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ABSTRACT

Survival analysis handles time-to-event data. Classical methods, such as the log-rank test and the Cox proportional
hazards model, focus on the hazard function and are most suitable when the proportional hazards assumption holds.
When it does not hold, restricted mean survival time (RMST) methods often apply. The RMST is the expected survival
time subject to a specific time horizon, and it is an alternative measure to summarize the survival profile. RMST-based
inference has attracted attention from practitioners for its capability to handle nonproportionality. This paper introduces
RMST methods in SAS/STAT® software: you can now use the RMSTREG procedure to fit linear and log-linear
models, and you can use the RMST option in PROC LIFETEST to estimate the restricted mean survival time and
make comparisons between groups. The paper discusses the rationale behind the RMST-based approach, outlines
its recent development, and uses examples to illustrate real-world applications of the RMSTREG and LIFETEST
procedures.

INTRODUCTION

The proportional hazards (PH) assumption plays an important role in survival data analysis. It is the basis of the
popular Cox proportional hazards model. The widely applied log-rank test is equivalent to a score test of the PH model
and achieves its highest power when the PH assumption is satisfied. However, practitioners have encountered various
situations in which the PH assumption is questionable or simply untenable. Although it is possible to modify the
classical methods to accommodate certain non-PH settings, solutions are rather limited, and often they are formulated
at the expense of meaningful interpretations (Uno et al. 2014).

There are a handful of assumption-free measures of the survival outcome. For example, the mean and the median
of the event time have been commonly used as summary statistics, and the differences or ratios of these quantities
are often used to measure group effects. Censoring has posed special challenges that limit their usages. For
example, if the last observation is censored, then you cannot reliably estimate the mean; and when not enough events
occur, the median can be inestimable. The survival rate at a specified time is another commonly used summary
statistic. Although it can be less problematic than the mean or median, it does not provide an overall summary of the
time-to-event outcome.

The restricted mean survival time (RMST), sometimes called the restricted mean event time, is an alternative measure
that is more often reliably estimable than the mean and median of the event time in certain situations. Also, it provides
a summary of the whole survival curve up to a time horizon, in contrast to the survival rate at a specified time (Royston
and Parmar 2013; Uno et al. 2014; Trinquart et al. 2016). The RMST has attracted practitioners for its straightforward
interpretation and its capability to deal with nonproportional hazards. When two survival curves cross, the difference
in the RMST between two groups still provides information about efficacy in a clinical trial, whereas the log-rank test
fails to detect the significance and the hazard ratio becomes meaningless.

Starting in SAS/STAT 15.1, new, dedicated features are available for analyzing the RMST. You can use the RMST
option in the LIFETEST procedure to perform nonparametric analysis with respect to the RMST. You can also use the
new RMSTREG procedure to fit linear and log-linear models of the RMST.

This paper first presents the limitations of the classical hazard-based methods. It then introduces the RMST as an
alternative measure and uses real-world data examples to illustrate how to perform nonparametric analysis with
respect to the RMST. The next four sections focus on regression modeling and show how you can use pseudovalue
regression and inverse probability censoring weighting techniques to fit the linear and log-linear models and make
model-based inferences. Differences and connections with classical methods are also discussed.
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LIMITATIONS OF HAZARD-BASED METHODS

In practical survival analysis, methods such as the log-rank test and Cox regression have become standard tools.
Their use is warranted when the assumption of proportional hazards (PH) holds. In this case, the log-rank test is more
powerful than other nonparametric tests, and the estimated effects in a Cox regression can be interpreted in terms of
hazard ratios. However, the PH assumption is often not satisfied in real-world applications, and this can make the
results unusable.

A typical violation of the PH assumption occurs when the two survival curves cross. This implies that the corresponding
hazard functions would also cross. Because the log-rank statistic is essentially a weighted sum of the hazard function
over time, the log-rank test loses much of its power to detect the true difference in survival. Results from the Cox PH
regression have the same problem. As the true hazard ratio changes over time, the estimated hazard ratio from the
fitted model ends up being a weighted average of the time-varying hazard ratios and can be interpreted as such. The
problem is that the weights depend on the underlying survival and censoring distributions and therefore cannot be
generalized straightforwardly.

RESTRICTED MEAN SURVIVAL TIME AS AN ALTERNATIVE MEASURE

Definition

Let T be a nonnegative random variable that represents the failure time of an individual from a homogeneous
population. The survivor function (also known as the survival function) of T is defined as

S.t/ D Pr.T > t/

Assume that � is a prespecified time point of interest. Let R be the minimum of T and � :

R D T ^ � D min.T; �/

The restricted mean survival time is defined as the expected value of R:

RMST.�/ D E.R/ D EŒmin.T; �/�

It can be evaluated by the area under the survivor function over Œ0; �� as

RMST.�/ D
Z �

0

S.u/du

The restricted mean time lost (RMTL) is defined as the expected value of � �R:

RMTL.�/ D E.� �R/ D � �EŒmin.T; �/� D
Z �

0

Œ1 � S.u/�du

Statistical Analysis and Software

You can essentially make the same types of statistical inferences on the RMST as you can in the classical setting
where the survival and hazard functions are the primary interests. Table 1 summarizes various inference objectives in
the classical setting and the RMST setting.

