
FINANCIAL RISK GROUP

Group A

1

Introduction

Improving Security Through Metadata Objects: Permission-Driven Macros
Andrew Gannon

The Financial Risk Group, Cary, NC

Abstract
Users can wreak havoc on systems in many different ways – from excessive memory and cpu usage to updating tables

with bad data missing data. There are several ways to prevent individuals from doing this – namely by limiting users'

access to servers and data. There is a better way to manage permissions for users that is not server or environment

specific. By creating a framework of metadata groups and roles, macro specific permissions can be applied at the

individual and group levels. This paper seeks to explain and demonstrate how to apply macro level permissions to

users via roles and groups in Metadata.

Process Flow
This presentation will describe how system administrators can apply SAS Metadata-based permissions to individual

macros utilizing users, roles, and groups in SAS Metadata and apply them with simple SAS code.

Role 1

Role 2

Role 3

Role 4

Macro 1

Macro 2

Macro 3

Macro 4

Metadata Groups and Roles

SAS

Operations

FINANCIAL RISK GROUP

2

Improving Security Through Metadata Objects: Permission-Driven Macros
Andrew Gannon

The Financial Risk Group, Cary, NC

Introduction

Creating
Metadata

User 1

Group A

Macro 1

Macro 2

Macro 3

Role 4 Macro 4

User 2
Role 2 Macro 2

Role 4 Macro 4

SAS Management Console
SAS Management Console is the user interface for SAS Metadata. It is the easiest way to create, modify, and delete

metadata objects. This is where you can create groups and roles that drive the permissions that this poster discusses.

Roles
SAS Metadata roles are objects that can be assigned to both a user or a group. They are used to control access to

application features. When applied to a user, the user has access to the application feature. When applied to a group,

the group inherits the role, thereby applying it to any user assigned to the group.

Groups
SAS Metadata groups are logical groupings of roles and groups. They are used to simplify the application of roles.

Once a set of roles or groups (sub-groups) are assigned to a group, all the roles and inherited roles from sub-groups

are available to any user assigned to the group.

The Framework
The easiest framework for applying

permissions is to create a series of roles

with same name of the macros. That way

the role name can easily be compared to the

macro name. Once that is complete, groups

can be created to handle similar or logical

groupings of roles. Once complete, apply

necessary roles and groups to users to

finish the metadata portion of permissions

application.

FINANCIAL RISK GROUP

33

Introduction

Creating
Metadata

Querying
Metadata

Improving Security Through Metadata Objects: Permission-Driven Macros
Andrew Gannon

The Financial Risk Group, Cary, NC

Querying Metadata
Querying SAS Metadata can be quite complicated, but SAS provides

several pre-installed macros to complete the hard work.

%MDUEXTR() is the one used for retrieving users, groups, and roles.

This macro pulls back the entire metadata for the given server. This

needs to be queried down, via the ‘&_clientuserid’ macro variable.

The query below will pull back all of the roles associated with a user,

whether assigned directly or indirectly – through a group.

With this data the user can now verify access prior to macro

executions.

FINANCIAL RISK GROUP

444

Introduction

Creating
Metadata

Querying
Metadata

Checking
Permissions

Improving Security Through Metadata Objects: Permission-Driven Macros
Andrew Gannon

The Financial Risk Group, Cary, NC

Checking Macro Permissions
A macro is created to easily check permissions for other macros. In this macro, we call the code to query the

metadata and then compare it to the name of the macro that is being called. If they do not match then the execution

is halted.

Macro to Check Access Application of Permissions

Application of Permissions

Conclusion
Utilizing metadata and simple SAS functionality to implement permissions

on the macro level is an easy and effective way to support the audit

function. Whether it’s preventing users from updating tables or from

misusing computing power, this method can do the trick.

1

Paper 3025-2019

Improving Security Through Metadata Objects: Permission-Driven Macros
Andrew Gannon, The Financial Risk Group, Cary NC

ABSTRACT

Users can wreak havoc on systems in many different ways – from excessive memory and cpu usage to
updating tables with bad data missing data. There are several ways to prevent individuals from doing
this – namely by limiting users' access to servers and data. There is a better way to manage permissions
for users that is not server or environment specific. By creating a framework of metadata groups and
roles, macro specific permissions can be applied at the individual and group levels. This paper seeks to
explain and demonstrate how to apply macro level permissions to users via roles and groups in
Metadata.

SAS METADATA

Most, if not all, SAS users are defined in some way as users in SAS Metadata. That means that a SAS
Administator created a metadata object for the user that allows them to access and use the differnet

SAS products. Typically, products that users have available
have associated metadata role objects – which manage
the availability of an application or feature. Most SAS
Products have pre-defined roles for different products.
Collections of roles can be created as metadata group
objects. Groups are collections of roles and are assigned
to users. Groups are transitive, if a users is assigned to a
group, then the user is inherently assigned to all roles
associated with groups. Figure 1 illustrates the different
metadata objects and how they are linnked. The 'user' is
assigned to individual roles as well as a collecection of
roles (a group). Figure 2 illustrates how the users is
associated with all the roles and objects from figure 1.

