
1

Paper SAS3030-2019

Data Quality Programming Techniques with SAS® Cloud
Analytic Services

Nicolas Robert, SAS Institute Inc.

ABSTRACT
SAS® Cloud Analytic Services (CAS) provides advanced and powerful analytic capabilities on
big data, both in-memory and in-parallel. But what do your reports, models, or decisions
look like if your data is not of good quality? How do you improve the quality of big data by
using distributed processing and in-memory techniques? CAS offers not only numerous
actions for analyzing big data, but it also provides big data preparation and big data quality
capabilities from a user interface perspective, as well as from a programming perspective.
This paper focuses on the programming techniques that are available to perform common
data quality tasks in parallel on in-memory (big) data.

INTRODUCTION
SAS® Data Quality programming capabilities in CAS are available through using traditional
SAS® DATA step language elements or through using specific CAS actions. CAS actions are
executable routines that the CAS server makes available to client programs. They are the
smallest unit of work for the CAS server.

Those data quality capabilities are the exact same operations that are run under the covers
when using the SAS® Data Preparation point-and-click user interface (SAS Data Explorer
and SAS Data Studio). They provide the same results and run in the same technical
environment, exploiting the CAS massively parallel processing architecture.

When you load a data table in a multi-machine CAS environment, the data is evenly
distributed over the CAS workers. When you run an operation on that data, whether it is a
statistical computation or a data transformation, each CAS worker processes the rows that
are located on that node, making that operation much faster than equivalent processing on
SMP environments. Data quality functions and actions leverage this powerful parallel
architecture.

There are benefits in having data quality programming capabilities in addition to the
graphical user interface: integration in a data flow, orchestration of data processing tasks,
automation and scheduling of jobs, flexibility, and ease of customization.

This paper shows you how to perform the following data quality tasks programmatically:

• discover and profile data

• transform, cleanse, and enrich data

• cluster data based on matchcodes (fuzzy matching)

• de-duplicate data

DATA PROFILING

DATA DISCOVERY ACTION SET
In SAS® Viya®, you can profile data located in CAS using the dataDiscovery.profile CAS
action. A data profiling task enables you to collect several metrics about your data:
frequencies, basic statistics, patterns, outliers (highest and lowest values in a column), and

2

various other attributes. This helps you better understand the shape of your data and
identify potential issues at a glance.

You can run a CAS action from any supported CAS client such as SAS, Python, R, Lua, Java,
or the CAS REST APIs. In this paper, all the examples are run in SAS® Studio on SAS Viya.

Here is an example of the profile CAS action syntax:
 proc cas ;
 dataDiscovery.profile /
 algorithm="PRIMARY"
 table={caslib="mydata" name="mycustomers"}
 columns={"id","name","address","city","state","zip"}
 cutoff=20
 frequencies=10
 outliers=5
 casOut={caslib="mydata" name="mycustomers_profiled"
 replace=true replication=0}
 ;
 quit ;

The profile CAS action provides several options. You specify the input table and columns you
want to profile, set some options to control the process (cutoff, frequencies, outliers, and so
on), and name your output result table.

Display 1 is a sample display of the profiling output table.

Display 1. Data Profiling Output Table

The output table gathers all the metrics collected in one single structure. Depending on your
needs and on how you want to present the results, you might have to rework the output
table.

The columns in the profiling output table are as follows:

• ColumnId designates the ID of the column in the source table that has been profiled.

3

• RowId designates the metric that the row contains (1000 is the column name, 1001 is
the data type, 1002 is the count of values, 1003 is the name of the column containing
the profiled column values, and so on). All the metrics IDs are described in the
documentation.

• Count is a multi-purpose column which, depending on the metric in the row, might
contain the metric’s value (integer metrics).

• CharValue and DoubleValue are multi-purpose columns which, depending on the metric
in the row, might contain the metric’s value (character and numeric metrics).

The dataDiscovery.profile CAS action also offers identity analysis capabilities. This is useful
to classify data strings according to specific rules and to determine what type of data an
input string represents. For example, it can help to identify which fields contain personal
information.