Table 1 Inference Objectives in Classical and RMST Settings

Task Classical Setting RMST Setting

Estimation S.t/ RMST.�/

Testing
H0: S1.t/ D S2.t/ H0: RMST1.�/ D RMST2.�/
H1: S1.t/ ¤ S2.t/ H1: RMST1.�/ ¤ RMST2.�/

Regression
PH: h.t/ D h0.t/ exp.x0ˇ/ Linear: RMST.�/ D ˇ0 C x0ˇ
AFT: log.t/ D ˇ0 C x0ˇ C � Log-linear: log.RMST.�// D ˇ0 C x0ˇ

SAS/STAT software is well developed in the classical setting. PROC LIFETEST traditionally focuses on the estimating
and testing tasks for the survival functions and supports nonparametric methods such as the Kaplan-Meier estimator
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and the log-rank test. The assumption-free nonparametric methods for the RMST extend these classical methods. In
SAS/STAT 15.1, you can use the new RMST option in the LIFETEST procedure to estimate and compare the RMST.

The proportional hazards (PH) model and the accelerated failure time (AFT) model are popular choices for analyzing
time-to-event data. In SAS/STAT, the PHREG procedure fits primarily the Cox PH model to right-censored data but
also fits other types of PH models. The LIFEREG procedure can fit parametric AFT models to arbitrarily censored
data. A key difference between the two procedures is that the Cox PH model does not assume a particular form on
the baseline hazard function h0.t/, whereas the AFT model assumes that the error term � follows certain parametric
distributions, such as Weibull or exponential. The new RMSTREG procedure in SAS/STAT 15.1 provides regression
modeling capabilities for the RMST setting and fits generalized linear models such as linear and log-linear models to
right-censored data. Table 2 summarizes the key features of these procedures.

Table 2 Survival Modeling Procedures

Procedure Focus Model Type Estimation Method

PROC LIFEREG Time to event Accelerated failure time models Likelihood
PROC PHREG Hazard function Proportional hazards models Partial likelihood
PROC RMSTREG Restricted mean survival time Generalized linear models Estimating equations

It is possible to estimate RMST from a classical survival model, such as the Cox proportional hazards model (Zucker
1998), but the process is complex and difficult to extend. PROC RMSTREG avoids this difficulty by using generalized
linear modeling techniques to directly model the RMST. This approach has the double advantage of making inferences
on the results straightforward and providing all the machinery of generalized linear model comparisons for studying
RMST effects.

NONPARAMETRIC ANALYSIS USING PROC LIFETEST

The new methods of analyzing the RMST in the LIFETEST procedure focus on nonparametric estimation and group
comparisons of the RMST. This section briefly presents these methods.

Estimating the RMST

Let t1 < t2 < � � � < tD represent distinct event times. For each i D 1; : : : ;D, let Yi be the number of surviving units
(the size of the risk set) just prior to ti , and let di be the number of units that fail at ti .

The Kaplan-Meier (product-limit) estimate of the survivor function at ti is the cumulative product

OS.ti / D

iY
jD1

�
1 �

dj

Yj

�

If the largest observed time is uncensored, the estimated mean survival time is

O� D

DX
iD1

OS.ti�1/.ti � ti�1/

where t0 is defined to be 0.

RMST.�/ is estimated by

2RMST.�/ D
Z �

0

OS.t/dt D

N�X
iD1

OS.ti�1/.ti � ti�1/C OS.tN�/.� � tN�/

where N � is the number of ti values that are less than � .

The restricted mean time lost (RMTL) is estimated by 2RMTL.�/ D � �2RMST.�/.

The standard error of 2RMST.�/ or 2RMTL.�/ is estimated as

O� D

vuut m

m � 1

N�X
iD1

diA
2
i

Yi .Yi � di /
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where

Ai D

Z �

ti

OS.t/dt D

N�X
jDi

OS.tj /.tjC1 � tj /C OS.tN�/.� � tN�/

m D

N�X
jD1

dj

Comparing the RMST between Groups

Let K be the number of groups. Let Sk.t/ be the underlying survivor function of the k th group, k D 1; : : : ; K.

Assume that � is a prespecified time point of interest and Sk.�/ > 0. The following methods are presented in terms of
RMST.�/, but they also extend to the analysis of RMTL.�/.

The null and alternative hypotheses to be tested are

H0 W RMST1.�/ D RMST2.�/ D � � � D RMSTK.�/

versus

H1 W at least one of the RMSTk.�/’s is different

Let 2RMST.�/ D Œ2RMST1.�/;2RMST2.�/; : : : ;2RMSTK.�/�T be the vector of estimated RMSTs for the K groups.

Let O† be the estimated covariance matrix for 2RMST.�/. It is a diagonal matrix, and the j th diagonal element is O�2j ,

which is the estimated variance of 2RMSTj .�/.

Let D be a .K � 1/ �K matrix whose j th row is ej � ejC1, where ej is a K -dimensional vector whose j th element
is 1 and whose other elements are 0. The test statistic is computed as

.2RMST.�//TDT .D O†DT /�D2RMST.�/

Under the null hypothesis H0, this K -sample test statistic has approximately a chi-square distribution with degrees of
freedom equal to the rank of D O†DT .

EXAMPLE OF NONPARAMETRIC ANALYSES

This example uses real-world data to demonstrate how you can perform nonparametric analyses of the RMST. The
data, which are presented in Appendix I of Kalbfleisch and Prentice (1980), are coded in the following DATA step.
The response variable, SurvTime, is the survival time in days of a lung cancer patient. The covariates are Cell
(type of cancer cell), Therapy (type of therapy: standard or test), Prior (prior therapy: 0=no, 10=yes), Age (age in
years), DiagTime (time in months from diagnosis to entry into the trial), and Kps (performance status). The censoring
indicator variable Censor is created from the data; the value 1 indicates a censored time, and the value 0 indicates an
event time. Because there are only two types of therapy, an indicator variable, Treatment, is created for therapy type;
the value 0 indicates standard therapy, and the value 1 indicates test therapy.

data VALung;
drop check m;
retain Therapy Cell;
infile cards column=column;
length Check $ 1;
label SurvTime='Failure or Censoring Time'

Kps='Karnofsky Index'
DiagTime='Months till Randomization'
Age='Age in Years'
Prior='Prior Treatment?'
Cell='Cell Type'
Therapy='Type of Treatment'
Treatment='Treatment Indicator';
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... more lines ...

