
1

Paper 2977-2019
The Mother Of All Metadata Files: Using SAS® Provided

 Macros To Manage Metadata
Hugh G. McCabe

Excellus Blue Cross Blue Shield

Abstract
Excellus Blue Cross Blue Shield is a regional health plan in Central and Western New York. We run SAS®
9.4 in a grid environment. Our enterprise provisioning and identity management processes are not
optimally integrated, so acquiring and managing data on users’ access can be challenging. Given our
highly sensitive health care data, regulatory and compliance requirements, and the current security
climate, effective management and reporting on user access is critical to our success.
This paper outlines how we used SAS® Institute provided macros, SAS® Metadata, SAS® Schedule
Manager, Unix scripting, human resources information system data, LDAP data, and some crafty
programming to manage accounts and generate consistent, comprehensive, and timely reporting on
user access to corporate data resources.

This paper is for SAS® Administrators and managers who require quick access to comprehensive and
accurate information on who in their enterprise has access to a sensitive data stored in a complex
environment.

Introduction
Excellus BlueCross BlueShield, headquartered in Rochester, NY, is part of a $6 billion family of
companies that finances and delivers health care services across upstate New York and long-term care
insurance nationwide. Collectively, the enterprise provides health insurance to nearly 1.5 million
members and employs about 5,000 New Yorkers. We have approximately 200 SAS users. We have been
running the SAS® 9.4 grid environment on an AIX platform since 2016. Our grid has two metadata
servers and four compute servers. In addition to SAS datasets, our data sources include Oracle, DB2,
and SQL server databases. Excellus SAS users do their development in SAS® Enterprise Guide and SAS®
Studio. Scheduled jobs are run in SAS® Management Console Schedule Manager.

Our challenge was that we had no centralized repository of comprehensive metadata for our users. By
comprehensive, I mean unix account information, human resources data, SAS Metadata, and inactivated
user account data. In addition, referencing a users’ unix account information or SAS metadata in SAS®
Management Console (SMC) is labor intensive and only provides a limited view of a users’ access to all
the resources available in our complex SAS Grid Environment. Over the course of a about a year were
able to extract and stage the data components needed for a single unified repository of SAS user
metadata that I call the Mother of All Metadata files (MOAM for short).

Harvesting Data
Unix Account Information
Typically, we when a person is hired or transfers into a new team we model account set up to match
their new team. This journey began when we tired of logging into our metadata server to run the unix
“groups” command to check the unix groups of a team mate. Figure 1. shows a unix session where unix

2

accounts are checked. The initial
step in the journey to create the
MOAM file was to ask our Unix
Administration team to write a
script to query our LDAP table and
create a text file containing each
user’s network identifier and unix groups and have that extract run each morning. We then read and
manipulate the LDAP extract data and create a SAS data set. We manipulate the LDAP data so that users
having the same unix
groups that are ordered
differently are resorted to
appear in the same order.
Figure 2. shows the output
from the unix script that
extracts users’ unix groups. Note that the all four users have the same unix groups but the first and
fourth users’ unix group are in different order than the second and third users. Figure 3. shows the
users’ unix group in a SAS data set following manipulation. This might seem like a small matter, but it
simplifies the data and makes subsequent use and analysis easier.

Figure 3. Manipulated Unix Users' Groups

Human Resources Information Systems Data
As I mentioned earlier, knowing a user’s business unit is important. We have minimum access
configurations for business units and often need check peer access for users. Working with our
Information Technology and Services Division we were able to procure a download containing key
information from our Human Resources Information System (HRIS). In the past we would manually
reference our corporate organization chart for business unit information. The HRIS download allows us
to integrate the HRIS data with the SMC metadata and unix group data. As shown in Figure 4., the HRIS
data includes fields like user’s full name, division name, team name, location, and manager name.

