response Level')

b=s.fetch(table={'name':'out2','orderby':'id'}, to='5')

print(b)

In table 12 we can review the results from the “print(b)” statement:

Table 12. Results from Scoring the Table source_table2

CONCLUSION

CASL is the chameleon of syntax that opens SAS technologies up to the masses. that is,

Python, Java, RESTAPI, LUA, R and SAS clients. For over 40 years, SAS has focused on the

analytical life cycle. In this paper we explored how CASL enhances this process by providing

state-of-the-art technologies for data integration, analytical data transformation, modeling

and most importantly the operationalizing of proven models.

ACKNOWLEDGMENTS

I would like to thank Brian Kinnebrew, Bruno Mueller and Jesse Luebbert for their support

and input in the creation of this paper.

RECOMMENDED READING

• SAS Global Forum 2019 Session: 3177 - Got Results? Let CASL Help You Turn them into Superior
Reports

16

• SAS Global Forum 2019 Session: 3179 - Can't Find the Right CAS Action? Create Your Own Action
Using CASL

• SAS® Cloud Analytic Services 3.4: CASL Programmer’s Guide

• SAS® Cloud Analytic Services 3.4: CASL Reference

• SAS® 9.4 and SAS® Viya® 3.4 Programming Documentation / Getting Started with CASL

• Meng, Xiangxiang, and Kevin D Smith. 2017. “I Am Multilingual: A Comparison of the Python, Java,
Lua, and REST Interfaces to SAS® Viya®.” Proceedings of the SAS Global Forum 2017 Conference.
Cary, NC: SAS Institute Inc. Available at
https://support.sas.com/resources/papers/proceedings17/SAS0668-2017.pdf.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Steven Sober

SAS Institute Inc.

919-531-9644

Steven.Sober@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://go.documentation.sas.com/?docsetId=caslpg&docsetTarget=p0jnqc0ofu4la0n1new522l6s40g.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=proccas&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casl&docsetTarget=titlepage.htm&locale=en
https://support.sas.com/resources/papers/proceedings17/SAS0668-2017.pdf
mailto:Steven.Sober@sas.com