52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0

111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
;

The following statements use PROC LIFETEST to perform analyses of the restricted mean survival time (RMST) and
restricted mean time lost (RMTL) in addition to the standard analyses:

ods graphics on;
proc lifetest data=VALung plots=(rmst rmtl s) rmst rmtl(tau=90) maxtime=600;

time SurvTime*Censor(1);
strata Cell;

run;
ods graphics off;

The RMST and RMTL options estimate the restricted mean survival time and the restricted mean time lost, respectively.
The variable Cell is specified in the STRATA statement to compute the RMST for each type of cancer cell. ODS
Graphics must be enabled for graphs to be produced. Graphical displays of the RMST and RMTL curves are requested
through the PLOTS= option in the PROC LIFETEST statement. Because of a few large survival times, a MAXTIME=
option value of 600 is used to set the upper limit of the time axis; that is, the time horizon in the plots extends from 0 to
a maximum of 600 days.

The graph of the Kaplan-Meier curves is shown in Figure 1.

Figure 1 Survival Curves
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Figure 2 displays the � value that the RMST analysis uses. If you omit the TAU= option, PROC LIFETEST uses the
smallest value among the largest observed times across the strata as the � value.

Figure 2 RMST Analysis Information

RMST
Analysis
Information

Tau 186

Figure 3 displays the RMST estimates for the four cell types.

Figure 3 RMST Estimates

RMST Estimates

Stratum Cell Type Estimate
Standard

Error

1 adeno 65.55556 9.9303

2 large 128.0370 11.9858

3 small 64.20647 8.2859

4 squamous 113.8040 12.3703

Figure 4 displays information about the RMTL analysis. A � value of 90 is shown; this is the value that is specified in
the TAU= option.

Figure 4 RMTL Analysis Information

RMTL
Analysis
Information

Tau 90

Figure 5 displays the RMTL estimates for the four cell types at � D 90.

Figure 5 RMTL Estimates at � D 90

RMTL Estimates

Stratum Cell Type Estimate
Standard

Error

1 adeno 36.54321 6.3206

2 large 14.33333 4.9560

3 small 41.27083 4.6763

4 squamous 22.99365 5.6430

The graph of the estimated RMST curves is shown in Figure 6. These curves exhibit a behavior similar to that of the
survival curves in Figure 1: the adeno cell curve and the small cell curve are much closer to each other than they are
to the large cell curve or the squamous cell curve. The shapes of the large cell curve and the squamous cell curve are
quite different, although the RMST in both curves increases more rapidly than the RMST in the adeno and small cell
curves. The RMST in the squamous cell curve initially increases less rapidly than the RMST in the large cell curve,
but the roles are reversed in the later period.
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Figure 6 RMST Curves

The graph of the estimated RMTL curves is displayed in Figure 7. Again, the adeno cell curve and the small cell curve
are much closer to each other and farther away from the large cell and squamous cell curves.
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Figure 7 RMTL Curves

Results of the homogeneity test for the RMST across cell types are given in Figure 8. The table displays the
approximate chi-square statistic, degrees of freedom, and p-value. The test results provide strong evidence that the
RMSTs for the four types of cancer cells are not the same (p < 0.0001).

Figure 8 Homogeneity Tests across Cell Types

RMST Test of Equality

Source Chi-Square DF Pr > ChiSq

Strata 28.4427 3 <.0001

The homogeneity test does not identify which pairs of the RMSTs are different. In the following statements, you use
the DIFF= option to compute the paired differences of the RMST among the groups. To protect yourself from falsely
significant results, you use the ADJ= option to make multiple-comparison adjustments to the resulting p-values.

proc lifetest data=VALung rmst;
time SurvTime*Censor(1);
strata Cell / diff=all adj=sidak;

run;

The Šidák multiple-comparison results are shown in Figure 9.
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Figure 9 All Paired Comparisons

The LIFETEST Procedure

Restricted Mean Survival Time Comparisons
Adjustment for Multiple Comparisons: Sidak

Pr > ChiSq

Stratum
Comparison Difference

Standard
Error Chi-Square Unadjusted Adjusted

adeno large -62.4815 15.5650 16.1141 <.0001 0.0004

adeno small 1.349087 12.9332 0.0109 0.9169 1.0000

adeno squamous -48.2485 15.8630 9.2511 0.0024 0.0140

large small 63.83057 14.5710 19.1901 <.0001 <.0001

large squamous 14.23303 17.2245 0.6828 0.4086 0.9572

small squamous -49.5975 14.8889 11.0967 0.0009 0.0052

The results suggest that you can divide the four risk groups into two classes. The first class consists of the small and
adeno cell types, and there is no significant difference in the RMST between them (p = 1.0000). The second class
consists of the large and squamous cell types, and the paired comparison is not significant (p = 0.9572). However,
there is a significant difference in any paired comparison between the two classes.