Figure 4. HRIS Data

Figure 1. Unix Command To Check User Accounts

Figure 2 Unix Script LDAP Extract Output

3

SAS Metadata
Referencing SAS Metadata needs to be done through SMC or SAS® Environment Manager (we seldom
use Environment Manager). This is a manual process and is limited to an individual user by user look up
exercise. When looking at a user in SMC one needs to check multiple locations to see what the
resources (library, file, dataset, database) they can access. Figure 5. displays the SMC panel for a user’s
SMC Groups.

Figure 5. SAS Management Console User Account

Figure 6-A. shows the properties for a SAS Metadata library. The library properties window shows the
permission for all metadata groups with any authorization to that library.

Figure 6A. SAS Management Console Library Properties

Figure 6-B. shows the granular level permissions for each metadata groups with any Authorization to
that library.

Figure 6B. Library Permissions/Authorization

4

Conversely, trying to identify all users having access to a resource requires checking the Authorizations
tab for the library of interest, noting the groups with access to that library and finally checking the
membership of the groups that have access to that library. Figure 7. shows the properties for the group
that has access to the library shown in Figure 6A. The right panel show users in that group.

Figure 7. Metadata Group Properties and Membership

SAS® Institute stores its identity data in an
XML format that it calls Canonical tables.
SAS provides one set of macro code to
extract metadata for users and another set
of macro code to extract metadata attributes
and permissions for objects (libraries and
directories). The output datasets from
these two metadata extracts share a field for
metadata group which we use to combine
these data. The output from the user
metadata extract includes one record per
user per metadata group. Figure 8. shows
the multiple rows per user. We take the
output data from the extract code, sort the
data by user and group and create a data set with one row per user where all the metadata groups are
concatenated in one field. Figure 9. shows the same data for these users collapsed into one record per
user with all the groups in a single field with pipe delimited values.

Figure 8. SAS Metadata User Output Dataset

5

Figure 9. Collapsed SAS Metadata User Output Dataset

This is similar to what we do for the unix group data. The final MOAM file has all the unix groups in one
field and all the SAS metadata groups in another field.

We extract metadata for three object types; Databases, Datamarts and Division Folders. These objects

are highlighted in Figure 10. The code to
extract metadata attributes and permissions
for these objects (libraries, files, directories)
produces a data set with one record per library
object and metadata group with all permission
grants to the objects. You should note that
when querying relational data bases the
metadata is returned at the database field
level and in our environment the data
warehouse returned 30 million rows. We only
run this section of the code periodically and
retain table level data. Figure 11. shows the
extracted metadata for Databases, Datamarts
and Division Folders. As noted earlier there
are multiple rows per library because multiple
groups have access to these resources.

The final piece of data that we procure in the SAS Metadata section of our process is the physical
storage location for
the SAS libraries. This
is done with another
set of code that
queries the xml stored
metadata. The key for
joining the library
physical location to the
library authorizations
data is the libref.

Figure 11. SAS Metadata for Databases, Datamarts and Division Folders

Figure 10. SAS Metadata Objects of Interest

6

Figure 12. shows the dataset for the physical paths for libraries.

Figure 12. SAS Metadata Library Physical Locations

Legacy Unix Account Information
In the process of analyzing our environment’s data storage utilization we noticed that there were files
and directories that did not have a recognizable owner identifier. Typically, an object’s owner is an
alphanumeric string that is recognizable as network identifier (user’s first initial and last name). We
were seeing files and directories where the owner was just a numeric value (highlighted in Figure 13.).
After some research we learned in
that in our system, when an
account is inactivated, the
alphanumeric network identifier is
removed from objects owned by
the inactivated user and the
object owner is left as a numeric
user identification number (UID).
Leaving only a numeric UID
effectively renders objects
unidentifiable. Further research
indicated that there wasn’t any
systematic or institutional process
for mapping recognizable network identifiers (typically first name initial concatenated with last name) to

UIDs for inactivated accounts. We were able to obtain a
onetime run of network identifiers to UIDs mappings from our
Unix Administration Team which provided recognizable network
identifiers for all but a handful of inactivated users and their
respective stored files and directories. Knowing that that there
wasn’t any systematic or institutional process for mapping
recognizable network identifiers to UIDs we decided to begin
building our own compendium (Figure 14.) of these mappings
with the onetime run as the starting point. When we build the
MOAM file we also check the base compendium dataset and

add a record for users containing network identifier (useful alphanumeric value) and UID (useless
numeric value). The compendium dataset serves as a reference tool for inactivated accounts whose
owner is only identified with the numeric UID.

