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ABSTRACT

Clustering has long been used to learn the structure of data and to classify individuals into distinct groups. For
example, cluster analysis can be used for marketing segmentation that distinguishes potential buyers from nonbuyers.
Classical clustering methods use heuristics or simple Euclidean distance to form clusters, but in some cases, the
clustering solution is more parsimonious and more useful if it is based on the formal likelihood of a model. The model
and its associated likelihood allow the clustering to accommodate more complex covariance structure that is exhibited
in the data. The MBC procedure, available in SAS® Visual Statistics 8.3 in SAS® Viya®, enables you to fit mixtures of
multivariate Gaussian (normal) distributions to your data to learn a cluster structure in an unsupervised manner. In
addition to clustering the observations in a data set, you can use the fitted model to classify new observations. PROC
MBC provides a weight of association for each new observation, enabling you to decide whether a new classification
is a strong match for one cluster or needs closer expert examination to determine its cluster membership.

This paper describes the concepts behind model-based clustering and presents the basic mode of operation of PROC
MBC. Several examples illustrate different use cases, including automated model selection through information criteria,
the modeling of outliers, saving models, and applying saved models to new input data.

INTRODUCTION

Clustering is the general term for machine learning techniques that group items according to a measure of likeness.
In this usage, “learning” means developing a model for the data, often with the goal of making predictions about new
data that are assumed to come from the same population that generated the data used for the model.

Clustering methods appeal to the idea that clustering is grouping like items with like items. These techniques measure
this likeness by using a distance between the objects to be clustered. In many of these methods, such as k-means
(MacQueen 1967), objects that are near to each other in Euclidean distance are clustered together.

However, there are cases in which the clusters can be represented more parsimoniously if the clusters are not based
solely on Euclidean distance. In addition, some scenarios include observations that do not fit well with any cluster and
can be modeled better as noise. Also, the lack of a formal statistical model in some of these distance-based clustering
methods means that assessment or selection of clustering solutions lacks principled statistical guidance.

Model-based clustering addresses many of these concerns by considering the clusters to be components in a finite
mixture model. This allows the use of clusters that have various shapes as well as clusters whose role is to account for
noise. Because the clustering is based on a statistical model, you can apply well-established statistical principles of
model selection to decide how many clusters could sufficiently represent the data. For a comprehensive introduction
to model-based clustering and finite mixture models, see McNicholas (2017) and McLachlan and Peel (2000).

CLUSTERING AND MODEL-BASED CLUSTERING

Figure 1 and Figure 2 show a simple two-dimensional data set that illustrates the basic problem in clustering. Figure 1
plots the data set but does not include the cluster labels. Simply put, the clustering problem is to recover the
hidden cluster labels for the observations. Although Figure 1 shows clearly that there are two clusters, you need a
general clustering method for routine applications to data sets. The k-means method is one such clustering method.
Figure 2 shows the clustering that results when the k-means method is used to find two clusters. In this case, the
distance-based clustering that k-means uses works well and identifies the same clusters that a visual inspection does.



Figure 1 Unlabeled Data Figure 2 K-Means Clustering Results

However, the k-means method and other clustering methods that are based on Euclidean distance disregard any
correlation between the different features in the data set. Figure 3 shows another data set that has two underlying
groups. In this case, the two variables that make up the observations are correlated within each cluster. The groups
are labeled with distinct symbols and colors.

Figure 3 Two Clusters with High Intracluster Correlation

A traditional distance-based clustering method like k-means will fail to model this type of cluster. If you apply the
k-means method to these data, the total number of clusters might be larger because a larger number of circular,
Euclidean distance—based clusters are needed to cover the data.

Figure 4 shows the clustering results that the k-means method produces for these data. The final cluster assignments
are indicated by different plot symbols and colors. In addition, the center of each cluster is indicated with a black dot.
In this case, the k-means method finds four clusters, but the shape that is defined by the clustering assignments
cannot accommodate the structure indicated by a visual inspection.



Figure 4 K-Means Clustering Results

In contrast, model-based clustering incorporates correlations among the variables into its distance metric. As a result,
it allows more flexible shapes for the clusters and can produce a more parsimonious clustering. Figure 5 shows the
clustering results from the model-based clustering approach, which selects a model that has two clusters.

Figure 5 Model-Based Clustering Results

In addition to failing to consider the covariance structure of clusters, methods like k-means require each observation
to be identified with exactly one cluster. But in practice, not all observations have clear cluster memberships. Methods
like k-means do not account for the idea that observations might have non-negligible associations with more than one
cluster. In contrast, model-based clustering can produce a weight of association—also called the posterior probability
of each observation belonging to each cluster—that is based on a formal likelihood.

Figure 6 plots the same result as in Figure 5, but the color of the plot point indicates the strength of association with
the two clusters. Points in the area of overlap between the two clusters show a strength of association that is between
the two extremes. Figure 7 expands the area outlined in Figure 6, showing how the strength of the association, which
is indicated by the darkness of the plot point, is lower in the area of overlap.