Suppose you consider the small cell type to be the reference group. You can use the DIFF= option in the STRATA
statement to designate this risk group as the control and apply a multiple-comparison adjustment to the p-values for
the paired comparison between the small cell type and the other cell types. Consider the Šidák correction again. You
specify the ADJ= and DIFF= options as in the following statements:

proc lifetest data=VALung rmst;
time SurvTime*Censor(1);
strata Cell / adj=sidak diff=control('small');

run;

Figure 10 shows that both the large and squamous cell types differ from the small cell type at the 0.05 significance
level, whereas the difference between the adeno and small cell types is not significant (p = 0.9994). As you can see,
in a period of 186 days, patients with the large cell type tend to live 63.8 days longer than those with the small cell
type.

Figure 10 Comparisons to the Reference Group

The LIFETEST Procedure

Restricted Mean Survival Time Comparisons
Adjustment for Multiple Comparisons: Sidak

Pr > ChiSq

Stratum
Comparison Difference

Standard
Error Chi-Square Unadjusted Adjusted

adeno small 1.349087 12.9332 0.0109 0.9169 0.9994

large small 63.83057 14.5710 19.1901 <.0001 <.0001

squamous small 49.59754 14.8889 11.0967 0.0009 0.0026

REGRESSION ANALYSIS USING PROC RMSTREG

Regression analyses aim to study the relationship between the dependent variable and the independent variables.
Although nonparametric methods are usually your first resort in analyzing the RMST, regression modeling can be more
effective in describing the underlying relationship between the RMST and independent variables. The linear model of
the RMST is the simplest formulation that you can consider as a generalization of the simple linear regression to the
RMST. Because the RMST is nonnegative, the linear model might go out of bounds, and this can compromise its
interpretation. A natural alternative to the linear model is the log-linear model, which instead models the natural log of
the RMST. For the linear model, you can interpret the effects as differences in the RMST. For the log-linear model, you
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can interpret the effects in terms of ratios in the RMST. Both linear and log-linear models are special cases of the
generalized linear models (Nelder and Wedderburn 1972).

LetDi be the response variable for the i th observation. The quantity xi is a column vector of covariates, or explanatory
variables, for observation i that is known from the experimental setting and is considered to be fixed, or nonrandom.

The expected value of Di , denoted by �i , is

�i D EŒDi jxi �

Under the specification of generalized linear models (Nelder and Wedderburn 1972), �i is related to a linear predictor
through a monotone and differentiable link function g,

g.�i / D x0iˇ

where ˇ is an unknown parameter vector and another column can be added to xi for an intercept effect.

Assume that � is a prespecified time point of interest. Let Ti be the time-to-event variable for the i th subject. The
subject-specific RMST at � is defined by RMSTi .�/ D EŒmin.Ti ; �/� and can be conveniently modeled via a
generalized linear model as

gŒRMSTi .�/� D x0iˇ

Under the natural logarithm link g.�/ D log.�/, the model is

logŒRMSTi .�/� D x0iˇ

Under the identity or linear link, the model is

RMSTi .�/ D x0iˇ

The RMSTREG procedure analyzes time-to-event data by using regression with respect to the restricted mean survival
time. It provides you with two methods to fit these models: the pseudovalue regression method (Andersen, Hansen,
and Klein 2004) and the inverse probability censoring weighting (IPCW) method (Tian, Zhao, and Wei 2014). Both
methods are generic approaches for fitting regression models to censored data, and you can apply them to the RMST
setting. But the methods have their differences. The pseudovalue regression method assumes that only the censoring
is noninformative to the survival outcomes and treats the censoring distribution as a nuisance in the estimation. On
the other hand, the IPCW technique further assumes that the censoring distribution can be properly estimated and
uses the estimates as weights explicitly in the estimation process. This feature allows the IPCW method to deal with
nonhomogeneous censoring, so it can be more efficient in those settings. However, the downside is that the IPCW
method requires the censoring distribution to be correctly estimated. The following two sections discuss these two
estimation methods in detail and present examples to illustrate how you can use them in PROC RMSTREG.

PSEUDOVALUE REGRESSION

Pseudovalue regression is a generic method of fitting generalized linear models to time-to-event data (Andersen,
Klein, and Rosthøj 2003). This section describes how the method works and how you can apply it to analyze models
of the RMST.

Let D1; : : : ;Dn be independent and identically distributed quantities that might be random variables or vectors of
variables. Let � D EŒf .Di /� for some function f .�/. Suppose that O� is an unbiased estimator of � .

Let x1; : : : ; xn be independent and identically distributed samples of covariates, and define the conditional expectation
of f .Di / given by xi as

�i D EŒf .Di /jxi �

The i th pseudo-observation of � is computed as

O�i D n O� � .n � 1/ O�
�i

where O��i is the jackknife leave-one-out estimator for � based on fDj W j ¤ ig.

The generalized linear model (Nelder and Wedderburn 1972) for � assumes

g.�i / D x0iˇ
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where g.�/ is a suitable link function. Note that another column can be added to Xi for an intercept effect.

Using pseudo-observations, you can estimate the regression parameters ˇ by solving the following estimating
equations,

U.ˇ/ D
nX
iD1

Ui .ˇ/ D
nX
iD1

�
@�i

@ˇ

�0
V�1i

�
O�i � �i

�
D 0

where Vi is a working covariance matrix.