Figure 13. Unix Directory and Object Ownership

Figure 14. Collected Network IDs and UIDs

7

Assembling the Data
After harvesting the input data, we assemble the data by running joins using the various keys. It is
important to understand the cardinality amongst the various input data sets. The resulting MOAM file
has multiple rows per user. Each user has a set of unix groups attached to their unix identity. I refer to
this as their operating system security. Users also have a set of metadata groups which I refer to as
application level security. As discussed, we placed all the unix groups into a single field and all SAS
Metadata groups in to a single field in the MOAM file. Up to this point we still maintain one row per
user account (one to one relationships). Unfortunately, bringing in the library metadata results in
multiple rows per user. Because each user can have multiple metadata groups allowing access to
multiple metadata resources (files and libraries), there is a one to many relationship and the join of user
data to resource data creates multiple rows per user. Figure 15-A. shows the repeating rows of data for
a single user in the MOAM file. Note that the repeating rows have distinct “auth_library” values.

Figure 15A. Library Metadata

Figure 15-B. displays the permission grants for each library. There is not much variation here but if you
note, the user has full Read, Write and Delete grants for the EDW SASRPT library (highlighted).

Figure 15B. Library Metadata-Permissions/Grants

Since much of the information in the rows repeats and most of our use cases only require parts of the
data we can simply select one row of data per member when we generate a report. Figure 15-C. shows a
non-duplicated set of rows. As noted earlier all unix groups as space delimited values in the
“unixgroup” field and all SAS Meta Data groups in pipe delimited “smc_allgrouplist” field, but here the
fields are together in the same dataset shown along with the HRIS data.

Figure 15C. MOAM File Distinct Rows

8

Staging the Data
Having the MOAM file created weekly is generally adequate for our needs. The data from the SAS
Metadata is compiled at run time each week. The unix data is extracted daily for another process so it is
available for our weekly MOAM file processing. The HRIS data is extra is run once per week. We run
the entire process using the SAS® Schedule Manager every Sunday morning. The weekly run includes
the SAS Metadata extract. Each weekly run of the MOAM process creates a permanent file with a date
stamp suffix. The date stamp suffix allows us to go back and retrieve a snap shot of our user metadata
for a given point in time.

Code Review
For purposes of brevity I will only be looking at the code we borrowed from SAS Institute. The full set of
code including the code for processing and integrating our additional data sources is available with my
paper. We used three sets of code borrowed from SAS Institute. The soure URLs are bolded in the code
comments. The first set of code queries and extracts the library permissions metadata. There are few
things to note about the library permission metadata. First, as previously noted, when running the
macro, we specified three metadata folder objects of interest (Divisional Folders, Datamarts and
Databases). Second, databases objects can return a very large volumes of data, so you may consider
updating it only periodically (versus every time you run your process). Third, the query returns a lot data
that was not useful to us so after spending time reviewing the data we limited record types. Lastly, the
mdsecds_join is the key source table in the extract. We do three passes on the metadata and then
concatenate the resulting output files.

/***************** Start: library & permission data set up-staging. ************/
/* Data set up-staging. This block gets library & permission data. */
/* This program queries the sas metadata (which is store as xml) and returns detailed */
/* data on our metadata libraries and their respective authorizations. so, we can see we can see libraries and
what groups have permissions on the libraries. the code is a sas macro from SAS Institute. b/c the data is
stored in xml the queries are kind of hard to understand and if you spend too much time thinking about it
your hair will hurt. HGM 20170628 */

/* connect to the metadata server */
 options metaserver=saprdvmet.excellus.com
 metauser="username"
 metapass="{SAS003}XX";