Figure 6 Model-Based Clustering Weights Figure 7 Detail of Clustering Weights

In summary, model-based clustering offers several advantages over traditional clustering methods:

o |t allows nonspherical cluster shapes through the modeling of flexible covariance structures.
e |t permits the use of well-established statistical principles for model selection.
e |t permits the use of a noise component to model noise data that are not of primary interest.

e |t provides cluster membership weights instead of hard classification.
The following discussion and examples illustrate these ideas and apply them to several different situations.

The Model

The “model” in model-based clustering is a finite mixture model that has the density function
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where 7 are mixture weights, f; indicates the density function for the kth component, and 6; are parameters that
characterize the density function for the kth component. In PROC MBC, each f; is either a multivariate normal
distribution, where 6, = (ur, X 1), or a uniform distribution, where 6y, is a single parameter v. The uniform distribution
is for modeling a noise component. There is at most one such noise component in the mixture model.

For components that have a multivariate Gaussian distribution, £; can be any nonsingular covariance matrix.
PROC MBC characterizes the set of X according to their similarities when the X are expressed in an eigenvalue
decomposition,

Y= XkaAkD;c

where Ay is the volume parameter, Dy, is the orientation matrix, and Ay, is the shape matrix. The D, matrices and the
Aj; matrices are defined to have determinants equal to 1.

The mixture is characterized by the constraints that are placed on the separate X ;. These constraints are summarized
in a three-letter code, in which the first letter indicates constraints on the volume parameter, Ay ; the second letter
indicates constraints on the shape matrix, Ax; and the third letter indicates constraints on the orientation matrix, Dy.
The letter “V” means that the corresponding parameter varies across the components, and the letter “E” means that
the parameter is equal across the components. The letter “I” is used only for constraints on the orientation matrices or
the shape matrices. When “I” is used for the orientation matrices, it indicates that the X are not rotated relative to the
coordinate axes and that each Dy is equal to the identity matrix. When “I” is used for the shape matrices, it indicates
that each X is isotropic, and so each Ay is equal to the identity matrix. In this case, the form of the D; does not



matter, and the letter “I” is always used for the orientation matrices. For example, a “VII” mixture is one in which the
covariance matrices X have variable volume (1) parameters but are constrained to have isotropic (equal variance
for each element and no correlation between pairs) covariance matrices. In contrast, an “EVI” mixture constrains the
Ak to all be equal to each other, but it permits the covariance matrices to have different shapes (Ax) and constrains
the individual covariance matrices to have no rotation relative to the coordinate axes. In a “VVV” mixture, the separate
Y are not constrained in terms of volume, shape, or orientation. For a further discussion of the different constraints
and this naming convention, see Fraley and Raftery (1998, 2007).

Table 1 displays the features of each covariance structure and includes graphical representations of each structure.

Table 1 Covariance Structures

Name Structure Volume Shape Orientation Profile
&
EEE ADAD’ Equal Equal Equal
@
O
EEI AA Equal Equal Coordinate axes
-
EEV AD;AD) Equal Equal Variable OO
Ell A Equal Spherical Coordinate axes OO
EVI AAg Equal Variable Coordinate axes OO
EVV ADgAD) Equal Variable Variable QO
VIl Akl Variable Spherical Coordinate axes OO
VVI A Ax Variable Variable Coordinate axes OO
VVV Ak DkAkD;C Variable Variable Variable %O




Estimation

The MBC procedure uses the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) to obtain
parameter estimates for the mixture models. PROC MBC treats the unknown individual component memberships as
missing data. In the E-step, the procedure computes expected values for each observation’s probability of assignment
to each cluster, given the current values of the i, ux, and X parameters. These probabilities are the observation’s
partial memberships in each cluster. The procedure then uses these observation-specific probabilities to accumulate
weighted sums of probabilities, observation vectors, and observation vector crossproducts for each cluster. In the
M-step, these weighted sums provide the sufficient statistics that are needed for maximum likelihood estimates of the
g, Lk, and X parameters. The procedure repeats the E-step and the M-step, and it terminates when the ratio of the
change in log likelihood between successive iterations to the current log likelihood is smaller than a configurable value.

When the mixture model includes a noise component, PROC MBC determines the parameter v from the volume that
is occupied by the data and does not update this parameter during the EM iterations.

To implement the EM algorithm, you need some starting points for either the per-observation clustering weights or the
parameter estimates. The MBC procedure has three methods for determining the starting point. The default method
randomly assigns observations to the separate components and then uses these assignments to drive the first M-step;
you can use the SEED= option to generate different sets of random assignments. You can also control the first M-step
by using the INIT statement to specify variables that contain the initial weights for each observation. In this case,
these initial weights are not randomly set by the procedure. Finally, you can use the INIT=KMEANS option. With this
option, PROC MBC uses the k-means method to determine initial cluster centers, variances, and weights; these initial
values drive the first E-step.