Let Ǒ be the solution of the estimating equations. You can use a sandwich estimator to estimate the variance-
covariance matrix of Ǒ. It takes the form

†e D I�10 I1I�10

I�10 is the model-based estimator of Cov. Ǒ/ and is given by

I0 D
nX
iD1

@�i

@ˇ

0

V�1i
@�i

@ˇ

I�11 is the empirical estimator of Cov. Ǒ/ and is computed as

I1 D
nX
iD1

Ui . Ǒ/0Ui . Ǒ/

Andersen, Hansen, and Klein (2004) proposed using pseudovalue regression to analyze RMST models. Assume
that � is a prespecified time point of interest. Let Ti be the time-to-event variable for the i th subject. You can use
pseudovalue regression to fit the RMST models by letting

�i D RMSTi .�/ D E.Ti ^ � jxi /

Vi D
�
�i D RMSTi .�/ g.u/ D log.u/
1 g.u/ D u

Because the nonparametric estimator 2RMST.�/ based on the Kaplan-Meier estimator is unbiased, you can use it in
place of O� in the estimation process.

Example of Pseudovalue Regression

The data in this example represent 418 patients who have primary biliary cirrhosis (PBC), among whom 161 had died
as of the date of the data listing. A subset of the variables is saved in the SAS data set Liver. The data set contains
the following variables:

� Time, follow-up time, in years

� Status, event indicator, with the value 1 for death time and 0 for censored time

� Age, age in years, from birth to study registration

� Albumin, serum albumin level, in g/dl

� Bilirubin, serum bilirubin level, in mg/dl

� Edema, edema presence

� Protime, prothrombin time, in seconds
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The following statements create the data set Liver:

data Liver;
input Time Status Age Albumin Bilirubin Edema Protime @@;
label Time="Follow-Up Time in Years";
Time= Time / 365.25;
datalines;

400 1 58.7652 2.60 14.5 1.0 12.2 4500 0 56.4463 4.14 1.1 0.0 10.6
1012 1 70.0726 3.48 1.4 0.5 12.0 1925 1 54.7406 2.54 1.8 0.5 10.3
1504 0 38.1054 3.53 3.4 0.0 10.9 2503 1 66.2587 3.98 0.8 0.0 11.0
1832 0 55.5346 4.09 1.0 0.0 9.7 2466 1 53.0568 4.00 0.3 0.0 11.0
2400 1 42.5079 3.08 3.2 0.0 11.0 51 1 70.5599 2.74 12.6 1.0 11.5
3762 1 53.7139 4.16 1.4 0.0 12.0 304 1 59.1376 3.52 3.6 0.0 13.6
3577 0 45.6893 3.85 0.7 0.0 10.6 1217 1 56.2218 2.27 0.8 1.0 11.0
3584 1 64.6461 3.87 0.8 0.0 11.0 3672 0 40.4435 3.66 0.7 0.0 10.8

... more lines ...

989 0 35.0000 3.23 0.7 0.0 10.8 681 1 67.0000 2.96 1.2 0.0 10.9
1103 0 39.0000 3.83 0.9 0.0 11.2 1055 0 57.0000 3.42 1.6 0.0 9.9
691 0 58.0000 3.75 0.8 0.0 10.4 976 0 53.0000 3.29 0.7 0.0 10.6

;

The following statements fit a linear model of the RMST with the covariates Bilirubin, Age, and Edema:

proc rmstreg data=liver tau=10;
class Edema;
model Time*Status(0) = Age Bilirubin Edema / link=linear method=pv;

run;

The TAU= option in the PROC RMSTREG statement specifies the time limit that defines the RMST for this analysis. If
you omit this option, the largest observed time from the input data is used. Because the variable Edema is specified
as a CLASS variable, it contributes one dummy variable to the regression model for each of its values.

In the MODEL statement, the response consists of the observed variable Time and an indicator variable Status,
which specifies whether or not the Time value is censored. The values of Time are considered to be censored if the
value of Status is 0; otherwise, they are considered to be event times.

An intercept term is included by default. Thus, the model matrix X consists of a column of 1s that represent the
intercept term, three columns of 0s and 1s that correspond to the levels of the Edema variable, and two additional
columns for the values of the variables Age and Bilirubin.

That is, the model matrix is

X D

24 1 1 0 0 Age Bilirubin
1 0 1 0 Age Bilirubin
1 0 0 1 Age Bilirubin

35
The LINK=LINEAR option fits a linear model. That is, the RMST at � D 10 for a specific subject (denoted by �i ) is
related to the linear predictor by

�i D x0iˇ

The METHOD=PV option specifies pseudovalue regression to fit the model.

Figure 11 shows the “Model Information” table, which provides information about the specified linear model of the
RMST and the input data set.
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Figure 11 Model Information

The RMSTREG Procedure

Model Information

Data Set WORK.LIVER

Time Variable Time

Censoring Variable Status

Censoring Value(s) 0

Link Function Linear

Estimation Method Pseudo Value

Tau Value 10

Figure 12 displays a summary of the number of event and censored observations in the data set.

Figure 12 Event and Censoring Summary

Summary of the
Number of Event and

Censored Values

Total Event Censored

418 161 257

Figure 13 shows how the Edema variable is coded in the model matrix.

Figure 13 CLASS Variable Level Information

Class Level Information

Class Value
Design

Variables

Edema 0 1 0 0

0.5 0 1 0

1 0 0 1

For each parameter in the model, PROC RMSTREG displays a table (Figure 14) that contains columns of the
parameter name, the degrees of freedom associated with the parameter, the estimated parameter value, the standard
error of the parameter estimate, the confidence intervals, and the Wald chi-square statistic and associated p-value for
testing the significance of the parameter to the model. If a column of the model matrix that corresponds to a parameter
is found to be linearly dependent, or aliased, with columns that correspond to parameters preceding it in the model,
PROC RMSTREG assigns it zero degrees of freedom and displays a value of 0 for the parameter estimate.

