
1

 SASGF-Paper 3022-2019

Screen Scraping Using SAS® for Healthcare Fraud Prevention and Detection

Hitesh Kharbanda, Optum Global Solution

UnitedHealth Group

ABSTRACT

Fraud in U.S. Healthcare System is rampant. It is estimated that 3-10% of U.S. Healthcare

annual expenditure is lost to fraud and abuse. One of the most common types of fraud is
phantom provider billing. Phantom provider billing occurs when providers either do not exist
or do not hold a valid license and bill false claims for services that were not rendered.
Phantom providers frequently change billing patterns on submitted claims to avoid detection
from payer edits. One method used to avoid detection is to submit a new Tax Identification

Number (TIN) into the payment system whenever their current TIN has been identified as
fraudulent. In addition, phantom providers will often use a TIN belonging to an existing
legitimate provider in order to disguise fraudulent claims, in a similar manner to identity
theft with personal credit cards. Accurate detection of phantom providers is difficult due to
this type of evolving claim submission behavior, resulting in payment leakage when claims

from a phantom provider avoid detection by existing edits.

One method to detect evolving behavior of phantom providers is to scrape and update the
TIN/address information from actual owners or authorized agents for the documented fraud
providers. This can be done in a time consuming manual process. It can be automated by

writing a program to scan the internet via screen/web scraping using SAS®.

INTRODUCTION

The Internet is rich with data, and much of that data that is available on web pages can be

scraped for facilitating analysis, and be further used in a desired manner for analytic
development.

This paper describes how SAS can be used to scrape data from the web as an application for
detecting phantom provider healthcare fraud.

OVERVIEW OF WEB SCRAPING

Most of the data available over the web is not readily available in a database. It is present in
an unstructured format (HTML) and is not downloadable. Therefore, it requires knowledge &
expertise to use this data effectively.

Web scraping is a technique for converting the data present in unstructured format (HTML
tags) over the web to the structured format which can easily be accessed and used for an
automated process.

Figure 1. Anatomy of Web Scraping

Document
Load

Parsing Extraction Transformation

Pull in the webpage Parse the HTML metadata

Use the results of parsing
to extract the data

Convert the data into
desired format

2

USING SAS FOR WEB SCRAPING

Base SAS software is a product that can be used for web scraping, and one does not require
any special extension of SAS products. The following features of Base SAS software can be
used for web scraping purpose.

Figure 2. SAS Features for Web Scraping

PHANTOM PROVIDER ADDRESS “ANALYTIC”

Most of the healthcare payers in United States maintain a list of providers who have been
identified as phantom, known for false billing of claims causing millions of dollars loss to
payers. In order to bypass payment edits designed to detect false claims, these phantom
providers frequently change TINs.

Optum’s Phantom Provider Address Analytic aims to detect new addresses, TINS, and
associated providers for these known phantom providers using web scraping technology
leveraging SAS. One may use various authenticated resources over the internet that stores
details of registered businesses in any state. These details include name of the owner or

authorized agent of the business, other associated business persons, TINS, associated
addresses, etc. For purposes of this paper, we used sunbiz.org, an official State of Florida
website; however, the results have been modified to be fictitious.

Authenticated web resources can be scraped using SAS in a dynamic way to frequently
update new business details of phantom providers. Claims billed by the newly identified
providers and addresses can be flagged to prevent any loss from false claims, thus making
the analytic dynamic.

Below are the required steps with a sample program to learn how to use SAS for scraping
business details from the web for known entity/business/person (Provider). :

1. Import the provider/agent details from the input source.

This file would typically include provider name for which we are seeking the latest business
details/address/TIN. The suspect name in this paper is referred to as Agent.

PROC HTTP or FILENAME URL
 For loading webpage content

Parsing HTML using SAS Functions
like SCAN, FIND etc.

SAS macro language (%DO %UNTIL
processing) for multiple iterations

3

 /* Reading agents from the input source */

 PROC IMPORT DATAfile=”Agents.xlsx"

 OUT= work_agents

 DBMS= xlsx replace;

 GETNAMES= no;

 RUN;

/* Finding agents volume */

 PROC SQL;

 SELECT count(distinct agent) into :agent_vol

 FROM work_agents;

 QUIT;

 /* Holding agent names into macro variables */

 PROC SQL noprint;

 SELECT agent

 into :agent1 - :agent%eval(&agent_vol)

 FROM work_agents

 QUIT;

 %put &agent1;

2. Load the content of the webpage, and search agent details on URL

(search.sunbiz.org) using SAS features – FILENAME URL and PROC HTTP

To search for the business details of any provider/agent on sunbiz.org, we can search for
any agent/entity over sunbiz web address via various options available on their search
home page. Select the option to search “by office/registered agent name”.