Clustering Weights

Parameter estimation that uses the EM algorithm computes estimated weights for each observation, given the values
of the mixture component parameters and the overall mixing weights. If you know the parameter values (mg, 6% ) and
the observation vector (y;1, ..., yid), you can compute the observation-specific weights as follows:
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The weights sum to 1 for each observation y;.

k=1,....K

You can also use these weights as measures of the strength of association between each observation and the clusters
in the model. In this setting, the weights are also referred to as “posterior weights.” The term “posterior” is used
because the “prior” weights, which are represented by the my, are updated by the likelihood, which is represented by
the f.

During the E-step, these weights are used as the cluster membership for each observation.

Model Selection

One advantage of using a formal statistical model to define the clustering is that you can compare the fit of clustering
models by using metrics that are based on well-established statistical principles. For example, you can use the log
likelihood or information criteria like the Bayesian information criterion (BIC). Whereas the log likelihood provides
a measure of absolute fit of the models, the information criteria balance the absolute fit and the complexity of the
models by introducing a penalty for model complexity.

SUMMARY OF PROC MBC FEATURES

PROC MBC fits mixtures of multivariate normal and uniform distributions to continuous data. The data must be in a
SAS® Cloud Analytic Services (CAS) table. The procedure uses the expectation-maximization algorithm (Dempster,
Laird, and Rubin 1977) to estimate the model parameters and address the unknown cluster membership.

In addition, PROC MBC provides the following features:

e nine different covariance structures for multivariate normal components

e a noise component for data outside multivariate normal clusters



automated model selection that uses different measures of fit

three methods of generating starting values

use of distributed computing resources and multithreading for computation

e scoring of input data by using posterior mixture weights

creation of binary model stores for scoring additional data sets

EXAMPLE 1: DIAGNOSIS WITHOUT DIAGNOSIS

In this example, you see how a clustering procedure can discover much of the same structure as a traditional logistic
regression, even without knowledge of the disease status of the observations in the training sample.

In traditional exploration of disease risk factors, you might use logistic regression to model the probability of developing
a disease as a function of different predictors. In this setting, you know the disease outcome. But if your knowledge is
limited to relevant risk factors and demographic information, you can still discover structure in the data that is indicative
of the disease status.

The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) has studied diabetes in the Akimel
O’otham people in Arizona for over 30 years. Smith et al. (1988) donated data derived from these studies for use by
the scientific community. These data are for female patients who are at least 21 years of age.

The following SAS statements create the data table mycas.Diabetes:
data mycas.Diabetes;
input NPreg Glucose Pressure Triceps BMI Pedigree Age Diabetes Test(@@;
datalines;

6 148 72 35 33.6 0.627 50 1 1 1 85 66 29 26.6 0.351 31 0 1
1 89 66 23 28.1 0.167 21 0 O 3 78 50 32 31 0.248 26 1 O

. more lines ...

1 118 58 36 33.3 0.261 23 0 1 8 155 62 26 34 0.543 46 1 O

Table 2 describes the nine variables in the data table.

Table 2 Variables in the mycas.Diabetes Data Table

Variable Description

NPreg Number of pregnancies

Glucose Two-hour plasma glucose concentration in an oral glucose tolerance test
Pressure Diastolic blood pressure (mmHg)

Triceps Triceps skin fold thickness (mm)

BMI Body mass index (weight in kg/(height in m)?)

Pedigree Diabetes pedigree function

Age Age (years)

Diabetes 0 if test negative for diabetes, 1 if test positive

Test 0 for training role, 1 for test

The variable Test identifies observations to be used in testing the fit. Observations whose Test value is equal to 0 are
used in training or estimating the model. There are 330 observations in the training set and 202 observations in the
test set. This example demonstrates how you can discover groups by clustering without using the disease status
variable Diabetes. The disease status variable is used only in the assessment of the model fit and in comparison with
other methods.

It is natural to restrict the analysis to mixtures that have two components, because the fundamental question concerns
the presence or absence of disease in the study population. The following statements enable you to fit two-cluster
models that use each of the covariance structures that are provided by the procedure. The NCLUSTERS=2 option
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restricts the procedure to models that contain two Gaussian clusters. The COVSTRUCT option specifies a list of
all nine supported covariance structures. The procedure uses the BIC to select the model that has the best fit. In
this invocation of PROC MBC, the initial cluster memberships are determined by a random draw. The SEED option
specifies the random seed that controls the initial assignment of observations to clusters, and it permits reproducible
results under appropriate conditions.

proc mbc data=mycas.Diabetes (where=(test=0))

nclusters=2

covstruct=(EEE EEI EEV EII EVI EVV VII VVI VVV)

seed=1945684043;

vars NPreg Glucose Pressure Triceps BMI Pedigree Age;

run;

Figure 8 shows information about the selected model.