Figure 14 Analysis of Parameter Estimates

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 9.0588 1.1201 6.8635 11.2540 65.41 <.0001

Age 1 -0.0686 0.0142 -0.0964 -0.0408 23.41 <.0001

Bilirubin 1 -0.3614 0.0383 -0.4366 -0.2862 88.82 <.0001

Edema 0 1 3.0259 0.7353 1.5849 4.4670 16.94 <.0001

Edema 0.5 1 1.7778 0.8658 0.0807 3.4748 4.22 0.0401

Edema 1 0 0.0000

By default, PROC RMSTREG performs a Type 3 analysis for assessing the significance of each model effect. The
results are shown in Figure 15.
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Figure 15 Type 3 Analysis of Effects

Type 3 Analysis of Effects

Effect DF Chi-Square Pr > ChiSq

Age 1 23.4052 <.0001

Bilirubin 1 88.8223 <.0001

Edema 2 19.4651 <.0001

The results indicate that all three variables are strong predictors of the RMST at � D 10. The Type 3 chi-square value
for the Age variable, for example, is computed by comparing the model with Intercept, Age, Bilirubin, and Edema
included to the model with Age excluded. The hypothesis that is tested in this case is that Age adds no predictability
to the model, over and above Edema and Bilirubin. This hypothesis is strongly rejected.

If the RMST at � D 5 is of interest, then the following statements fit this model by using pseudovalue regression:

proc rmstreg data=liver tau=5;
class Edema;
model Time*Status(0) = Age Bilirubin Edema / link=linear method=pv;

run;

Figure 16 displays the parameter estimates and the Type 3 tests for the fitted model. The new results appear to be
similar to the previous ones. Using values 5 and 10 for � , respectively, makes little difference.

Figure 16 Parameter Estimates and Type 3 Tests for RMST at � D 5

The RMSTREG Procedure

Type 3 Analysis of Effects

Effect DF Chi-Square Pr > ChiSq

Age 1 18.9013 <.0001

Bilirubin 1 62.3617 <.0001

Edema 2 30.8671 <.0001

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 4.0394 0.4848 3.0892 4.9896 69.42 <.0001

Age 1 -0.0220 0.0051 -0.0319 -0.0121 18.90 <.0001

Bilirubin 1 -0.1378 0.0174 -0.1720 -0.1036 62.36 <.0001

Edema 0 1 1.8901 0.3621 1.1805 2.5997 27.25 <.0001

Edema 0.5 1 1.2573 0.4205 0.4331 2.0815 8.94 0.0028

Edema 1 0 0.0000

IPCW REGRESSION

IPCW regression offers an alternative to pseudovalue regression for fitting RMST models. The main difference is that
IPCW regression assumes that the censoring distribution can be correctly estimated and pseudovalue regression
does not. The standard application of IPCW regression assumes that censoring is homogeneous among subjects,
so that you can use the Kaplan-Meier method to estimate the censoring distribution. When grouping is present, a
straightforward extension is to allow the censoring to be homogeneous within groups. This section discusses how
IPCW regression works and presents examples to illustrate how you can use it in PROC RMSTREG.

Denote T as the event time, C as the censoring time, and x as a p-dimensional vector of covariates. For the i th
subject, i D 1; : : : ; n, let Ui D Ti ^Ci , �i D I.Ti � Ci /, and xi be the observed time, event indicator, and covariate
vector, respectively.
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Assume that � is a prespecified time point of interest and P.T > �/ > 0. Let

Ri D Ti ^ �

RMSTi .�/ D E.Ri jxi /
Q�i D I.Ri � Ci /

wi D
Q�i

OG.Ri /

where OG.t/ is the Kaplan-Meier estimate (alternatively, the Breslow estimate) of the survival function of the censoring
variable, which is calculated using f.Ui ; 1 ��i / W i D 1; 2; : : : ; ng.

Suppose that the following relationship holds for the RMST,

gŒRMSTi .�/� D x0iˇ

where g.�/ is a smooth and strictly increasing function. Note that another column can be added to Xi for an intercept
effect.

Under suitable regularity conditions, you estimate the regression coefficients ˇ by solving the following score function
(Tian, Zhao, and Wei 2014):

U.ˇ/ D
nX
iD1

wi

�
Ri � g

�1.x0iˇ/
�

xi D 0

Let

O� D

nX
iD1

xi˝2
�
g�1.x0i Ǒ/

�

The sandwich variance estimate of Ǒ is

bVar. Ǒ/ D O��1 O† O��1

See the PROC RMSTREG documentation in the SAS/STAT 15.1 User’s Guide for a complete presentation of the
details.

The assumption of homogeneous censoring can be relaxed as follows. Assuming that you have K strata, within
each stratum the censoring distribution is homogeneous. For the i th subject, let Bi 2 .1; : : : ; K/ be the stratum
indicator. It is more appropriate to use stratum-specific weights in the estimation. For the k th stratum, you compute
the Kaplan-Meier estimate OGk.t/ for the censoring variable by using f.Ui ; 1 ��i / W Bi D k; i D 1; 2; : : : ; ng.

For the i th subject, the weight is computed as

wi D
Q�i

OGkDBi
.Ri /

Example of IPCW Regression

In a study of the human immunodeficiency virus (HIV), patients were followed after a confirmed HIV-positive diagnosis
(Hosmer and Lemeshow 1999). The primary goal is to evaluate the effect of two different covariates on mortality: the
patient’s age and the patient’s history of intravenous drug use.

