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ABSTRACT

Logistic regression modeling can result in perfect prediction of the responses in your training data, which unfortunately
can correspond in practice to very imperfect prediction of the responses in a new data set. This imperfect prediction is
often due to complete separation of your data, which means that there is a way to fit the model so that all the events
have high predicted probabilities and all the nonevents have low predicted probabilities. In particular, there is a region
that separates your event data from your nonevent data and that contains no observations. This “dead zone” has no
information about your model, and hence you cannot evaluate the correctness of any predictions inside this region.
This paper illustrates the dead zone and provides methods to find and measure it.

INTRODUCTION

Increasingly complex programs for machine learning and predictive analysis often include fitting a logistic regression
model as one of their steps. Logistic regression is a generalized linear model that you can use to predict which of two
response levels is more likely for a given observation. A logistic regression program can fail for a number of reasons,
but even when it does not fail, other problems can appear. This paper focuses on one of those problems: complete
separation and the existence of a dead zone in your data. Proceeding with analyses under complete separation is not
necessarily fatal; the results can be successfully used as a practical tool, but you should handle them appropriately.

First, a brief review of logistic regression. You use a logistic regression model when you have a response variable y
with two (or more) possible levels; call them the events and the nonevents. A logistic regression models the probability
that an observation that contains explanatory variables x is an event by using a linear function of the predictors:

logit.Pr.y D event// D log
�

Pr.y D event/
1 � Pr.y D event/

�
D x0ˇ

Assuming that your data are a simple random sample from a binomial distribution, this model is fit by using an iterative
algorithm to maximize the likelihood function. The maximum likelihood estimates for the parameters of this fitted
model are denoted by Ǒ, and the model-predicted event probability for an observation with predictors x is denoted by
O� D O�.x/ D Pr.y D eventjx; Ǒ/.

Albert and Anderson (1984) investigate the existence of these maximum likelihood estimates and divide data sets into
the following three categories:

� complete separation: There exists a vector ˇ such that x0ˇ > 0 for events and x0ˇ < 0 for nonevents. Solving
the logistic function for the probability shows that Pr.y D event/ > 1

2
, and similarly Pr.y D nonevent/ < 1

2
. In

this case, the log likelihood converges to 0, the dispersion matrix becomes unbounded (so the standard errors
go to infinity), and the maximum likelihood estimates Ǒ diverge to infinity.
� quasi-complete separation: Same as complete separation except that there is at least one event observation

and at least one nonevent observation that satisfies x0ˇ D 0. In this case, the log likelihood converges to a
value less than 0, the dispersion matrix becomes unbounded, and at least one maximum likelihood estimate Ǒi
diverges to infinity.
� overlap: The maximum likelihood estimates are unique and finite.

By default, the four dedicated logistic regression procedures (LOGISTIC, SURVEYLOGISTIC, HPLOGISTIC, and
LOGSELECT) detect these three categories. This paper focuses on the case of complete separation, where the
model perfectly separates your events from your nonevents.

A “dead zone” is a region in oceans that has too little oxygen to support life, or a region that has poor cell-phone
service. In this paper, it is the region between your events and nonevents where you have no data and cannot validate
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your predictions. In particular, when your data are completely separable, there are infinitely many ˇ vectors that
separate your data; the dead zone is the set of all hypersurfaces defined by these separating vectors that are “parallel”
to the fitted Ǒ, and the expanded dead zone is the set of all hypersurfaces that separate your data.

Complete separation often occurs when you have an overspecified model or not enough data, given your predictors.
When your data are completely separated, PROC LOGISTIC stops after eight iterations but before numerical
convergence. Stopping early is a useful way to deal with complete separation, because the resulting estimate of ˇ still
separates and predicts events and nonevents in a way that is conditioned by the data and the model, while avoiding
potential computational problems (for example, dividing by numbers near zero). Dealing with complete separation
simply by using the default results from PROC LOGISTIC is referred to in this paper as accepting the model.

Figure 1 displays a sample of 100 individuals, indicating their ages and whether or not they are retired from their
career. Notice that all the subjects in the lower third of the range of ages, 20 � Age � 40, are not retired, and subjects
in the upper third, 60 � Age � 80, are retired.

Figure 1 Two Logistic Regression Fits with One Continuous Covariate

The following program fits a simple logistic regression to these data:

proc logistic;
model Retired(event='1') = Age;

run;

PROC LOGISTIC warns you about the existence of a dead zone by issuing this log message:

WARNING: There is a complete separation of data points.
The maximum likelihood estimate does not exist.