Figure 9 shows the estimated parameters for the two 7-dimensional multivariate Gaussian components. The mean
values of each variable in the clusters might offer suggestions for how to interpret the meaning of the clusters. Cluster 1
appears to represent a group of women who are generally older and who have larger diabetic pedigree values than
the women represented by cluster 2. In addition, the women represented by cluster 1 have had more pregnancies

Figure 8 Selected Model Summary
The MBC Procedure

Model Information

Number of Gaussian Clusters 2
Covariance Structure \AAY
Noise Cluster Present No
Expectation Technique EM
Model Selection Criterion BIC
Initialization Method Random
EM Convergence Criterion 1e-05
Singularity Criterion 1e-08
Parameter Criterion 1e-08
Random Seed 1945684043

higher glucose levels measured by the glucose tolerance test, higher BMI, higher triceps skinfold measurements, and
higher blood pressure measurements. The combination of these observations with general knowledge about risk

factors for diabetes suggests that cluster 1 represents the diabetic group within the training sample.



Figure 9 Parameter Estimates for Selected Model

Cluster Parameter Estimates

Covariance

Cluster Variable Mean NPreg Glucose Pressure Triceps BMI Pedigree Age
1 NPreg 570111 1339700 -13.83197 537013  2.14457 -0.26701 -0.26385 14.02005
Glucose 134.71979 1088.68990 55.89173 62.20148 33.52675 0.97743 22.93639
Pressure  75.86760 130.03754  3.53867 12.22752 -0.38275 27.04862
Triceps  30.28484 116.35051 32.41058 0.11051  9.57830
BMI 33.13800 37.12695 0.23204 -4.23822
Pedigree  0.62760 0.17095 -0.82164
Age 40.60977 100.99226

2 NPreg 1.67273 2.31808 1.21264 -1.78359 -1.18070 -1.98990 -0.03669  1.79805
Glucose 112.91966 625.89150 68.14198 68.44316 58.17061 -0.13730 11.42867
Pressure 67.71455 147.89311 33.10401 29.38051 -0.07595  5.76021
Triceps  27.75946 120.67263 64.15389 0.48608 10.68884
BMI 32.26677 61.58041 0.35424  5.70984
Pedigree  0.39763 0.03981  0.01193
Age 24.67285 8.35643

Figure 10 shows the estimates of the mixing weights for the two components.

Figure 10 Mixing Estimates for Selected Model

Cluster Mixing
Probability Estimates

Mixing Mixing
Component Probability
1 0.44683

2 0.55317

You can use the following statements to compare the estimate of the mixing weights with the proportion of observations
that correspond to each value of the Diabetes variable in the training set:

proc freq data=mycas.Diabetes (where=(test=0));
tables diabetes;
run;

Figure 11 shows the proportions of diabetes that are known to exist in the training set. These values are not
dramatically different from the mixing weights that PROC MBC estimates. This does not necessarily mean that the
clusters identify disease status, but when this information is coupled with the observations about the comparison
between the cluster mean values, it does indicate that the model has identified a cluster structure within the data that
is related to disease status.

Figure 11 Frequency of Diabetes in Training Set
The FREQ Procedure

Cumulative Cumulative
Diabetes Frequency Percent Frequency Percent

0 208 63.03 208 63.03
1 122 36.97 330 100.00

You can evaluate the performance of the clustering model by scoring the test observations that were held out of the
analysis. In model-based clustering, “scoring” means using the fitted model to compute weights of association for
each observation with each cluster, as described in the section “Clustering Weights” on page 6. You must store the
fitted model so that it can be applied to the test observations in the original data set.



The following statements include the STORE statement, which saves the selected model in the mycas.mbcStore
binary store:

proc mbc data=mycas.Diabetes (where=(test=0))
nclusters=2 covstruct=(EEE EEI EEV EII EVI EVV VII VVI VVV)
seed=1945684043;
vars NPreg Glucose Pressure Triceps BMI Pedigree Age;
store mycas.mbcStore;
run;

You can then score the test observations by using PROC CAS to invoke the mbeScore action directly. The following
statements invoke the mbeScore action in the mbe action set and specify that it score only the test observations.
The posterior weights are stored in the WT1 and WT2 variables, and the number of the cluster that has the highest
posterior weight for each observation is stored in the CLUSTER variable. The COPYVARS statement copies all the
other variables to the mycas.mbcScore data set.

proc cas;
mbc .mbcScore /
table={name='diabetes' where=' (test=1) '}
casOut={name='mbcscore'}
restore={name='mbcstore'}
copyVars='ALL'
maxPost='CLUSTER'
nextClus='WT';
run;
quit;
You can do a crosstabulation of the known diagnosis for each observation in the test set with the predicted cluster
membership that is based on the clustering model. This provides an assessment of the clustering as a way to
distinguish the two groups of patients. The following statements use the FREQ procedure to do this:

proc freq data=mycas.mbcScore;
tables diabetesxcluster / nopct nocol;
run;

Figure 12 shows the summary table. There is a noticeable difference in the clustering for the different diagnoses.