The following DATA step creates the data set HIV, which contains the variables Time (the follow-up time in days),
Status (with a value of 0 if Time was censored and 1 otherwise), Drug (with a value of 1 for prior intravenous drug
use and 0 otherwise), and Age (the patient’s age in years at the beginning of the follow-up):

data HIV;
input Time Age Drug Status;
datalines;
5 46 0 1
6 35 1 0
8 30 1 1

15



3 30 1 1
22 36 0 1
1 32 1 0

... more lines ...

1 34 1 1
;

The following statements fit the linear model for the RMST at � D 48 by using the method of inverse probability
censoring weighting (IPCW):

proc rmstreg data=hiv tau=48;
class Drug;
model Time*Status(0) = Drug Age / link=linear method=ipcw;

run;

Figure 17 shows the “Model Information” table, which provides information about the specified linear model of the
RMST and the input data set.

Figure 17 Model Information

The RMSTREG Procedure

Model Information

Data Set WORK.HIV

Time Variable Time

Censoring Variable Status

Censoring Value(s) 0

Link Function Linear

Estimation Method IPCW

Tau Value 48

Figure 18 displays the parameter estimates for the fitted linear model.

Figure 18 Parameter Estimates

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 44.6305 8.8479 27.2889 61.9720 25.44 <.0001

Drug 0 1 12.5483 2.6029 7.4468 17.6499 23.24 <.0001

Drug 1 0 0.0000

Age 1 -1.0748 0.2289 -1.5234 -0.6262 22.05 <.0001

The results show that both age and prior drug use are strongly associated with mortality.

The standard IPCW method assumes homogeneity of the censoring mechanism. Such an assumption can be
evaluated statistically. The following statements use PROC LIFETEST to estimate the survival functions of censoring
for the two levels of Drug and use the log-rank test to test whether censoring is homogeneous between the two Drug
groups. Note that the censoring value in the TIME statement uses 1 instead of 0.

ods graphics on;
proc lifetest data=hiv plot=s(test);

strata Drug;
time Time*Status(1);

run;

Figure 19 displays the Kaplan-Meier curves for the two Drug groups.
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Figure 19 Plot of Estimated Survival Functions

The curves show substantial separation over time. The small p-value from the log-rank test also suggests that the
censoring patterns of the two groups are quite different.

By default, the IPCW method uses the Kaplan-Meier technique to obtain the weights, and this approach implicitly
assumes that the censoring mechanism is homogeneous among all subjects. Sometimes this is not a reasonable
assumption—for example, when there are distinct groups, such as treatment arms in randomized clinical trials. Under
such circumstances, it is more appropriate to use group-specific weights by applying the Kaplan-Meier technique to
different groups.

The following statements fit the linear model for the RMST at � D 48 by using the IPCW method, with weights
estimated separately for the two Drug groups:

proc rmstreg data=hiv tau=48;
class Drug;
model Time*Status(0) = Drug Age / link=linear method=ipcw(strata=Drug);

run;

Figure 20 displays the parameter estimates for the fitted linear model of the RMST. As you can see, the parameter
estimates are similar to those displayed in Figure 18.
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Figure 20 Parameter Estimates

The RMSTREG Procedure

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 47.5159 10.5939 26.7522 68.2795 20.12 <.0001

Drug 0 1 11.4049 2.5667 6.3743 16.4354 19.74 <.0001

Drug 1 0 0.0000

Age 1 -1.1380 0.2654 -1.6582 -0.6179 18.39 <.0001

PROC RMSTREG VERSUS OTHER PROCEDURES

When it comes to modeling time-to-event data, proportional hazards (PH) models and accelerated failure time (AFT)
models are popular tools. You can use the PHREG and LIFEREG procedures, respectively, to fit them. Generalized
linear models have become standard tools for analyzing categorical data and are well known for their flexibility. The
RMSTREG procedure fits generalized linear models of the RMST by using specialized methods and provides useful
alternatives to the PH and AFT models. The example that follows compares PROC RMSTREG with PROC PHREG
and PROC LIFEREG by analyzing real-world data.

Krall, Uthoff, and Harley (1975) analyzed data from a study on multiple myeloma in which researchers treated 65
patients by using alkylating agents. Of those patients, 48 died during the study and 17 survived. The following DATA
step creates the data set Myeloma:

data Myeloma;
input Time VStatus LogBUN HGB Platelet Age LogWBC Frac

LogPBM Protein SCalc;
label Time='Survival Time'

VStatus='0=Alive 1=Dead';
datalines;

1.25 1 2.2175 9.4 1 67 3.6628 1 1.9542 12 10
1.25 1 1.9395 12.0 1 38 3.9868 1 1.9542 20 18
2.00 1 1.5185 9.8 1 81 3.8751 1 2.0000 2 15
2.00 1 1.7482 11.3 0 75 3.8062 1 1.2553 0 12
2.00 1 1.3010 5.1 0 57 3.7243 1 2.0000 3 9
3.00 1 1.5441 6.7 1 46 4.4757 0 1.9345 12 10
5.00 1 2.2355 10.1 1 50 4.9542 1 1.6628 4 9

... more lines ...