PROC LOGISTIC sets the value of the system macro variable &SYSERR to 4 to indicate that a warning has been
displayed (PROC HPLOGISTIC and PROC LOGSELECT do not display a warning and leave the &SYSERR value
set to 0 if the program otherwise completed successfully), and it displays the convergence status in an output table
(Figure 2).

Figure 2 Convergence Status Table

Model Convergence Status

Complete separation of data points detected.

The model that PROC LOGISTIC reports is

logit.Pr.Retired D 1// D �30:3054C 0:6064 � Age

Figure 1 displays the probability of being retired as predicted by this simple logistic regression fit as the blue curve
(labeled “Default”). The model-predicted probabilities are near 0 for subjects younger than 40 and near 1 for subjects
older than 60.
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The one-dimensional hypersurface that separates the events (Retired D 1) from the nonevents (Retired D 0) is

fAge W �30:3054C 0:6064 � Age D 0g

That is, Age D 49:98. Because you have a finite amount of data, there is a linear subspace of the range of Age that
contains the separating hypersurface (Age D 49:98) and contains no data. You can see that there are no subjects
between the ages of 40 and 60 to influence how the model transitions from 0 to 1; the middle third of the data,
40 � Age � 60, represent the dead zone.

PROC LOGISTIC responds to complete separation by stopping the optimization process early; this action yields the
gently sloping blue curve. Your resulting model is from an incomplete model fit; the model separates the data, but
its parameter estimates should be infinite and the predicted probabilities should be exactly 0 or 1. The LOGISTIC
procedure provides the NOCHECK option to prevent the separation detection; rerunning the model with the NOCHECK
option produces the red curve (labeled “Nocheck”) in Figure 1. The optimization claims to converge, but this simply
means that at least one convergence criterion is satisfied numerically—the estimates are heading to infinity. For
this example, when you perform more than 39 iterations, the Hessian becomes noninvertible and PROC LOGISTIC
automatically sets certain parameters to 0, which is not useful for this paper. You can see that the “Nocheck” curve is
approaching a step function, where the predicted probabilities switch from O� D 0 to O� D 1 when the value of Age is
about 50. When you have complete separation, predicted probabilities that are not nearly 0 or 1 are due to the fact
that the optimization was stopped prematurely.

Figure 1 also shows the subjects that are used to train the model. If you have a new subject that was not used to
fit the model, then it makes sense to classify it as a nonevent (not retired) if Age < 40 and as an event (retired) if
Age > 60. But if you are scoring a new observation in which 40 � Age � 60, then either you accept the results of
the trained model and use Age D 49:98 as the decision cutpoint or you can choose to do something different.

This introductory section concludes by reviewing previous work in classification of observations in the dead zone and
by discussing some general ideas regarding how to handle dead-zone observations. Subsequent sections discuss
measuring and identifying the dead zone by using a variety of methods, from random sampling to linear programming.
Complete SAS® programs and macros for all data sets and figures in this paper are available from the conference
proceedings and online.1

Previous Work in This Area

To the best of my knowledge, this topic has not raised any red flags in the past, except for scoring beyond the range
of the data that you use to train your model. There are a variety of classification and discrimination procedures in
the literature and implemented in SAS, and one of their features is to classify observations, or assign probabilities to
observations, no matter where they are. There are also many different methods to model binary response data and to
produce predictions inside the dead zone, but the focus is always on producing a good model. Because complete
separation implies that the covariance matrix is infinite, you cannot perform hypothesis testing with the results of such
a fit, and it is suggested that you overspecified the model and you must do something ensure that your data have
overlap so that finite maximum likelihood estimates exist (Allison 2012, pp. 47–59).

In the fields of predictive analytics and machine learning, a support vector machine (SVM) model finds an optimal
hypersurface that divides the events from the nonevents; that is, it attempts to separate the two data clouds in a
fashion similar to logistic regression. For SVMs, the lack of data in the dead zone is considered to be a desirable
feature (Hamel 2009).

Should You Make Predictions Inside the Dead Zone?

Suppose you are writing a large, complex program that has one component in which a logistic regression model is fit
to some data, and that model is then used to score (that is, compute predicted probabilities for) new data. If your
new data lie inside this dead zone, should you accept the model-based predictions? You know that the predicted
probability should be 0 or 1, but in the dead zone it might not be. Will you accept a value of, say, 0.4? Is it acceptable
to classify a person as a 0 when he or she should be a 1? Is it reasonable to decide that a person needs medical
treatment when it is not needed, or vice versa, especially when you have no data to back up the decision? One rule of
thumb is not to predict data that exist (too far) outside the range of data that you used to create your model. Should
this rule be extended to not making predictions inside the dead zone?