Figure 12 Crosstabulation of Disease Status with Predicted Cluster Membership
The FREQ Procedure

Frequency Table of Diabetes by CLUSTER

Row Pct CLUSTER(Cluster with
largest weight using final
parameters)

Diabetes 1 2 Total
0 54 93 147

36.73 63.27
1 44 11 55

80.00 20.00
Total 98 104 202

As a comparison, you can use the following statements to fit a logistic regression to the training data by using the
LOGSELECT procedure in SAS Viya:

proc logselect data=mycas.Diabetes (where=(test=0));
model diabetes(event='1l') = NPreg Glucose Pressure Triceps BMI Pedigree Age;
store mycas.LogisticStore;

run;

Then, you can score the test data by using the logisticScore action in the regression action set. The following
statements store the predicted value for each observation in the variable Predict:
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proc cas;
regression.logisticScore /
table={name='diabetes' where=' (test=1l)'}
restore={name="'logisticstore'}
casOut={name="'logisticscore'}
copyVars='ALL'
pred='predict';
run;
quit;
You can compare the clusterings by using the receiver operating characteristic (ROC) curves for each model. This
requires a predicted weight for the outcome of interest. The mean values for the two clusters shown in Figure 9
suggest that cluster 1 is more strongly associated with a diagnosis of diabetes. The crosstabulation in Figure 12 shows
that more subjects with diabetes are associated with cluster 1 than with cluster 2, and it confirms the impression that
cluster 1 is more strongly associated with a diabetes diagnosis. On the basis of these observations, you use the WT1
variable in the CAS output table mycas.mbcScore as the predicted value for the ROC curve. In the output data set
mycas.LogisticScore that PROC LOGSELECT produces, the PREDICT variable contains the predicted value that
you use for the ROC curve. The following DATA step combines the predictions from each model with the observed
diagnosis in the test set:

data rocdata;
merge mycas.LogisticScore
mycas .mbcScore;

The following statements use PROC LOGISTIC to produce the ROC curves for the model-based clustering model and
the logistic model:

proc logistic data=rocdata;
model diabetes(event='1l') = predict wtl / nofit;
roc 'Model-Based Clustering' pred=wtl;
roc 'Logistic Regression' pred=predict;

run;

Figure 13 shows the ROC curves.

Figure 13 ROC Curves for Logistic Regression and Model-Based Clustering

ROC Curves for Comparisons
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— — — - Logistic Regression (0.8547)

An ROC curve that is closer to the upper left corner indicates a model that has higher predictive ability. It is not
surprising that the logistic regression performs better than the model-based clustering, because the logistic regression
has more information in the form of the known diagnosis. However, the model-based clustering is able to find structure

11



in the data without using this additional information. Because the explanatory variables in the data set are indeed
risk factors for diabetes, perhaps it is not too surprising that you can discover structure even without the diagnosis
information. Nonetheless, it is encouraging that the model-based clustering technique can at least find meaningful
and interpretable clusters for observations. In this case, you can interpret the clusters as diabetic and nondiabetic
groups. In a more general setting, model-based clustering might still enable you to develop a good model to classify
observations into different groups, but your interpretation of the clusters would depend on additional knowledge and
insight.

If you assign meaning to the clusters on the basis of your interpretation of the clustering variables and their relationship
to an outcome of interest, such as disease status, the posterior weights can provide a sense of where further
investigation might be warranted. In this example, if an individual does not have a convincingly high posterior weight
for either the “disease” cluster or the “no disease” cluster, you might follow a different course of treatment than if the
individual had a strong affinity for one of the clusters. That is, you might be more inclined to direct an intervention that
regards an individual who has a borderline posterior weight as a potential diabetic, because the consequences of
treating the person as a nondiabetic could be more serious.

EXAMPLE 2: QUIETING THE NOISE

The examples in the introduction demonstrate how the shapes of the individual multivariate normal components allow
the mixture to flexibly accommodate many clustering scenarios. However, if some of the observations do not conform
to the assumption that the components are multivariate normal, your model might not fit well. Figure 14 shows a
hypothetical data set that reveals the locations of mass concentrations over a specific level at the same depth under a
plot of land. In this example, your goal is to identify regions that have a cohesive structure, indicating promising areas
for further exploration.