Identification analysis can be done using either a pattern defined as a regular expression or
a SAS® Quality Knowledge Base (QKB) identity definition.

The QKB supplies rules and references data used to analyze and transform your data. For
more information about the QKB, see the documentation (link in References).

Here is an example of identity analysis using a QKB identity definition:
 proc cas ;
 dataDiscovery.profile /
 algorithm="PRIMARY"
 table={caslib="mydata" name="mycustomers"}
 multiIdentity=true
 locale="ENUSA"
 qkb="QKB CI 29"
 identities= {
 {pattern=".*", type="*", definition="Field Content",
 prefix="QKB_"}
 }
 cutoff=20
 frequencies=10
 outliers=5
 casOut={caslib="mydata" name="mycustomers_profiled" replace=true
 replication=0}
 ;
 quit ;

In this example, we are interested in the following parameters:

• qkb: Specifies the name of the QKB deployed in CAS to be used in the identity analysis.

• locale: Specifies the language-country combination to be used in the identity analysis.

• identities: Specifies a list of identities to be used during identity analysis.

o pattern: The regular expression to search for. When QKB identity analysis is in
effect (which is the case in this example), the regular expression is applied to the
output of the QKB identity analysis. “.*” means to “output the result as is”.

o type: The string that specifies the identified type. If set to "*", and “definition” is
specified (which is the case in this example), it will be replaced by the actual
string from QKB identity analysis output.

o definition: The name of the QKB definition to be used for identity analysis.

4

o prefix: When QKB identity analysis is in use, and the type is set to “*”, the prefix
can be used to prefix the output string.

In this example we are using a definition from the QKB called “Field Content”. The
Field Content definition is designed to analyze any input string and determine what
type of data it represents.

• multiIdentity: Specifies how you want to interpret the identity analysis results.

o true means that a weighted score will be assigned if the input value represents
more than one identity.

o false means that only a count of the most probable identity will be output.

Table 1 shows an example of using the multiIdentity option.

Input values multiIdentity=true multiIdentity=false

New York QKB_CITY=106

QKB_STATE/PROVINCE=94

QKB_CITY=1

Washington QKB_CITY=106

QKB_STATE/PROVINCE=94

QKB_CITY=1

California QKB_STATE/PROVINCE=200 QKB_STATE/PROVINCE=1

Aggregated view QKB_STATE/PROVINCE=129.33

QKB_CITY=70.66

QKB_CITY=2

QKB_STATE/PROVINCE=1

Table 1. Multi-identity Impact

You can see that depending on the multiIdentity option, the conclusion could be different:

• When multiIdentity=true, you could conclude that input values are most likely
states/provinces.

• When multiIdentity=false, you could conclude that input values are most likely cities.

The MultiIdentity=true statement takes into account that a specified string could represent
multiple identities and weights those identities accordingly.

As a conclusion on this topic, you might ask why you would want to run data profiling
programmatically, since you can profile data in the SAS Data Preparation user interface?
Here are a couple of reasons:

• Profiling big data can take a long time and a program could be easily scheduled.

• You might want to customize the profiling report and observe trends between different
runs.

• The Data Preparation UI does not let you schedule your profiling jobs.

For more information about the dataDiscovery.profile CAS action and its metrics, see the
documentation for the Data Discovery Action Set (link in References).

DATA QUALITY OPERATIONS

DATA STEP FUNCTIONS
SAS Viya provides functions to perform data quality tasks in parallel on distributed CAS
tables. Those data quality functions are callable from the SAS DATA step language
component which fully leverages CAS.

5

A SAS DATA step can of course be used from any SAS language client, but is also available
as a CAS action, meaning that you can also run a DATA step in CAS from Python for
example.

Table 2 lists all available SAS Data Quality functions that run in CAS in SAS Viya 3.4.