1Go to http://support.sas.com/rnd/app/stat/examples/sgf19_logisticregression.html.
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These are decisions that you have to make for the analysis you are performing. You have three options:

� Amend : Change the model or method, or gather more data.
� Accept : Accept what the model provides.
� Act : Find the dead zone and act on your knowledge.

If you are fitting a single model and are more interested in testing hypotheses about the data, such as "this variable is
important" or "the response is significantly different for this set of factors compared to that set of factors," then you
will probably choose to amend your analysis. For example, you can drop predictors because of their complexity or
according to an importance measure like partial correlations, or you can combine categories of classification variables.
You can also use PROC LOGISTIC’s FIRTH option to use a penalized likelihood, or, if your data set is small enough,
you can try fitting an exact logistic regression, because both these methods are robust to separation effects. (For
more information, see Allison 2012, pp. 47–59.)

If you are interested in inference or predictive modeling and are using logistic regression for classifying new obser-
vations, then you might prefer one of the other two options: either ignoring the problem and accepting the model’s
prediction, or recognizing the model’s limitations with dead-zone observations and using other principles to guide
prediction. Either way, be aware that any predictions you make are not based purely on the data.

By choosing to accept the model, you are letting the model decide what to do in the dead zone. Your Ǒ reflects the
distribution and weight of the observations in a manner that is defined by your model. Complete separation is an
attractive feature in predictive analytics because it gives you perfect prediction for the observed data; in particular, the
receiver operating characteristic (ROC) curve goes through the point (0,1). In a linear regression, a perfect fit results
in a curve that is too bumpy to reflect reality and is not particularly useful for scoring new observations. However,
with binary response data, this problem is mitigated by using logistic regression as a classification technique; you are
directly predicting a latent probability, and you don’t really care what the exact value of the predicted probability is, as
long as it gives you a model-based method of discriminating between events and nonevents.

You should also be aware that predictions in the dead zone are, appropriately, more heavily weighted to the prevalence
of the events in your data. That is, if you have more events than nonevents, then you will predict more events in the
dead zone; if you have more nonevents, then you will predict more nonevents. These dead-zone predictions are
conditioned not by how the response depends on the covariates, but only by how many events and nonevents there
are.

To illustrate this, the graph in Figure 3 compares the preceding logistic regression model to a model where the events
are weighted more heavily and to another model where the nonevents are weighted more heavily. The center (blue)
curve shows the original fit. You can see that having more events shifts the logistic fit to the left (red) curve, so that
a larger portion of the dead zone is predicted as events. Similarly, the right (green) curve shows that having more
nonevents in the data results in predicting more nonevents in the dead zone.

Figure 3 Logistic Regression Fit with More Events or Nonevents

None of the three fits in Figure 3 is any more accurate than the others for observations in the dead zone because
there are no data available to validate the predictions inside this zone.
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The remainder of the paper is concerned with how to act on your knowledge about the dead zone. If you choose this
option, first you need to identify the dead zone, and then you need to treat predictions in a principled manner.

Your Observation Is Inside the Dead Zone. Now What?

What you should do with observations inside the dead zone varies according to your situation. Suppose that your
program eventually makes a recommendation for some action—for example, to approve a new car loan, to make an
offer to a potential customer, or to recommend a new medication. If you know that your new observation is in the dead
zone, the following list suggests four ways to proceed:

� Allow the model to make a prediction, but flag it as suspect and take the recommendation with a grain of salt.
� Duplicate that observation, but for one observation predict an event and for the other predict a nonevent. Allow

both predictions to flow through the rest of your program, and see whether the two final recommendations
agree. If they do not, can you make a reasonable recommendation by averaging the two results or by using
other information?
� If your response variable is numeric, you can try setting dead-zone observations to a value halfway between

those of the events and nonevents, and then see how they proceed through your program.
� Flip a coin, or use the fitted logistic regression model to make a model-based flip; that is, choose to accept the

model results and ignore separability.

IDENTIFYING THAT YOU HAVE A DEAD ZONE

The first step in handling the dead zone is to find out whether you have one—that is, you need to detect whether your
data set is completely separable.

SAS procedures produce system macro variables (&SYSERR, &SYSRC) that indicate the results of an analysis. If you
have complete separation, then both PROC LOGISTIC and PROC SURVEYLOGISTIC indicate a warning by setting
the value of &SYSERR to 4; however, this setting can refer to any number of problems. PROC HPLOGISTIC and
PROC LOGSELECT do not treat perfect prediction as a problem, so their return codes are not changed by separation.
You should still check that these macro variables are both 0 in case other problems arise; in particular, the Figure 1
example with the NOCHECK option returns a nonzero &SYSERR value when you force PROC LOGISTIC to make
more than 39 iterations because of a noninvertible Hessian.