Figure 14 Locations of Mass Concentrations

0D, o (@ [ o ?@,@ 0@q @ [

@0 f@%oé’%ﬁ’gg %ﬁc?i“ég XS ©2 e ‘5,%3 g (s
éb o) %P 5 o )

[s.0]

®0® %Sjoqucw 98
5T, o TR 9000 BEF%0 e & B M fug

Y G0 B0 TOE, @ Po €° o0
o b kT AL A

4

Q

Morthing

Easting

The following statements fit separate models that have one to ten multivariate normal components and each of the
nine covariance structures. PROC MBC chooses the model that has the best (smallest) BIC value. You specify the
INIT=KMEANS option to use the k-means method to determine initial cluster centers for each model. The OUTPUT
statement saves the cluster weights and assignments in the CAS table mycas.GoldScore, and it adds the analysis
variables Easting and Northing to the output CAS table. You use the MAXPOST option in the OUTPUT statement to
include the number of the component for which each observation has the highest posterior probability.

proc mbc data=mycas.GoldMine
init=kmeans
seed=72145225
covstruct=(EEE EEI EEV EII EVI EVV VII VVI VVV)
nclusters=(1 to 10);
var easting northing;
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output out=mycas.GoldScore copyvars=(easting northing) maxpost;

run;

Figure 15 shows the trend in BIC with an increasing number of Gaussian clusters, which are grouped by covariance
structure. In this case, adding more components under each covariance structure usually improves the fit as measured

by the BIC.
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Figure 15 BIC and Number of Gaussian Clusters
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Figure 16 shows the 10 models that have the best (smallest) BIC values, in ascending order of BIC values. The model
with 10 Gaussian clusters that uses the VVI covariance structure has the best BIC value, so it is chosen as the best
clustering model in this analysis.

Figure 16 Top 10 Models

The MBC Procedure

Model Selection Summary

Covariance Number of Noise Number of

Structure Clusters Component Parameters -2 LogL AIC AICC BIC
wViI 10 N 49 19591 19689 19691 19968
wVi 9 N 44 19666 19754 19756 20005
A 10 N 59 19564 19682 19686 20019
wViI 8 N 39 19726 19804 19805 20026
\"AAY 8 N 47 19695 19789 19791 20056
EVI 9 N 36 19786 19858 19859 20063
EEV 6 N 25 19872 19922 19922 20064
A% 9 N 53 19656 19762 19765 20064
wViI 7 N 34 19813 19881 19882 20075
EVI 8 N 32 19829 19893 19894 20076

The mixing estimates, shown in Figure 17, indicate one cluster (cluster 7) that has a larger weight and nine other
clusters that have smaller weights.
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Figure 17 Mixing Estimates for Selected Model

Cluster Mixing
Probability Estimates

Mixing Mixing
Component Probability
1 0.06816

0.07744
0.09614
0.12766
0.15339
0.03176
0.32809
0.04289
0.02929
0.04518
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The following statements plot the clustering by using different plot symbols and colors to indicate the different clusters:

proc sgplot data=mycas.GoldScore;
scatter x=easting y=northing / group=maxpost;
xaxis label='Easting'; yaxis label='Northing';
run;
quit;
Figure 18 shows that the cluster assignments in the MAXPOST output variable do not identify any useful structure.
There are regions of higher density that are split across clusters, and many of the points seem like background noise.

Figure 18 Cluster Assignments
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PROC MBC can accommodate this scenario by adding a uniform noise component. You can use the NOISE=Y
option in the PROC MBC statement to include a noise component in each model that the procedure fits. In this
case, you want to fit each model with and without a noise component, and the NOISE=(Y N) option does this. The
NEXTCLUS=WT option in the OUTPUT statement records the clustering weights in variables labeled WTk, where
k indicates the cluster. These clustering weights are produced using the final parameter estimates, so they are the
“next” clustering. You can also use the CURRCLUS= option to include the clustering weights that produce the final
parameter estimates. The following statements fit models that have one to ten Gaussian components and the noise
component:
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proc mbc data=mycas.GoldMine
init=kmeans
seed=72145225
nclusters=(1 to 10)
covstruct=(EEE EEI EEV EII EVI EVV VII VVI VVV)
noise=(y n);
vars easting northing;
output out=mycas.GoldNoise copyvars=(easting northing) maxpost nextclus=wt;
run;

Figure 19 summarizes the top 10 models for this case. The best fit is a model that has a noise component and two
Gaussian components that use the EEV covariance structure.

Figure 19 Summary of Fit Statistics
The MBC Procedure

Model Selection Summary

Covariance Number of Noise Number of

Structure Clusters Component Parameters -2 LogL AIC AICC BIC
EEV 2 Y 11 19146 19168 19168 19231
EVV 2 Y 12 19146 19170 19170 19238
VvV 2 Y 13 19146 19172 19172 19246
EEV 3 Y 15 19144 19174 19174 19260
EVV 3 Y 17 19139 19173 19173 19269
EEV 4 Y 19 19127 19165 19166 19274
A 3 Y 19 19146 19184 19184 19292
EVV 4 Y 22 19123 19167 19167 19292
EEV 5 Y 23 19134 19180 19181 19311
EVV 1 Y 7 19270 19284 19284 19324

Figure 20 compares models with and without a noise component, which are grouped by covariance structure. Adding
the noise component improves the fit for each covariance structure and each Gaussian cluster count. Figure 21
compares only models that have a noise component. In the models with a noise component where the covariance
structure does not restrict the orientation of the clusters (structures EEV, EVV, and VVV), adding more than two
Gaussian clusters does not improve the fit.