53.00 0 1.1139 12.0 1 66 3.6128 1 2.0000 1 11
57.00 0 1.2553 12.5 1 66 3.9685 0 1.9542 0 11
77.00 0 1.0792 14.0 1 60 3.6812 0 0.9542 0 12
;

The variable Time represents the survival time in months from diagnosis. The variable VStatus indicates whether the
patient survived the study. If the value of VStatus is 0, then the patient survived, and thus the corresponding value of
Time is censored. The variables that are thought to be related to survival are LogBUN (log of blood urea nitrogen at
diagnosis), HGB (hemoglobin at diagnosis, in g/dl), Platelet (platelets at diagnosis: 0=abnormal, 1=normal), Age (age
at diagnosis, in years), LogWBC (log of white blood cell count at diagnosis), Frac (fractures at diagnosis: 0=none,
1=present), LogPBM (log percentage of plasma cells in bone marrow), Protein (proteinuria at diagnosis, in mg/dl),
and SCalc (serum calcium at diagnosis, in mg/dl). The goal of the study is to identify important prognostic factors
from these nine explanatory variables.

Suppose that Ti represents the survival time of patient i and �i represents the RMST at the specified time � for the
patient. A log-linear model for the RMST assumes that

log.�i / D xi 0ˇ
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The following statements fit the log-linear model for the RMST at � D 50 with the covariates LogBUN and HGB:

proc rmstreg data=Myeloma tau=50;
model Time*VStatus(0)=LogBUN HGB / method=ipcw link=log;

run;

Figure 21 displays the parameter estimates for the fitted log-linear regression model.

Figure 21 Parameter Estimates

The RMSTREG Procedure

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 4.2187 0.6091 3.0249 5.4126 47.97 <.0001

LogBUN 1 -1.0925 0.3053 -1.6908 -0.4942 12.81 0.0003

HGB 1 0.0438 0.0416 -0.0378 0.1254 1.11 0.2923

For comparison, a Cox proportional hazards (PH) model is fitted to the data, using the same set of covariates. The
PH model assumes that

�.t jxi / D �0.t/exp.xi 0ˇPH/

where �0.t/ is the baseline hazard function and ˇPH is a vector of unknown regression parameters.

The following PROC PHREG statements fit a Cox PH model with the covariates LogBUN and HGB:

proc phreg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB;

run;

Figure 22 displays the parameter estimates for the fitted Cox regression model.

Figure 22 Parameter Estimates from Cox Regression

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.67440 0.61209 7.4833 0.0062 5.336

HGB 1 -0.11899 0.05751 4.2811 0.0385 0.888

If you compare the results from PROC RMSTREG with the results from PROC PHREG, you see that the estimated
effects have opposite signs. This is because Cox regression models the hazard function, and RMST regression
models the restricted mean at a certain time via a log link. Thus, you interpret the estimated effects from PROC
PHREG as ratios of the hazard functions; you interpret the estimated effects from PROC RMSTREG as log ratios of
the RMST. An increase in the hazard rate would correspond roughly to a decrease in the restricted mean, although
the exact relationship is difficult to quantify (Karrison 1987).

Also, note that the effect of HGB is significant at the 5% level in the PROC PHREG results but not significant in the
PROC RMSTREG results. This might be due to the particular time � that is specified for the RMST analysis, or it
might be due to the different characteristics of PROC PHREG’s likelihood-based approach versus PROC RMSTREG’s
approach, which uses estimating equations.

You can also compare the RMST regression model to the accelerated failure time (AFT) model that is fit by the
LIFEREG procedure. The AFT model assumes that

log.Ti / D xiˇAFT C ��i

where ˇAFT is a vector of unknown regression parameters, �i is the error term that is sampled from a known
distribution, and � is an unknown scale parameter.
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The following PROC LIFEREG statements fit the AFT model with a Weibull distribution, using the same set of
covariates as in the previous examples:

proc lifereg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB;

run;

Figure 23 displays the parameter estimates for the fitted AFT regression model.

Figure 23 Parameter Estimates from AFT Model

The LIFEREG Procedure

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 4.5458 0.8939 2.7937 6.2979 25.86 <.0001

LogBUN 1 -1.5304 0.5031 -2.5165 -0.5444 9.25 0.0024

HGB 1 0.0975 0.0492 0.0011 0.1939 3.93 0.0474

Scale 1 0.8770 0.0945 0.7100 1.0833

Weibull Shape 1 1.1403 0.1229 0.9231 1.4085

The estimated effects from the AFT model exhibit the same pattern as the estimated effects from the log-linear
model of PROC RMSTREG. However, the interpretations of the two models are quite different. Instead of modeling
the truncated mean of the event time, as PROC RMSTREG does, the AFT model assumes that the effect of the
independent variables on the event time is additive on the log scale. As with the Cox regression model that is fit by
PROC PHREG, it is difficult to translate the estimated effects from PROC LIFEREG to the scale of the RMST model.

SUMMARY

The restricted mean survival time (RMST) is an alternative measure to the survival outcome. Compared to the survival
mean and median, it can be more robustly estimated and is still valid when the proportional hazards assumption
is violated. A time horizon needs to be specified up front, before you perform an RMST analysis, and you should
decide how to perform the analysis on the basis of the analytical objective and meaningful interpretations. In certain
applications, the largest observed time is not a bad choice, because it would use most of the survival information.

New features available in SAS/STAT 15.1 enable you to perform different types of statistical analysis of the RMST. You
can use the new RMSTREG procedure to perform regression analysis and the new RMST option in PROC LIFETEST
to perform nonparametric analyses. These RMST-based methods strongly parallel their classical counterparts.
Nonparametric analyses are concerned with estimating the RMST and comparing the RMST between groups. You
can consider the RMST option in PROC LIFETEST to be a bonus option because it performs RMST analysis in
addition to the existing functionality in PROC LIFETEST. Regression analysis aims to study the relationship between
the RMST and independent variables. PROC RMSTREG fits linear and log-linear models of the RMST, and these
models provide a useful alternative to the classical proportional hazards and accelerated failure time models.
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