DQCASE DQEXTINFOGET DQEXTRACT DQEXTTOKENGET

DQEXTTOKENPUT DQGENDER DQGENDERINFOGET DQGENDERPARSED

DQIDENTIFY DQIDENTIFYIDGET DQIDENTIFYINFOGET DQIDENTIFYMULTI

DQLOCALEGUESS DQLOCALEINFOGET DQLOCALEINFOLIST DQLOCALESCORE

DQMATCH DQMATCHINFOGET DQMATCHPARSED DQPARSE

DQPARSE CALL routine DQPARSEINFOGET DQPARSETOKENGET DQPARSETOKENPUT

DQPATTERN DQSTANDARDIZE DQTOKEN DQVER

DQVERQKB

Table 2. SAS Data Quality Functions Supported in CAS

Here is an example of running common data quality functions on a CAS table:
 data mylib.mycustomers_dq ;
 length gender $1 mcName mcAddress parsedValue
 tokenNames lastName firstName stateStd varchar(100) ;
 set mylib.mycustomers ;
 gender=dqGender(name,'Name','ENUSA') ;
 mcName=dqMatch(name,'Name',95,'ENUSA') ;
 mcAddress=dqMatch(address,'Address (Street Only)',95,'ENUSA') ;
 parsedValue=dqParse(name,'Name','ENUSA') ;
 tokenNames=dqParseInfoGet('Name','ENUSA') ;
 if _n_=1 then put tokenNames= ;
 lastName=dqParseTokenGet(parsedValue,'Family Name','Name','ENUSA') ;
 firstName=dqParseTokenGet(parsedValue,'Given Name','Name','ENUSA') ;
 stateStd=dqStandardize(state,'State/Province (Abbreviation)','ENUSA') ;
 run ;

Since the input and output tables are CAS tables, this DATA step will run in CAS. Nothing is
run on the SAS client, there is no data movement involved between CAS and the SAS client,
and this DATA step will benefit from the massively parallel architecture of CAS.

The following data quality functions are used in this example:

• The dqGender function determines the gender from the name.

• The dqMatch function creates matchcodes based on the name and the address to be
further used for clustering and de-duplication.

• The dqParse function returns a delimited string of name tokens.

• The dqParseInfoGet function is informative and returns the names of the tokens from
the specified parsing definition.

The put statement writes the following information to the SAS log:

tokenNames=Prefix,Given Name,Middle Name,Family Name,Suffix,Title/Additional Info

• The two dqParseTokenGet functions extract specified tokens from the parsed value.

6

• The dqStandardize function standardizes states based on the “State/Province
(Abbreviation)” definition.

Display 2 shows the output table from this example.

Display 2. Output Table Extract

Of course, this is just an example, but you can also run additional tasks:

• Analyze character patterns with the dqPattern function.

• Analyze identities (like profiling identity analysis) using the dqIdentify function.

The matchcodes generated in this example will be useful in determining if the table has
potential duplicates using fuzzy matching.

DATA QUALITY CLUSTERING

ENTITY RESOLUTION ACTION SET
Once you have generated matchcodes that correspond to your business objects (individuals,
products, and so on), you might want to cluster records, that is to group together records
that share the same matchcode (or raw value) for one or more variables. Observations that
are in the same cluster are good candidates for being potential duplicates.

The entityRes.match CAS action allows you to group records based on customized rules. For
example, you can decide to cluster records of individuals if their name’s matchcode, their
address’ matchcode, and their US state are strictly identical. This has the effect of doing
fuzzy matching on the name and address columns with exact matching on the state column.

If records match based on the rule specified, those records will receive the same cluster ID
value, that is the unique identifier of each cluster or group of related rows.

This is exactly what we want to do in the following example:
 proc cas ;
 entityRes.match /
 clusterId="clusterID"
 inTable={caslib="mydata",name="mycustomers_dq"}

7

 matchRules={{
 rule={{
 columns={"mcName","mcAddress","stateStd"}
 }}
 }}
 nullValuesMatch=false
 emptyStringIsNull=true
 outTable={caslib="mydata",name="mycustomers_clustered",
 replace=true} ;
 quit ;

The entityRes.match CAS action does the following in this example:

• Reads the “mycustomers_dq” CAS table.

• Generates a cluster ID that is stored in the new variable “clusterID”.

• Assigns the same cluster ID to multiple records when mcName (matchcode for name),
mcAddress (matchcode for address), and stateStd (standardized state) are identical.