Figure 20 BIC and Number of Gaussian Clusters Figure 21 Models with Noise Component
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Figure 22 shows the “Mixing Estimates” table. By convention, the noise component is indexed as component 0. The
two multivariate Gaussian components have approximately equal weights, and the noise component weight is much
larger than the weight of the normal components.

Figure 22 Mixing Estimates for Selected Model

Cluster Mixing
Probability Estimates
Mixing Mixing
Component Probability

0 0.90797
1 0.04318
2 0.04885

Figure 23 plots each observation with a distinct color and symbol according to the component for which it has the
largest posterior probability; this is stored in the MAXPOST variable in the mycas.GoldNoise output data set. Adding
the noise component allows the denser clusters to emerge. In this example, these denser areas of organization are
the regions of interest.

Figure 23 Cluster Assignments from Model Including Noise Component
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The output data set mycas.GoldNoise also contains the posterior weights for each observation and each component
in the WT0, WT1, and WT2 variables.

In Figure 24, the color of each plot point reflects the value of the WTO variable, which is that observation’s posterior
weight for the noise cluster. By using a color ramp that colors the “noisiest” points—those with the highest value for
WT0—to match the background color, you can see the regions that are assigned to the Gaussian components more
clearly. The black and darker gray areas indicate regions that are not strongly associated with the noise component,
which means that they are more strongly associated with the Gaussian components.
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Figure 24 Clustering Weights Using Color Ramp

EXAMPLE 3: OUTLIERS

In Example 2, you see how a noise component can improve clustering when many observations do not appear to
have a centrally organized structure. The current example shows a complementary situation, where the model uses a
noise component to address a small number of outliers. The noise component can reduce distortion in clusters by
providing a component in the model for observations that do not fit well with the Gaussian clusters in the mixture.

Figure 25 plots a data set that has two apparent clusters and three outlying points that are not clearly associated with
either cluster.

Figure 25 Outlier Scenario
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A first step is to model this scenario by using only Gaussian clusters in PROC MBC, as in the following statements.
The plot suggests that three clusters are plausible, so you can specify NCLUSTERS=3. You can use PROC MBC
to evaluate several different three-cluster models by specifying multiple values for the COVSTRUCT option. The
INIT=KMEANS option specifies that the procedure use the result of the k-means method with three clusters to initialize
each fit. The OUTPUT statement names the mycas.c3out output data set. The MAXPOST option identifies the
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cluster that has the maximum clustering weight, and the COPYVARS=(_ALL_) option copies all the variables from the
input data set to the output data set.

proc mbc data=mycas.sphc
nclusters=3
covstruct=(EEE EEI EEV EII EVI EVV VII VVI VVV)
init=kmeans
seed=12;
vars yl y2;
output out=mycas.c3out maxpost copyvars=(_all_);
run;

Figure 26 shows the 10 best models that the model selection process finds.

Figure 26 Top 10 Models
The MBC Procedure

Model Selection Summary

Covariance Number of  Noise Number of

Structure Clusters Component Parameters -2 Log L AlC AlCC BIC
Vil 3 N 11 2196.20047 2218.20047 2219.10768 2259.05153
wi 3 N 14 2195.07446 2223.07446 2224.53280 2275.06672
A% 3 N 17 2189.23454 2223.23454 222538191 2286.36800
Ell 3 N 9 2247.50424 2265.50424 2266.11857 2298.92783
EEE 3 N 11 2236.35612 2258.35612 2259.26334 2299.20718
EVV 3 N 15 2218.26381 2248.26381 2249.93628 2303.96980
EEI 3 N 10 2247.20666 2267.20666 2267.96009 2304.34399
EEV 3 N 13 2235.33251 2261.33251 2262.59203 2309.61104
EVI 3 N 12 2246.05666 2270.05666 2271.13252 2314.62145

The selected model has three clusters and the VII covariance structure restriction. This means that the three clusters
are isotropic (circular) and have different volumes. In the two-dimensional setting, it can be easier to visualize the
result of the model selection by including features of the Gaussian clusters in the plot. In Figure 27, different symbols
and colors identify the different cluster assignments. The plot also overlays contours of constant Mahalanobis distance
for each cluster, centered at the respective cluster’s estimated mean. The overlays illustrate the circular structure and
the different volumes that correspond to the VII structure.

Figure 27 Selected Three-Component Model with Contours
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The three points that are more distant from the others are clustered with other points, rather than being assigned to
their own cluster. The other points in that cluster suggest a shape that is not circular, indicating that the presence
of the three outliers is distorting the clustering. In addition, the requirement for three clusters seems to have split a
cohesive group of points in the lower left corner of the plot into two clusters. The interplay between the three more
distant points and the model selection is complex, but the three points do not support a stand-alone cluster, and
including them in one of the well-defined clusters distorts that cluster.