/* Run the main report macro against a target folder the folder option points to SAS Mgt Concole folder(s) I
run 3 of these: /Divisional Folders, /Datamart and /Databases. Heads up! the databases folder returns 30
million rows. it is row/col level & very detailed. I dump column level data so it is more manageable the
mdsecds_join is the JACKPOT file here I am just dumping the data out to permanent sas data sets I am
attaching a prefix to the data set name. This is canned code from sas that queries the metadata to find
this macro and documentation search %mdsecds */
/*http://support.sas.com/documentation/cdl/en/bisecag/63082/HTML/default/viewer.htm#n0l1
mpdt430djgn1bl1c3euei85w.htm */

%mdsecds(folder="/Datamart");

data authdata.datamart_mdsecds_join ;

9

set work.mdsecds_join ;
run;

%mdsecds(folder="/Divisional Folders");
data authdata.DIVFLDR_mdsecds_join ;
set work.mdsecds_join ;
run;

/* As mentioned this returns 30 MILLION rows so I am leaving it commented out until */
/* we feel that the oracle DB info need to be updated. */

/*%mdsecds(folder="/Databases"); * updated 20181207 ;
data authdata.DATABASES_mdsecds_join ;
set work.mdsecds_join ;
run;*/

/* after the meta for each data type is extracted it needs to be combined into one data set. that happens
next */

 /* 20170706 hgm: I profiled this metadata & figured out that in authorizations */
 /* data, identityname is the SMC Group! Johnny was very helpful with this too. */
 /* he suggested that i wasnt getting the correct rows and we should be able to join on objname from here
(authdata) to the library data . may need to include identityname in the join. hang on to identitytype b/c it
has "person"s SMC Groups */

data authdata.libraries_groups_perms;
set authdata.DATABASES_MDSECDS_JOIN (in=databases)
 authdata.DATAMART_MDSECDS_JOIN (in=datamart)
 authdata.DIVFLDR_MDSECDS_JOIN (in=divfldr);
length objecttype $ 20 ;

/* HGM - lots of metadata object types are returned. We thin it down here. */
where PublicType in ("Folder", "Library") and metadatatype in ("SASLibrary") and
 identityname not in ("PUBLIC" , "SAS System Services" , "SASAdministrators") ;

if databases then objecttype = "Databases" ;
if datamart then objecttype = "Datamart" ;
if divfldr then objecttype = "Division Folder" ;
run ;
/***************** End of library & permission data set up-staging. ***************/

The second set of code we borrowed, extracts user level information. The only point to mention here is
that we limit the data returned to name dispname ExtLogin MDUpdate group.

/*************** Start: User SAS MetaData extract, set up-staging. **************/
/* source: */
/*http://support.sas.com/documentation/cdl/en/lrmeta/63180/HTML/default/viewer.htm#p1k9zipe59h
a2an1pq34gu143lay.htm */

10

data tmp1day.smc_users_grps;
/* The LENGTH statement defines variables for function arguments and assigns the maximum length of each
variable. */

 length uri uri2 uri3 uri4 name dispname group groupuri ExtLogin $256 id MDUpdate $20;

/* The CALL MISSING routine initializes output variables to missing values. */

 n=1;
 n2=1;
 call missing(uri, uri2, uri3, uri4, name, dispname, group, groupuri, ExtLogin, id, MDUpdate);

 /* The METADATA_GETNOBJ function specifies to get the Person objects in the repository. The n argument
specifies to get the first Person object that is returned. The uri argument will return the actual uri of the
Person object that is returned. The program prints an informational message if no Person objects are found.
*/

 nobj=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
 if nobj=0 then put 'No Persons available.';

/* The DO statement specifies a group of statements to be executed as a unit for the Person object that is
returned by METADATA_GETNOBJ. The METADATA_GETATTR function gets the values of the object's Name
and DisplayName attributes. */

 else do while (nobj > 0);
 objrc=metadata_getattr(uri, "Name", Name);
 objrc=metadata_getattr(uri, "DisplayName", DispName);

/* The METADATA_GETNASN function gets objects associated via the InternalLoginInfo association. The
InternalLoginInfo association returns internal logins. The n2 argument specifies to return the first associated
object for that association name. The URI of the associated object is returned in the uri2 variable. */

objrc=metadata_getnasn(uri,"InternalLoginInfo",n2,uri2);