All the dedicated logistic regression procedures identify separation in some fashion. Most other procedures that can
perform logistic regression (for example, the BGLIMM, GENMOD, GLIMMIX, HPGENSELECT, MDC, PROBIT, and
QLIM procedures) do not. For those procedures and actions that do not check for separation, you should check the
parameter estimates and their standard errors because under separation the standard errors are moving to infinity,
and large values are most likely due to separation. For the Bayesian BGLIMM procedure, the corresponding effect
is that the posterior becomes very wide. Alternatively, as noted in the introduction, you can check for separation by
scoring the training data and seeing whether using a predicted probability of 0.5 as the cutpoint between predicted
events and nonevents perfectly predicts your response values.

You can obtain information about separation from the dedicated logistic regression procedures by using the “Conver-
gence Status” table. The following table shows the values of variables in the “Convergence Status” table when you
have complete separation.

Procedure Reason Status Separation

PROC LOGISTIC Complete separation of data points detected. 1 N/A
PROC SURVEYLOGISTIC Complete separation of data points detected. 1 N/A
PROC HPLOGISTIC Complete separation detected. 0 2
PROC LOGSELECT Complete separation detected. 0 N/A

You can use the following program to check the “Convergence Status” table from any of these four procedures for
complete separation:

%let csep=0;
data _null_; set ConvergenceStatus;

if (find(reason,'Complete')) then call symput('csep',1); run;

The result is a macro variable, &CSEP, whose value is 1 if complete separation is detected and 0 otherwise.
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MEASURING THE DEAD ZONE

When you know that you have a dead zone, the next thing you might want to do is determine its size.

If the dead zone is “wide,” then there is a large separation between the event and nonevent data clouds, and you
are more likely to have future observations that lie between them. If your goal is to distinguish between letters of
the alphabet, which can reasonably be expected to lie comfortably in one cloud or the other, then a large separation
might be considered a good feature. But if your goal is to recommend medical treatment for a wide variety of patients
according to the results of a small sample, then this might be a bad feature.

If the dead zone is “narrow,” then although you have little risk of trying to predict inside the dead zone, there is little
separation between the data clouds, and your events and nonevents are quite close. It is possible that sampling more
observations will create overlap in your data, which will remove the dead zone and enable you to produce appropriate
estimates in that region and perform testing.

This section defines two different dead-zone measures: one based on sampling and the other based on the model. To
begin, note that, given the logistic regression model for a completely separated data set, the fitted hyperplane that
divides events from nonevents can be written as follows:

fx W logit.0:5/ D 0 D x0 Ǒg

Let O�e be the minimum O� D logit�1.x0 Ǒ/ of the observed events, and let O�n be the maximum O� of the observed
nonevents. All predictions O� inside the dead zone must satisfy O�n < O� < O�e. In fact, because the logistic regression
model is linear in its parameters, each of these O� defines another parallel hyperplane inside the dead zone. Estimate
the dead zone by finding these two bounding values—any new observation whose model-predicted probability lies
between these two values must be in the dead zone. So you can write the dead zone as follows:

D D fx W logit. O�n/ < x0 Ǒ < logit. O�e/g

D fx W O�n < O�.x/ < O�eg (1)

The boundaries of the model-predicted dead zone are given by the following two hypersurfaces:

Dn D fx W logit. O�n/ D x0 Ǒg
De D fx W logit. O�e/ D x0 Ǒg

One way of measuring the dead zone is to estimate the proportion of your data window that is covered by the dead
zone; your data window is defined by the ranges of your main effects. You can estimate this measure by randomly
sampling points from your data window, computing their predicted probabilities to determine whether they are in the
dead zone D, and reporting the proportion inside the dead zone; call this estimate the “sample proportion.” You should
take enough samples so that the standard error is small relative to the mean.

Another measure—call it the “margin proportion”—is based on computing the distance between the dead-zone
boundaries, d.Dn;De/, as a proportion of the maximum distance between any two observations, dmax. The distance
between the two parallel hyperplanes along the vector normal to the two surfaces (the “margin” in SVM) is given by

d.De;Dn/ D
jlogit. O�e/ � logit. O�n/j

k Ǒ k

where Ǒ and the norm k Ǒ kD
qP

i ˇ
2
i exclude the intercept. To compute dmax, let xemax be the observed event that

is farthest from the fitted hyperplane, where the distance is computed by projecting xemax onto the normal vector to
the fitted hyperplane. Let xnmax be the observed nonevent that is farthest from the fitted hyperplane. Let O�emax and
O�nmax be their respective model-predicted event probabilities. The sum of these two distances equals the sum of the
lengths of the two projections, which equals the distance between the two parallel hyperplanes that contain those two
observations. So you can compute the maximum distance as follows:

dmax D
jlogit. O�emax/ � logit. O�nmax/j

k Ǒ k
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Taking the quotient of these two distances gives you a second measure of separation:

d.De;Dn/

dmax
D

jlogit. O�e/ � logit. O�n/j

jlogit. O�emax/ � logit. O�nmax/j

The MEASURE macro (available online) computes these two measures; the measures of separation for the data in
Figure 1 are displayed in Figure 4.