• Creates a new “mycustomers_clustered” CAS table to hold the results.

Display 3 shows four sample colored “multi-rows” clusters that group related rows together.

Display 3. Clustering Output

By “multi-rows” clusters, we mean clusters of records that potentially contain duplicates.
“Single-row” clusters imply that there wasn’t a match according to the rule specified.

You can specify multiple rules in the match CAS action. This will behave like an OR
condition. For example, you can ask to group records of individuals if their name’s
matchcode, their address’ matchcode, and their email OR phone number are identical. For
this, you would specify the following condition:
 matchRules={
 {rule={{columns={"mcName","mcAddress","email"}}}},
 {rule={{columns={"mcName","mcAddress","phone"}}}}
 }
The entityRes.match CAS action is targeted to find potential duplicate records. It behaves
well when matching rules are precise and clusters have small numbers of records. Using this
CAS action to make large groups of records (like thousands of records) with general rules
(like all “Male” or “Female”) could result in poor performance.

DATA DE-DUPLICATION

DE-DUPLICATING DATA USING THE DATA STEP

8

After having clustered your data, you might want to de-duplicate related records. This can
be done easily using the SAS DATA step and BY-group processing which fully exploit CAS
parallelism. The DATA step runs in multiple threads on each node, one thread per BY group:
 data mylib.mycustomers_dedup ;
 set mylib.mycustomers_clustered ;
 by clusterID updateDate ;
 if last.clusterID then output ;
 run ;

This is a very simple de-duplication rule. For each “multi-rows” cluster, we want to keep and
output the one with the most recent update value.

Obviously, you can specify more complex rules to build your own “Surviving Record
Identification” mechanism.

DE-DUPLICATING DATA USING GROUPBYINFO
Another way to de-duplicate records is to use the simple.groupByInfo CAS action. This CAS
action was introduced in SAS Viya 3.4 and allows not only to perform basic de-duplication,
but also additional useful tasks related to BY-group processing.

The groupByInfo action helps you complete the following tasks:

• Identify BY-groups by assigning a numeric and consecutive group ID to the BY-groups.

• Get additional metadata on the BY-groups, like the group frequencies and the position of
each record within the BY-group.

• Remove duplicate records.

• “Prototype data”, that is, reduce the number of records inside a BY-group while keeping
cardinality.

The groupByInfo action does not require computations on any numeric columns. Moreover,
you can easily add fields to your output without requiring them to be part of the BY-groups.

Here is an example of using the groupByInfo CAS action for de-duplication:
 proc cas ;
 simple.groupByInfo /
 table={caslib="mydata",name="mycustomers_clustered",
 groupBy={"clusterID"}}
 copyVars={"id","firstName","lastName","gender","address",
 "city","zip","stateStd","updateDate"}
 casOut={caslib="mydata",name="mycustomers_dedup",replace=true}
 position=1
 generatedColumns={"FREQUENCY","GROUPID","POSITION"}
 details=true ;
 quit ;

This example simply outputs the first row (position=1) of the cluster (group by clusterID) to
the target table. The CAS action provides options to add some metadata about the BY-
groups, such as the number of records of each BY-group (FREQUENCY) and the position of
the record in the BY-group (POSITION).

There are many other use cases for using the groupByInfo CAS action, such as sampling
data with all the cardinality but with fewer records or reducing cardinality by removing
groups that have less than a specified number of records.

9

FUTURE
SAS Data Quality capabilities will continue to be enriched in upcoming versions of SAS Viya.

In the next release, the CAS data quality functions available today in the DATA step will be
available in DS2. Some Data Enrichment capabilities will be added for address verification
and geocoding. Also, significant performance improvements will be made to both the match
CAS action (better performance with big clusters) and the groupByInfo CAS action (better
performance with high-cardinality by-groups).

Some survivorship capabilities (Survivor Record Identification mechanism to build the
“golden record”) are on the roadmap after next release.

CONCLUSION
SAS Viya provides data quality capabilities that leverage CAS parallel architecture. Using the
programming techniques described in this paper, you can add great value to your data
integration processes by profiling data, identifying data issues, remedying them using
common data quality operations, clustering data, and de-duplicating records. This is
essential to provide the tools to ensure that your data is cleansed and can be trusted as it is
the foundation of your business reports, analytical models, and decisions.