/* If a Person does not have any internal logins, set their IntLogin variable to 'No' Otherwise, set to 'Yes'. */
IntLogin="Yes";
DomainName="**None**";
if objrc<=0 then
do;
put "NOTE: There are no internal Logins defined for " IdentName +(-1)".";
IntLogin="No";
end;

/* The METADATA_GETNASN function gets objects associated via the Logins association. The Logins
association returns external logins. The n2 argument specifies to return the first associated object for that
association name. The URI of the associated object is returned in the uri3 variable. */

objrc=metadata_getnasn(uri,"Logins",n2,uri3);

11

/* If a Person does not have any logins, set their ExtLogin variable to '**None**' and output their name. */
if objrc<=0 then
do;
put "NOTE: There are no external Logins defined for " IdentName +(-1)".";
ExtLogin="**None**";
output;
end;

/* If a Person has many logins, loop through the list and retrieve the name of each login. */
do while(objrc>0);
rc=metadata_getattr(uri3,"UserID",ExtLogin);

/* If a Login is associated to an authentication domain, get the domain name. */
DomainName="**None**";
objrc2=metadata_getnasn(uri3,"Domain",1,uri4);
if objrc2 >0 then
do;
 objrc2=metadata_getattr(uri4,"Name",DomainName);
end;

/*Output the record. */
output;
n2+1;

/* Retrieve the next Login's information */
objrc=metadata_getnasn(uri,"Logins",n2,uri3);
end;
 /*do while objrc*/

/* The METADATA_GETNASN function gets objects associated via the IdentityGroups association. The a
argument specifies to return the first associated object for that association type. The URI of the associated
object is returned in the groupuri variable. */

 a=1;
 grpassn=metadata_getnasn(uri,"IdentityGroups",a,groupuri);

/* If a person does not belong to any groups, set their group variable to 'No groups' and output their name.
*/

 if grpassn in (-3,-4) then do;
 group="No groups";
 output;
 end;
 /* If the person belongs to many groups, loop through the list and retrieve the Name and MetadataUpdated
attributes of each group, outputting each on a separate record. */

 else do while (grpassn > 0);
 rc2=metadata_getattr(groupuri, "Name", group);
 rc=metadata_getattr(groupuri, "MetadataUpdated", MDUpdate);

12

 a+1;
 output;
 grpassn=metadata_getnasn(uri,"IdentityGroups",a,groupuri);
 end;

 /* Retrieve the next person's information */
 n+1;
 n2=1;
 nobj=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
 end;

/* The KEEP statement specifies the variables to include in the output data set. */

 keep name dispname ExtLogin MDUpdate group; *** Thinning file to key fields ;
run;
/*************** End of User MetaData extract, set up-staging. *******************/

The last set of code that we borrowed, extracts the physical directory path for a resource’s location. The
important fields in this extract are name libref path and we use libref as the key when we join it with
our other data.

/**** Start of Code to find the physical location assoc with SMC Libraries ***/

/* this is some more borrowed code that queries the metadata. This is pirated code */

/* https://communities.sas.com/t5/Administration-and-Deployment/Listing-Metadata-libraries/td-
p/359558 */

 data authdata.librarylocations;

/* The LENGTH statement defines variables for function arguments and assigns the maximum length of each
variable. */

 length liburi upasnuri $256 name $128 type id $17 libref engine $8 path
mdschemaname schema $256;

/* The KEEP statement defines the variables to include in the output data set. */

 keep name libref engine path mdschemaname schema;

/* The CALL MISSING routine initializes the output variables to missing values. */

 call missing(liburi,upasnuri,name,engine,libref);

 /* The METADATA_GETNOBJ function specifies to get the SASLibrary objects in the repository. The
argument nlibobj=1 specifies to get the first object that matches the requested URI. liburi is an output
variable. It will store the URI of the returned SASLibrary object. */

13

 nlibobj=1;
 librc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",nlibobj,liburi);