Figure 4 Measures of Separation

Statistic Value StdError n

Sample Proportion 0.3386 0.0047 10000

Margin Proportion 0.3413 . .

As expected, both proportions are near 1=3, corresponding to the fact that the dead zone (40 � Age � 60) takes up
a third of the entire range of the data (20 � Age � 80).

Notice that these two statistics are computable and valid for a model that has any number of parameters; however, as
you will see later, interactions and other dependencies can affect their computation.

SEARCHING FOR THE DEAD ZONE

Methods that work well in one dimension do not necessarily work well in multiple dimensions. This section and the
next consider data that have two continuous predictors and discuss how to use logistic regression in different ways to
find the dead zone.

Figure 5 displays 100 observations that are sampled from (part of) a bivariate normal distribution. Considering the
predictor values only, it looks safe for you to make a prediction at (0,0) because it is near the center of the range of the
x1 and x2 variables. However, when you consider where the events and nonevents occur (Figure 6), you see that the
dead zone that was designed into the data, which is bounded by the gray diagonal lines, contains (0,0). If you run a
logistic regression against these data, then you will detect complete separation. The MEASURE macro, the results of
which are not shown here, reports the sample proportion as 0.1228 and the margin proportion as 0.1035.

Figure 5 Two Predictors Figure 6 Two Predictors with Response Values Identified

Search Method 1: Using Predicted Probabilities from the Model

Figure 6 displays the true dead zone that is designed into the data, but how do you identify the dead zone if you did not
simulate the data yourself? One method begins as in the last section, by computing the maximum predicted probability
of the nonevents, O�n, and the minimum predicted probability of the events, O�e . Then you generate and score a grid
of values across the space that is defined by the ranges of the predictors. The resulting predicted probabilities are
compared to the O�n and O�e values, using equation (1) to determine whether the observation lies inside the dead zone.
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When you have two main-effect predictors like this, you can find the dead-zone boundaries by solving the boundary
equations for x2 and computing x2 for a range of given x1 values. The USEPRED macro (available online) implements
this approach.

The results for this data set are shown in Figure 7, which displays the data (events are red, nonevents are blue), two
gray diagonal lines that mark the designed dead zone, a shaded gray region that the USEPRED macro has identified
as the dead zone, and two green diagonal lines that show the boundary of the dead zone found by the USEPRED

macro. The plot shows that this method is very effective in identifying the true dead zone. Of course, this result is too
good to always be true.

This method of measuring the dead zone works not only with logistic regression but also with other approaches to
making binary predictions. For example, consider support vector machines, for which the hypersurfaces that border
the dead zone are the supporting hyperplanes, the observations on these boundaries are the support vectors, and
the distance between these boundaries is the margin; this margin is maximized, and a hyperplane between the two
supporting hyperplanes is the optimal solution (Hamel 2009). In Figure 2, Age D 50 corresponds to the decision
surface, Age 2 f40; 60g corresponds to the boundaries, and the margin is 60 � 40 D 20. SVM can handle nonlinear
margins by using kernel estimators. The SVMACHINE procedure in SAS® Viya® implements the SVM algorithm
and generates SAS code that you can use to score new observations, possibly with the SAS® Enterprise Miner™

procedure SVMSCORE. In SAS Enterprise Miner, PROC HPSVM and PROC SVMSCORE enable you to fit and score
SVMs.

The same method that produces the plot in Figure 7 is used in PROC HPSVM to produce the plot in Figure 8, which
shows that these procedures can find a region very similar to that found by logistic regression. For the examples in
this paper, PROC HPSVM perfectly predicts the two sets just as PROC LOGISTIC does, and it also gives you the
means to make predictions inside the dead zone.

Figure 7 Using Predicted Event Probabilities Figure 8 PROC HPSVM Results

Search Method 2: A Random Walk through the (Expanded) Dead Zone

The dead zone for the preceding data set is designed to be a slice through the data. The USEPRED macro finds a
separating surface that best divides the events from the nonevents, given the data and the model, and the boundaries
of the dead zone are parallel to this surface. Consider a dead zone like the one shown in Figure 9, which separates
events from nonevents by a large X-shaped region. The USEPRED macro finds a slice through the zone, which is
identified by the parallel green lines in the plot. The discussion in this section explores finding a more complex,
expanded dead zone.