Please check out URL:
http://search.sunbiz.org/Inquiry/CorporationSearch/ByOfficerOrRegisteredAgent

It will show something like below:

Display 1. Screen capture of search page

http://search.sunbiz.org/Inquiry/CorporationSearch/ByOfficerOrRegisteredAgent

4

If we will search with name of any agent/provider, it will take us to next page showing
results of all the agents/provider with that name. Something like below:

Display 2. Search results

For the above page, we get the following URL on our web browser:

http://search.sunbiz.org/Inquiry/CorporationSearch/SearchResults/OfficerRegisteredAgentN
ame/AGENTNAME/Page1

You may see in the above web address, at the end of the URL there is a unique tag for
agent we searched for. This is our target URL, and by referencing each agent name in URL

we can run a SAS code in loop for each agent/provider name to get HTML structure behind
each agent’s search page result similar to one we have shown above (Display 3).

Below the screen shot is an example of HTML content that we are interested in from the

search result page of “agent name”. In this HTML content, we get each search result specific
URL that further when clicked upon takes us into business details of each search
result/Agent, i.e. for all agents/providers listed in search output we will have unique URL
associated with them for their respective business detail.

Display 3. HTML content for search results

5

 /* Searching agent details on search.sunbiz.org */

 options DLCREATEDIR;

 %let htmldir = %sysfunc(getoption(WORK))/html;

 Libname html "&htmldir.";

 options symbolgen mprint mlogic;

 %macro search (num=);

 %do i = 1 %to &num.;

 %let url =

http://search.sunbiz.org/Inquiry/CorporationSearch/SearchResults/OfficerRe

gisteredAgentName/&&agent&i./Page1;

 FILENAME src "&htmldir./&i..html";

 PROC HTTP

 method="GET"

 url= "&url."

 out=src;

 RUN;

 %end;

 % mend search;

 %search (num=&agent_vol.);

/* Reading the search results */

 DATA results;

 infile "&htmldir./*.html" Length=len lrecl=32767;

 input line $varying32767. len;

 line = strip(line);

 if len>0;

 RUN;

 Libname html clear;

Below is the screen shot to show how HTML content can be loaded into a SAS file. When we

run the above code we get the unique URL associated with each provider in SAS output
which can be loaded in a SAS file.

Display 4. HTML data loaded in SAS file

6

In the next section, we are using the unique URL for each agent to go their specific business
detail page, and repeating the use of PROC HTTP to get HTML content of their business
detail page. This HTML content will have all the information we require such as address/TIN
associated with provider/agent.

When we click on our first result for search “agent name”, we are routed to following
window with all business details for that particular search result. Below screenshot shows
how business details for any agent look like when we click on each result in search output.

Display 5. Agent business details

3. Parse the webpage/HTML content of unique URL associated with each Agent

In the code below, we have mapped the agent name in URL from previous output with first
11 characters of our Agent/provider name that we had in our input file. We have also

utilized SPEDIS function, which returns a measure of how a word is close to another word in
spelling.

/* Getting the URL and agentname details */

 DATA parsed0 (keep=URL line agentname);

 Length URL $3000;

 SET results;

 if find(line,"Go to Detail Screen") then

 do

 URL= tranwrd(substr(LINE,35,index(LINE, 'title')-

37),'&','&');

 agentname= compress(UPCASE(compress(substr(line,index(LINE, 'Go

to Detail Screen')+21,50),'</td''')),"`~!@#$%^&*()-

_=+\|[]{};:',.<>?/%","ps");

 output;

 end;

 RUN;

PROC SQL;

 CREATE table parsed as

 SELECT distinct *,substr(agentname,1,11) as Agentname_n

 FROM parsed0;

7

 QUIT;

 DATA work_AGENTs1;

 SET work_AGENTs;

 Agent=UPCASE(compress(agent,"`~!@#$%^&*()-_=+\|[]{};:',.<>?/%","ps"));

 RUN;

 PROC SQL;

 CREATE table agent as

 SELECT distinct agent,substr(agent,1,11) as agent_n

 FROM work_AGENTs1;
 QUIT;

/* Mapping the results DATA with the agent input on first 11 chars of

agent name */

 PROC SQL;

 CREATE table url_final_n as

 SELECT distinct a.URl, a.agentname_N, b.agent_N,

a.agentname, b.agent

 FROM work.parsed a LEFT join AGENT b
 on a.Agentname_n = b.agent_n

 where agent_n <> "";

 QUIT;

 /* Cartesian Mapping one results DATA with the agent */

 PROC SQL;

 CREATE table url_final as

 SELECT distinct a.URl, a.agentname, b.agent

 FROM work.parsed a cross join AGENT b;

 QUIT;

 /* Applying the SPEDIS function on result DATA */

 DATA url_final1;

 SET url_final;

 if spedis(agent,agentname)<=18;

 RUN;

 /* Appending both results -> 11chars mapping and result DATA on SPEDIS

function */

 DATA url_final_DATA;

 SET url_final_n(keep=url agentname agent) url_final1;

 RUN;

 PROC SQL;

 CREATE table url_final_DATA1

 as SELECT distinct * from url_final_DATA;

 QUIT;

8

4. Extract web content of each agent, and further parse content to get business
details

Here, we are running each specific URL in a loop to get the HTML content for all of them in
single file, and then we use SAS functions like Scan, Find etc. to get the business details by
each agent.