 /* The DO statement specifies a group of statements to be executed as a unit for each object that is
returned by METADATA_GETNOBJ. The METADATA_GETATTR function is used to retrieve the values of the
Name, Engine, and Libref attributes of the SASLibrary object. */

 do while (librc>0);

 /* Get Library attributes */
 rc=metadata_getattr(liburi,'Name',name);
 rc=metadata_getattr(liburi,'Engine',engine);
 rc=metadata_getattr(liburi,'Libref',libref);

 /* The METADATA_GETNASN function specifies to get objects associated to the library via the
UsingPackages association. The n argument specifies to return the first associated object for that association
type. upasnuri is an output variable. It will store the URI of the associated metadata object, if one is found.
*/

 n=1;
 uprc=metadata_getnasn(liburi,'UsingPackages',n,upasnuri);

 /* When a UsingPackages association is found, the METADATA_RESOLVE function is called to resolve the
URI to an object on the metadata server. The CALL MISSING routine assigns missing values to output
variables. */

 if uprc > 0 then do;
 call missing(type,id,path,mdschemaname,schema);
 rc=metadata_resolve(upasnuri,type,id);

 /* If type='Directory', the METADATA_GETATTR function is used to get its
path and output the record */
 if type='Directory' then do;
 rc=metadata_getattr(upasnuri,'DirectoryName',path);
 output;
 end;

 /* If type='DatabaseSchema', the METADATA_GETATTR function is used to get
the name and schema, and output the record */

 else if type='DatabaseSchema' then do;
 rc=metadata_getattr(upasnuri,'Name',mdschemaname);
 rc=metadata_getattr(upasnuri,'SchemaName',schema);
 output;
 end;
 /* Check to see if there are any more Directory objects */

 n+1;
 uprc=metadata_getnasn(liburi,'UsingPackages',n,upasnuri);

14

 end; /* if uprc > 0 */
 /* Look for another library */
 nlibobj+1;
 librc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",nlibobj,liburi);
 end; /* do while (librc>0) */
run;
/**** End of Code to find the physical location assoc with SMC Libraries ***/

Use Cases
Here is a list of use case examples that we have seen or could quickly respond to:

• Corporate Compliance has asked us to provide a list of Excellus SAS users.
• What resources can Lara Croft access?
• What users, business teams have access to the XYZ library?
• Profile business units’ unix group configurations and develop a minimum configuration

for new user for each business unit. This is a best practice for security provisioning.
• John Wick’s accounts were accidently deleted yesterday, what unix groups did he have?

Need to rebuild his unix account and SAS Metadata account.
• Evelyn Salt changed departments two years ago, (dropping SAS and unix accounts) but

has returned, what unix and SMC Groups did she have before he left.
• The SAS Administration Team is migrating from unix to a linux platform and we have an

opportunity to re-architect and optimize our security model. The implementation
consultant and project manager need an overview of the current security model
implementation.

• The New York State Department of Financial Services is auditing a regulatory submission
from 2014. The equalization SAS code was written by analyst Robert McCall who left the
company in 2016. Locate McCall’s equalization code and data.

• Excellus IT Department is decommissioning the Legacy Mainframe Data Warehouse
data. Provide a list of all users who have been granted permission to use this Legacy
Mainframe Data Warehouse data.

Conclusion
The goal of this paper has been to show that while identity, authorization and security data may be
available from different sources it is disparate, and likely presented in a transactional format. Going to
multiple sources and working with individual level data is acceptable for certain purposes but for meta
level reporting, analysis and decision making it is unworkable. By making use of SAS® Institute provided
macros and code and harvested SAS® Metadata, human resources, and LDAP data we have been able to
create a consolidated source of information on our users and data resources. This consolidated source
of information allows us more effectively manage users and data resources, to provide better customer
service and respond quickly to management and inquiries from internal and external regulators.

Contact Information:
Hugh G. McCabe
Excellus Blue Cross Blue Shield
hugh.mccabe@excellus.com

mailto:hugh.mccabe@excellus.com