REFERENCES
SAS Institute Inc. 2018. “Data Discovery Action Set: Syntax” in SAS® Data Quality 3.4 /
Data Quality Action Programming Guide. Cary, NC: SAS Institute Inc. Available at
https://go.documentation.sas.com/?cdcId=dqcdc&cdcVersion=3.4&docsetId=casactdq&docs
etTarget=cas-datadiscovery-profile.htm&locale=en

SAS Institute Inc. 2018. “About SAS Quality Knowledge Base” in SAS® Quality Knowledge
Base for Contact Information 30. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/documentation/onlinedoc/qkb/30/QKBCI30/Help/qkb-help.html

SAS Institute Inc. 2018. “Functions Supported in CAS” in SAS® Data Quality 3.4 / SAS Data
Quality Language Reference. Cary, NC: SAS Institute Inc. Available at
https://go.documentation.sas.com/?cdcId=dqcdc&cdcVersion=3.4&docsetId=dqclref&docset
Target=n04jgzd2t2lsr0n1phxrjq5y8bpp.htm&locale=en

SAS Institute Inc. 2018. “Entity Resolution Action Set: Syntax” in SAS® Data Quality 3.4 /
Data Quality Action Programming Guide. Cary, NC: SAS Institute Inc. Available at
https://go.documentation.sas.com/?cdcId=dqcdc&cdcVersion=3.4&docsetId=casactdq&docs
etTarget=cas-entityres-match.htm&locale=en

SAS Institute Inc. 2018. “Simple Analytics Action Set: Syntax” in SAS® 9.4 and SAS® Viya®
3.4 Programming Documentation / SAS Visual Analytics Programming Guide. Cary, NC: SAS
Institute Inc. Available at
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casa
npg&docsetTarget=cas-simple-groupbyinfo.htm&locale=en

RECOMMENDED READING
• Rineer, Brian 2018. “Doin' Data Quality in SAS® Viya®”. Proceedings of the SAS Global Forum 2018

Conference. Cary, NC: SAS Institute Inc. Available at
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2156-2018.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

https://go.documentation.sas.com/?cdcId=dqcdc&cdcVersion=3.4&docsetId=casactdq&docsetTarget=cas-datadiscovery-profile.htm&locale=en
https://go.documentation.sas.com/?cdcId=dqcdc&cdcVersion=3.4&docsetId=casactdq&docsetTarget=cas-datadiscovery-profile.htm&locale=en
http://support.sas.com/documentation/onlinedoc/qkb/30/QKBCI30/Help/qkb-help.html
https://go.documentation.sas.com/?cdcId=dqcdc&cdcVersion=3.4&docsetId=dqclref&docsetTarget=n04jgzd2t2lsr0n1phxrjq5y8bpp.htm&locale=en
https://go.documentation.sas.com/?cdcId=dqcdc&cdcVersion=3.4&docsetId=dqclref&docsetTarget=n04jgzd2t2lsr0n1phxrjq5y8bpp.htm&locale=en
https://go.documentation.sas.com/?cdcId=dqcdc&cdcVersion=3.4&docsetId=casactdq&docsetTarget=cas-entityres-match.htm&locale=en
https://go.documentation.sas.com/?cdcId=dqcdc&cdcVersion=3.4&docsetId=casactdq&docsetTarget=cas-entityres-match.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-simple-groupbyinfo.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-simple-groupbyinfo.htm&locale=en
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2156-2018.pdf

10

Nicolas Robert
SAS Institute Inc.
nicolas.robert@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

mailto:nicolas.robert@sas.com
http://www.sas.com/

	Abstract
	Introduction
	Data Profiling
	Data Discovery Action Set

	Data Quality Operations
	DATA Step Functions

	Data Quality Clustering
	Entity Resolution Action Set

	Data De-duplication
	De-duplicating Data Using the DATA Step
	De-duplicating Data Using groupbyinfo

	Future
	Conclusion
	References
	Recommended Reading
	Contact Information