/* Creating the URL search for each agent to get the complete agent details

*/

 %LET S = %NRSTR(%nrstr(&));

 %LET ABC = %SUPERQ(S);

 DATA parsed (keep=url1 agentname);

 Length url1 $ 3500 new $ 100;

 SET url_final_DATA1;

 new = "http://search.sunbiz.org";

 url1=tranwrd(cats(new,url),"&","%SUPERQ(S)");

 RUN;

/* Getting the URL volume */

 PROC SQL;

 SELECT count(distinct url1) into :urlvol

 FROM parsed;

 QUIT;

/* Holding each URL into macro variable */

 PROC SQL noprint;

 SELECT url1

 into :url1 - :url%left(&urlvol.)

 FROM work.parsed;

 QUIT;

/* Passing each URL details to the below search loop to get details of

agents */

 Options DLCREATEDIR;

 %let htmldir1 = %sysfunc(getoption(WORK))/html;

 libname html1 "&htmldir1.";

 %macro search2 (num=);

 %do i = 1 %to &num.;

 %let urlA = &&url&i.;

 filename src1 "&htmldir1./&i..html1";

PROC HTTP

 method="GET"

 url= "&urlA."

 out=src1;

 RUN;

 %end;

 %mend search2;

9

 %search2 (num=&urlvol.);

/* Reading the results */

 DATA results1;

 infile "&htmldir1./*.html1" Length=len lrecl=32767;

 input line $varying32767. len;

 line = strip(line);

 if len>0;

 RUN;

 Libname html1 clear;

 DATA test;

 SET results1;

 Lag_line = lag(line);

 RUN;

/* Reading agent name */

DATA Agent (keep = agent);

 Length agent $40;

 SET test;

 if find(lag_line,"Registered Agent Name & Address") then

 Agent = tranwrd(line,"","");

 RUN;

/* Reading agent Status */

DATA status (keep=status);

 Length status $40;

 SET test;

 IF FIND (line,"Detail_Status") THEN

 status = tranwrd(substr(line,48,8),"</","");

 RUN;

/* Reading agent EIN */

DATA EIN(keep=EIN);

 Length EIN $40;

 SET test;

 IF FIND (line,"EIN Number") then

 EIN=tranwrd(substr(line,62,10),"</span","");

 RUN;

/* Reading agent Addresses */

DATA Address (keep=Add1 Add2 Add3);

 Length Add1 $ 60 Add2 $ 60 Add3 $ 60;

 SET test;

if find (line,"Principal Address") then

 do;

 pickup =_n_+3;

 pickup2 = _n_+4;

 pickup3 = _n_+5;

10

 SET test point= pickup;

 Add1= substr(line,1,index(line, '<')-1);

 SET test point= pickup2;

 Add2= substr(line,1,index(line, '<')-1);

 SET test point= pickup3;

 Add3= substr(line,1,index(line, '<')-1);

 end;

RUN;

DATA address;

 SET address;

 where add1<> "" and add2<> "" and add3<> "";

 RUN;

DATA address;

 SET address;

 if add3 ne "</div>" then

 add1 = catx("",add1,add2);

 RUN;

 DATA address(keep=add1 add2);

SET address;

 if add3 ne "</div>" then

 add2= add3;

 RUN;

/* Removing blank cases */

DATA EIN;

 SET EIN;

 where EIN <> "";

 RUN;

 DATA Agent;

 SET Agent;

 where agent <> "";

 RUN;

 DATA status;

 SET status;

 where status <> "";

 RUN;

/* mapping all the DATA */

 DATA final;

 MERGE Agent ein Address status;

 RUN;

11

Sample output of program

Display 6. Final output

CONCLUSION

This paper describes how to leverage features of SAS like PROC HTTP and FILENAME to load
the entire webpage into one single document which can be further parsed to scrape the
required information. This paper discussed the potential application of screen scraping using
SAS for prevention of fraud in health insurance business.

REFERENCES

Hemedinger, Chris. “How to scrape data from a web page using SAS” The SAS Dummy.
December 4, 2017. Available https://blogs.sas.com/content/sasdummy/2017/12/04/scrape-
web-page-data/

Duggins, Jonathan. SESUG Paper 236-2018,“Web Scraping in SAS: A Macro-Based
Approach”: Available at https://www4.stat.ncsu.edu/~duggins/SESUG2018/SESUG%20236-
2018.pdf

ACKNOWLEDGMENTS

I would like to thank Gina Hedstrom, Amy Neftzger, Naveen Pruthi, Neelabh Mishra, and

Ashish Sharma for their constant support and encouragement. I will also like to thank my
team members for their valuable input and support.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Hitesh Kharbanda
Optum Global Solutions
Oxygen SEZ, Sec 144, Noida
UP, India - 201306
Hitesh_kharbanda@optum.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration. Other brand and product names are trademarks of their respective companies.

https://www4.stat.ncsu.edu/~duggins/SESUG2018/SESUG%20236-2018.pdf
https://www4.stat.ncsu.edu/~duggins/SESUG2018/SESUG%20236-2018.pdf