Creating Permissions Metadata

Starting with a good framework is the best way to
develop new roles and groups in metadata. Think of all of
the possible roles / permissions and then create roles for
those permissions. Naming techniques aid in this part. For
instance if all the permissions apply to one server or
application, have the roles name start with the name of
the server or the name of the applicaton. If there is a
server names 'DEV' then all permission names would start
as Dev: …. this would then allow for easy querying and
readability of the metadata. Next, develop a framework of
users and the roles that they should have. If there are
similar paterns then consider building some groups – this
allows users to have a singular group assignment rather
than manually assigning several roles. Again – naming
conventions help with groups as well. Once the roles and

groups are created, they can be assigned to users as necessary. For the purpose of this paper we assume

Figure 1

Figure 2

2

all roles and groups start with 'DEV:' followed by the exact name of the macro that it will be applied to.
If the macro is called update_table then the metadata role would be called 'DEV: UPDATE_TABLE'.
These naming conventions will help when determining if a user has access to particular macros. Note
that all of these steps involving metadat should be handled by the SAS Administrator responsible for the
metadata repository.

Querying Metdata

Metadata can be pulled down into SAS Datasets through both querying and built-in SAS functions. This
paper will not go in-depth on how to use or alter the metadata querying, but rather will explain exactly
what to do to get the users, roles, and groups from the metadata and how to use those to permission
macros.
SAS metadata is built on an XML Schema and the easiest way to query is through the PROC METADATA
procedure. This procedure is like PROC HTTP in that the user specifies an infile and an outfile. The infile
is an XML file that contains the querying information. The procedure queries the metadata using the
provided a XML-map and returns an XML dataset with the results. From here, the XML LIBNAME is the

most efficient way to convert the XML
to a usable SAS Dataset. The user can
create the process on their own, or
they can use a built in SASFoundation
macro %mduextr(libref =) which pulls
down several datasets from metadata
including a list of roles, groups, and
users. These datasets can easily be
joined to generate a list of all roles
associated with a user. Utilizing this
built in macro allows the user to query
the output based on the current user
– via &_clientuserid for Enterprise
Guide or &_secureusername for a
stored process. Figures 3 and 4 show
the query used (after calling

%mduextr). Utilizing the &_clientuserid (in Enterprise Guide) the user can pull all the available metadata
groups and roles associated with them.

ADDING PERMISSIONS TO MACROS

Now that a list of roles can be pulled for a user, this list can be used to guide permission-based security
at the SAS macro level. The newly created roles and groups don't have any effect as is – they must be
applied somehow. This is a simple concept where a permission check is run at the beginning of the
macro. For further efficiency we encapsulate this code into its own macro that can simply be run at the
beginning of each macro. The goal is to examine the name of the currently executing macro – then
determine if the user has the availability to execute this macro by checking associated roles. Once that is
determined the macro will either execute or exit.

The Permissions Macro

The permissions macro can be developed one of two ways: (1) it can query the metadata for roles on
each call, or (2) it can query metadata on first call then use a saved table on all other calls in the same
session. This paper will discuss both methods. The first method is straight forward. The macro will query

proc sql;

 create table work.access as

 select a.memname as name, b.name as role

 from work.groupmempersons_info as a,

 work.groupmemgroups_info as b

 where upcase(a.memname) eq upcase(&_clientuserid)

 and upcase(a.name) eq upcase(b.memname);

quit;

Figure 4

Figure 3

3

down on the current user's groups and then on all roles. It will check that the user has access to current
macro – and then execute the macro or exit. The name of the currently executing macro can be found
by the automatic SAS macro variable &sysmacroname. This is available throughout the execution of a
macro. This is why naming metadata roles based on macro name is important – now the macro name
can be compared against metadata – if the names match up then the user has permission to execute.
The second method of saving a table off and using that table through the session to determine
permission is a better option if there is a good place to store the table where it won't be deleted or
altered throughout the session.
The check_access() macro below pulls in the required groups and roles and checks if the passed macro
name is in the list of available macros the user has access to.
%macro check_access(lib = , macro_name =);

 %global exit_macro;

 %let exit_macro = 0;

 %if %sysfunc(exist(work.access)) ne 1 %then %do;

 %mduextr(libref = &lib);

 proc sql noprint;

 create table work.access as

 select a.memname as name, b.name as role

 from work.groupmempersons_info as a,

 work.groupmemgroups_info as b

 where upcase(a.memname) eq upcase(&_clientuserid)

 and upcase(a.name) eq upcase(b.memname);

 quit;

 %end;

 proc sql noprint;

 select *

 from &lib..access

 where upcase(role) eq "%upcase(¯o_name)";

 quit;

 %if &sqlobs = 0 %then %let exit_macro = 1;

%mend check_access;

The check_access() macro can then be called at the beginning of macros. The user first initializes the
current macro name to pass, then checks the value of the output global macro variable exit_macro to
determine if access is available. Below is an example.
%macro test_macro1;

 %let macro = &sysmacroname;

 %check_access(lib = work, macro_name = ¯o);

 %if &exit_macro gt 0 %then %return;

 /* Begin Macro Execution */

 %put the macro executed;

%mend test_macro1;

%test_macro1;

4

The following macro executes and prints the code at the bottom. If the name is changed to that of
something not in the list of available metadata macros, then the program would have exited. Below is
the printout of the log from executing this macro.

CONCLUSION

Permissioning at the macro level allows businesses and organizations the ability to closely monitor
activities. Knowing users that are and are not allowed to execute macros greatly increases security and
helps with auditing. It is important to build these permissions as it allows for the accurate updates of
tables and proper use cpu and memory.

CONTACT INFORMATION

If you have any comments or concerns, please feel free to reach out at any time. Please contact at:

 Andrew Gannon

 The Financial Risk Group, Inc.

 +1 (919) 439-3819

 Andrew.Gannon@frgrisk.com

 www.frgrisk.com

Figure 5

	3025-2019 poster
	3025-2019