Borrowing ideas from Markov chain Monte Carlo methods and from random walks, start at the first identified separation
equation from a logistic regression, and then repeat the following steps many times:
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1. To each parameter estimate, add a value drawn from a Uniform(–0.5,0.5) distribution.
2. If this new surface does not completely separate the responses, then return to step 1. Otherwise, accept the

new parameter estimates and continue to step 3.
3. Add the new dead zone to the expanded dead zone, replace the old parameter estimates with the new estimates,

and return to step 1.

Because the reflective boundaries keep the iterations inside the expanded dead zone, this method can in principle
scan over all possible models, given a sufficient number of iterations.

The WALK macro (available online) implements this method, and the WALKPLOT macro displays the plot in Figure 9.
The expanded dead zone that is found by these macros, using 2,000 steps, is displayed as a shaded gray region. Also
shown in this plot are the data (events are red, nonevents are blue), two gray polygonal lines that mark the designed
dead zone, and two green diagonal lines that show the boundary of the dead zone identified by the USEPRED macro.
The plot shows that this method does an exceptional job of identifying the expanded dead zone in very few steps.
The MEASURE macro estimates the results for the zone that is bounded by the green lines; it reports that the sample
proportion is 0.1524 and the margin proportion is 0.1543.

Figure 9 Random Walk with Boundaries

You can determine whether a new observation lies inside the expanded dead zone by rounding the new observation’s
covariates to the nearest value of the grid that the WALKPLOT macro uses to shade the dead zone, and seeing whether
that grid value is identified as being in the dead zone. However, this approach does not generalize well to multiple
predictors, because it quickly becomes time-consuming to process a large multidimensional grid. Instead, the WALK

macro also stores all the coefficients for all the boundaries that successfully separate the events from the nonevents
along with their corresponding logit. O�n/ and logit. O�e/. Given a new observation, score the observation to obtain
O�.x/, and if logit. O�n/ � O�.x/ � logit. O�e/ for any of these boundaries, then flag that observation as being inside the
expanded dead zone. The WALKDEADZONE macro (available online) implements this method. The following program
produces the table in Figure 10 to verify that the origin lies inside the expanded dead zone but the observation for
which x1 D 1 and x2 D 0 does not:

data tmp; x1=0; x2=0; output; x1=1; x2=0; output; run;
%walkDeadZone(scoredata=tmp)
proc print data=tmp; run;

Figure 10 Origin Is in the Dead Zone

Obs x1 x2 deadzone

1 0 0 1

2 1 0 0

The WALK and WALKDEADZONE macros are more time-consuming to run than the simpler USEPRED macro. The
USEPRED macro might suffice for most purposes and is used in the remainder of this paper.
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Three Dimensions

The two preceding search methods generalize easily to higher dimensions. This section presents two examples of
data in three dimensions.

The first example has two predictors, x1 and x2, and including their interaction term x1*x2 as the third predictor
embeds a two-dimensional saddle surface in the resulting three-dimensional space, where the interaction is the third
dimension. Figure 11 shows the data on this surface projected onto the X1–X2 plane, and the USEPRED macro
finds the dead zone, which is the shaded gray region. Although this is actually a two-dimensional problem, a logistic
regression can find the dead zone only when looking at it in three dimensions; a main-effects model does not detect
separation because the dead zone in Figure 11 is obviously not a linear subspace of the X1–X2 plane. If you compute
the separation measures in three-dimensional space, then the sample proportion will be (nearly) 0, because you
are trying to sample an embedded two-dimensional surface within a three-dimensional volume. If you compute
the measures on the projection instead, then the margin is obviously not constant and the margin proportion is not
well defined. In this example, the sample proportion in the X1–X2 plane is 0.0365, and the margin proportion in
three-dimensional space is 0.012.

The second example has three main effects, x1, x2, and x3. The events and nonevents are sampled from non-
intersecting normal ellipsoids in three-dimensional space. A main-effects logistic regression model determines this to
be a completely separable data set. Figure 12 presents a two-dimensional view of this space rotated around the X2
axis so that you can look along the edge of the dead zone. The MEASURE macro computes both measures in three
dimensions; the sample proportion is 0.0151, and the margin proportion is 0.0136.

Figure 11 Interaction Projected onto the X1–X2 Plane Figure 12 Ellipsoids Rotated and Projected

SEARCHING FOR THE CONVEX HULLS

The methods in the preceding sections enable you to search for the dead zone between the events and the nonevents,
but they do not address scoring data that lie beyond the data cloud. Using the range of the observed data to limit
which observations you score is always a smart policy, especially for complex heuristic models. If you want to limit
your scoring even further, you can try to estimate the event and nonevent data clouds and avoid scoring outside the
clouds. In two dimensions, this is simply finding the convex hull of these two sets. In SAS, it is convenient to use the
CVEXHULL statement in SAS/IML® software to compute two-dimensional convex hulls.