In this case, a noise component can accommodate these points and might yield Gaussian clusters that provide a
better fit to the data. The following statements introduce a noise component and also consider models that have two
or three Gaussian clusters:

proc mbc data=mycas.sphc
nclusters=(2 3)
covstruct=(EEE EEI EEV EII EVI EVV VII VVI VVV)
noise=(n y)
init=kmeans
seed=12;
vars yl y2;
run;

Figure 28 shows summary information about the selected model. The “Cluster Mixing Probability Estimates” table
indicates that the noise component (component 0) has a very low mixing probability, indicating that very few points
have an association with this component. This is consistent with the small number of outlier points.

Figure 28 Selected Model Information
The MBC Procedure

Model Information

Number of Gaussian Clusters 2
Covariance Structure VW
Noise Cluster Present Yes
Expectation Technique EM
Model Selection Criterion BIC
Initialization Method K-means
EM Convergence Criterion 1e-05
Singularity Criterion 1e-08
Parameter Criterion 1e-08
Random Seed 12

Cluster Parameter Estimates

Covariance
Cluster Variable Mean Y1 Y2
1Y1 -0.99018 0.94408 0.30129
Y2 -1.53153 1.18427
2 Y1 1.18948 0.99755 -0.71150
Y2 2.18134 0.95314

Cluster Mixing
Probability Estimates
Mixing Mixing
Component Probability

0 0.01954
1 0.65516
2 0.32530
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Figure 29 shows the posterior assignments for all observations and contours for the Gaussian clusters. In this model,
the outlying points are assigned to the noise component. The Gaussian clusters provide a better representation of the
remaining observations and are not distorted by the outliers. The covariance structure in the selected model is VVV,
meaning that the Gaussian clusters are not constrained to share any characteristics, and the contours indicate that
the clusters match the observed shapes well.

Figure 29 Selected Model with Contours

X

In this two-dimensional scenario, it is not difficult to identify the observations that do not appear to be drawn from the
same distribution as the others. In higher dimensions, it can be much more challenging to identify these outliers by
inspection, and in that setting model-based clustering can be very useful in addressing the outlier issue.

CONCLUSION

PROC MBC provides an unsupervised model-based clustering method that you can use to discover groups. It expands
typical notions of clustering by using a finite mixture model whose components represent the clusters. Because
model-based clustering is based on a formal statistical model, you can apply the statistical principles of likelihood and
information criteria to compare and select mixture models for the data. The model likelihood also permits you to make
model-based computations of cluster membership for each observation and each cluster in the model. In this paper,
you see how to use PROC MBC to model different scenarios by using mixtures of multivariate Gaussian distributions
and how to score additional data sets to find cluster memberships for new observations. In addition, PROC MBC can
include a noise component in the mixture model to accommodate observations that are not well modeled by Gaussian
components. This noise component can also help you to model outliers or to discover structure within noisy data.

REFERENCES

Dempster, A. P, Laird, N. M., and Rubin, D. B. (1977). “Maximum Likelihood from Incomplete Data via the EM
Algorithm.” Journal of the Royal Statistical Society, Series B 39:1-38.

Fraley, C., and Raftery, A. E. (1998). How Many Clusters? Which Clustering Method? Answers via Model-Based
Cluster Analysis. Technical report 329, Department of Statistics, University of Washington, Seattle.

Fraley, C., and Raftery, A. E. (2007). “Bayesian Regularization for Normal Mixture Estimation and Model-Based
Clustering.” Journal of Classification 24:155—-181.

MacQueen, J. B. (1967). “Some Methods for Classification and Analysis of Multivariate Observations.” Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1:281-297.

20



McLachlan, G. J., and Peel, D. (2000). Finite Mixture Models. New York: John Wiley & Sons.
McNicholas, P. D. (2017). Mixture Model-Based Classification. Boca Raton, FL: CRC Press.

Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., and Johannes, R. S. (1988). “Using the ADAP Learning
Algorithm to Forecast the Onset of Diabetes Mellitus.” In Proceedings of the Symposium on Computer Applications
and Medical Care, 261-265. Los Alamitos, CA: IEEE Computer Society Press.

ACKNOWLEDGMENTS

| am grateful to Bob Rodriguez, formerly of the Advanced Analytics Division at SAS, for his support in the development
of the MBC procedure. | wish to thank Yiu-Fai Yung, Gerardo Hurtado, David Schlotzhauer, John Castelloe, Randy To-
bias, Liz Edwards, Sumi Rasathurai, and Ed Huddleston for their helpful comments, all of which greatly improved the
quality of this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Dave Kessler

SAS Institute Inc.

SAS Campus Drive
Cary, NC 27513
dave.kessler@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

21