The CVEXHULL macro (available online) computes the convex hull of the events and nonevents in the data set in
Figure 6 and displays the results in Figure 13, along with the bounds of the dead zone that was designed into this
example.

Restricting predictions only to the convex hulls of the events and nonevents is rather draconian, especially for points
that lie far outside the dead zone. Computing convex hulls also becomes much harder as you add more predictors
and observations. If you are interested in pursuing this approach in higher dimensions, then the work of Chazelle
(1993) might be a good place to start.
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Figure 13 Convex Hulls of the Events and Nonevents

The next section proposes two other methods to cluster the observations as events and nonevents and to fit new
observations into these clusters. One drawback to using standard clustering methods is that they do not take into
account the known response values, so they can easily misclassify your observed data. PROC MBC, the new
model-based clustering procedure in SAS® Visual Statistics on SAS Viya, clusters the data and also models the white
noise, but it still does not necessarily classify the observed data perfectly. Unlike clustering procedures, discriminant
methods take known response levels into account, and PROC DISCRIM is the procedure that is designed for this.
The following sections use PROC DISCRIM to estimate the hulls and the dead zone of the data shown in Figure 6.

The DISCRIM Procedure

Because there are predictors that separate the data, and because the data all have response values, an approach to
identifying the dead zone might work like this:

1. Find the centroid of the events, and determine the weighted distance of the event observation that is farthest
from the event centroid.

2. Find the centroid of the nonevents, and determine the weighted distance of the nonevent observation that is
farthest from the nonevent centroid.

3. Given a new observation, compute its weighted distance from both centroids.
4. If the distance of the new point from each centroid is greater than the two maximum distances, then the point is

definitely beyond the two hulls of the data and could possibly be in the dead zone.

You can compute multivariate distances in a variety of ways. One way is to use the Mahalanobis distance, which
considers the size and shape of the data. This is the method that PROC DISCRIM uses by default. The DISCRIM

macro (available online) implements this method by using PROC DISCRIM.

To create the plot in Figure 14, PROC DISCRIM uses the minimum event posterior probability and minimum nonevent
posterior probability to classify the plane; the portion of the plane that is not assigned to either data cloud is unshaded.
This is a rather poor estimate of the dead zone.

To create the plot in Figure 15, PROC DISCRIM uses the minimum density value for the events and the minimum
density value for the nonevents to determine the classification, and it shades the two data clouds. The normality
assumption gives you the expected elliptically shaped clouds. This method completely fails to find the dead zone, but
it provides a reasonable estimate of the hull.
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Figure 14 Normal Assumption Posteriors Figure 15 Normal Assumption Densities

You can implement the preceding approach by using the normal kernel density estimate (KDE) method instead of
Mahalanobis distances; this method is also available in PROC DISCRIM and in the DISCRIM macro. The posterior
probabilities that are greater than the observed minimum in each of the two data clouds are shaded in Figure 16. The
unshaded region is a reasonable estimate of the dead zone. Finally, the densities from the nonparametric kernel
density method are displayed in Figure 17. Using the minimum densities of the observed events and nonevents as the
cutoffs for inclusion in the two clouds leaves you with disconnected sets as estimates of the hulls; using smaller cutoff
values can enlarge and connect the clouds. Combining both of these results to estimate the hull and the dead zone
also seems to be a reasonable approach.

Figure 16 KDE Posteriors Figure 17 KDE Densities

SAMPLING FROM THE DEAD ZONE

In large-scale machine learning applications, logistic regression is often merely one component of a larger process. If
you want to study the effect that data in the dead zone have on your entire process, or if you want to improve future
data collection, you can run the process on a random sample of data points from the dead zone. Note that if you have
the variables x1 and x2 and their interaction x1*x2 in your model, then your sample space is actually a surface in a
higher-dimensional space, and the probability of selecting a value on that surface is 0. One way to handle this is to
sample only the main effects.

An approach to drawing a random sample of points in the dead zone is to sample from the full range of the main
effects and reject the draw if it is not in the dead zone. You can use the MEASURE macro to run this sample by
subsequently extracting the observations for which SP D 1 from the TMP data set produced by that macro. However,
this can be an inefficient way to sample, because it often results in a large number of rejections. For the data shown in
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Figure 6, where the MEASURE macro reports that the “Sample Proportion” statistic is 0.1228, you will need about
1,000=0.1228D8,143 draws to obtain a sample of 1,000 observations from the dead zone.

To reduce the number of rejections, first choose a surface inside the dead zone by sampling a number � uniformly
from . O�n; O�e/, then select a point in the “subspace” and project it onto the hypersurface defined by

fx W logit.�/ D x0 Ǒg

You need to define “subspace” in such a way that no set of points is more likely to be chosen than another, so you
cannot just sample from the range of your data. The SAMPLE macro (available online) assumes a main-effects model
and solves the equation of the preceding hypersurface for the last main effect, samples points from the full range
of the other main effects, then for each point finds the value of the extracted main effect that lies on the selected
hypersurface and rejects that point if this value is outside the data range. Figure 18 displays a sample of 1,000
observations from the data shown in Figure 6, which requires 1,373 draws.

Figure 18 Sample from the Dead Zone

CONCLUSION

When you write a program that performs logistic regression or uses any other statistical modeling method, you should
always programmatically monitor the results of the fit. If separation is detected, you should decide ahead of time how
you will handle future predictions for observations from the dead zone. If you decide that your dead zone cannot
support predictions, then the ideas discussed in this paper can aid you in detecting, measuring, and dealing with such
data.

The paper uses continuous predictors primarily in main-effects models. For classification variables, separation is
detected if the cell of a cross-classification has no data or if a cell contains only events or only nonevents. In these
cases, simply dropping all observations in that cell (and noting that the cell is perfect) enables you to proceed. If you
also have continuous predictors such that high values of a continuous predictor are events in one cell and nonevents in
another cell, then separation is not detected. One computationally expensive approach to discovering more complex
data separation is to fit a model to each cell, and then to handle cells for which separation is detected in a fashion as
discussed in this paper.

The paper also ignores quasi-complete separation. The only difference from complete separation is that in quasi-
complete separation, one or more observations lie on the surface defined by the Ǒ that separates the events from the
nonevents. If you can obtain more data, then it might be possible to create overlap in the data set. Otherwise, if you
identify and remove these observations, then the remaining data set is completely separated and you can proceed
from there.

If you use exact methods or Firth’s penalized likelihood method, then complete separation is almost never detected,
even if the data are truly separated. With these methods, likelihood-based confidence limits and likelihood ratio
tests remain valid; however, neither of these methods completely solves the separation problem. Exact methods are
computationally intensive even for small data sets and condition some of your parameters out of the model. The
Firth algorithm uses a model’s gradient and Hessian during the optimization, so selection methods require you to
completely fit every candidate model, which can be computationally costly.
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This paper investigates a question that deserves much more attention. Many other methods of analyzing binary data
also make predictions in the presence of dead zones, including classification and regression trees, clustering and
discriminant methods, Bayesian modeling, support vector machines, and generalized additive modeling. Because
complex binary modeling is commonly used in modern machine learning applications, the effect of dead zones on
these and other methods should also be explored.

APPENDIX

All data sets, programs, and macros that produce the outputs in this paper are available from the SAS® Global Forum
2019 conference proceedings and online. They assume that you have a response variable named y and a set of
continuous predictors named x1, x2, and so on. The following macros are referenced in this paper:

MEASURE randomly samples from your data window, computes the proportion of observations in the dead zone
along with a standard error, and reports this as the “Sample Proportion.” Also finds the margin of the
dead zone and the maximum possible distance between any two observations, then reports the quotient
as the “Margin Proportion.”

USEPRED fits a model by using PROC LOGISTIC or PROC HPSVM. The predicted event probabilities in your
data window are compared to the O�n and O�e values to determine which points lie inside the dead zone.
Results are stored in the out data set; observations in the dead zone set the indicator sp to 1.

WALK implements the random walk method of finding the expanded dead zone. In particular, an INEST data
set inputs the candidate parameters, and PROC HPLOGISTIC with the MAXITER=0 option uses the
candidate parameters to score the data and evaluate separation. The out data set contains the results.
The bounds data set contains the parameters that define the separating surfaces and �e and �n for
each separating parameter set.

WALKPLOT displays the plot in Figure 9.

WALKDEADZONE determines which observations in an input data set lie in the dead zone that is identified by the
WALK macro. Computing x0ˇ in a SAS DATA step is computationally faster than scoring each model
through PROC LOGISTIC. The indicator variable deadzone, whose value is 1 when an observation lies
in the dead zone, is added to the input data set.

CVEXHULL draws the convex hull shown in Figure 13 by using the CVEXHULL statement in PROC IML.

DISCRIM uses PROC DISCRIM to estimate the dead zone and the convex hull discussed in the section “The
DISCRIM Procedure.”

SAMPLE generates a random sample of points from the dead zone for a given data set and displays a plot when
you have two effects.
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