
Copy That!
Using SAS® to Create Directories and Duplicate Files

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Nicole Ciaccia, Educational Testing Service

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Overview

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

• Abstract
• Creating a Single Folder or Directory

• DLCREATEDIR
• DCREATE
• X md

• Creating Multiple Folders or Directories
• Duplicating Files

• X copy
• System Copy
• Batch File

• Duplicating Multiple Files
• Batch File
• System Copy

• Conclusion
1 of 12

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Abstract

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

•Whether it is due to a client’s request or for organizational purposes, sometimes
the creation of several directories is required.

• Along those same lines, business requirements may dictate that the same
document or checklist be filled out for each individual client or product that a
company manages.

• SAS has a variety of system options, functions and commands that can be used
to assist in file management and organization.

• These tools can be leveraged in order to automate such repetitive, routine tasks
and save the user a great deal of time.

2 of 12

• DLCREATEDIR (a system option)
• Used with a LIBNAME statement, a folder is created with 2 lines

of code:

• If subfolders are needed, multiple specifications in the LIBNAME
statement can be used:

• Note: It is important to put the individual file paths in the proper order;
Manufacturers can’t be created under Cars if Cars has not been created first.

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Creating a Single Folder or Directory

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

3 of 12

• DCREATE (a function)
• Syntax: new-directory=DCREATE(‘new-directory-name’, ’parent-directory’);

• Since DCREATE is a function, it can be used in a data step:

Name of new directory
to be created

Path where new
directory will be created

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Creating a Single Folder or Directory

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

4 of 12

• X md (an X Statement)
• X statements give the operating system a command directly from SAS.

• The SAS session is exited and the processor is temporarily accessed.

• Syntax: X ‘Command’ where command is the desired command to give the
operating system. X ‘md’ will Make Directories.

X ‘md new-directory-file-path’;

• When issuing an X statement, a DOS Window automatically opens and
submits the command. In order to close the DOS Window, you must type
‘exit.’

• Adding the noxwait option before using an X statement allows the DOS
window to close automatically and return to the SAS session automatically
without the user having to do anything else:

**Different from using DLCREATEDIR in that both the Cars and Manufacturers folders
can be created at the same time with one X statement.

• Instructs Windows to leave SAS temporarily to create a folder, ‘Cars’ and a
subfolder, ‘Manufacturers’ on the C: drive:

• Business Application: Create a folder for each of the car
manufacturers listed in Sashelp.Cars
• Can be accomplished using DLCREATEDIR with a LIBNAME statement

and the CALL EXECUTE routine.

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Creating Multiple Folders or Directories

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

5 of 12

• SAS cycles through the data set and executes a LIBNAME statement for each
observation.

• The corresponding value of Make for each observation is inserted into the
LIBNAME statement as the name of the folder to be created.

While only the DLCREATDIR option was
shown here, a similar method could be

applied substituting in DCREATE or X md.

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Duplicating Files

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

6 of 12

• X Copy
• Instead of putting ‘md’ in the command argument to make directories,

the Copy command can be used in order to duplicate files.

• Syntax: X ‘Copy original-file output-file’

File path of document
to be duplicated

File path where duplicated
file should be placed

• System Copy
• The SYSTEM function can also be utilized to instruct the operating system to

perform a desired command.

• Syntax: System (‘Copy original-file output-file’);

• Generates a return code that denotes if the command executed or not.

• For Windows 7, by default, it will return 0 if the command executes
properly and 1 if it does not.

• Document1 will again be duplicated, but this time a variable, check, is
created that stores the return code and states whether or not the
command executed.

Note: Unlike X commands, the SYSTEM function can be used conditionally if
desired.

• Document1 located in C:\Input is specified as the file to duplicate, and
it should be copied to C:\Output, this time named Document2.

Note: X commands are global statements so they cannot be executed
conditionally.

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Duplicating Files

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

7 of 12

• Create a Batch File
• A batch file is a script that contains a series of commands to be performed

by the processor

• For Windows, the extension for this plain text file is .bat.

• When batch file is double clicked, commands contained within are carried
out.

• File can be created by typing the appropriate commands in a text editor,
such as Notepad or Textpad, and saving it with the .bat extension, or SAS
can be used to create this file automatically.

• Once the file is double clicked on, Document1.xlsx will be copied into
C:\Output as Document2.xlsx.

• The folder C:\Input now contains a batch file named setup.

• Note: the batch file remains in C:\Input and should be deleted after it has
been run. (If desired, you can code to have the .bat automatically delete
after being run.)

• A variable, final, is defined with the desired command. The syntax is the
same as System Copy: ‘Copy original-file output-file’.

• The output location for the batch file is defined with a file statement, and
the put statement specifies that the ‘final’ variable should be written out to
this file.

• Business Application: Create a checklist for each car
model in the appropriate manufacturer’s folder, based
on car type.
• 6 types of cars listed under the Type variable:

SUV, Sedan, Sports, Wagon, Hybrid and Truck.
• Suppose a company has separate checklists for each

vehicle type.

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Duplicating Multiple Files

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

8 of 12

Two Methods for Completing the Task:
1. Creating a Batch file

2. Using System Copy

• Example: Output an SUV checklist in the Acura folder
with the name MDX.

How to efficiently create 428
checklists and output them all in

the correct place?

Coding is simple, runs faster.
SAS Log only tells you if batch file was created
successfully, not if the files were successfully
duplicated.

SAS Log tells you directly if files were created.
Coding is more complex, takes longer to run.

• Assume that a copy of each of these checklists exists as
an .xlsx document in C:\Checklists.

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Duplicating Multiple Files

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

• Batch File Method
• Syntax for the command contained in the batch file is:

‘Copy original-file output-file’

• SAS needs to cycle through the Cars data set and output a line for each
time a file needs to be copied.

• Each line must contain the corresponding:

1. File to be copied (from Type)

2. Output file name (from Model)

3. Output file location (from Make)

• Defines a variable, final, that is equal to the desired command.

• Final is set up as a shell, inserting the 3 variables that will change
depending on each observation:

A batch file with these commands
is output to C:\Cars:

• Once this code is run, the data set Checklists looks like this:

Once the batch file is double clicked:

9 of 12

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Duplicating Multiple Files

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

• System Copy Method
Step 1: Because the values of Type, Model and Make will be used as variables
within SYSTEM, some data manipulation needs to occur.

• All spaces need to be changed to underscores or compressed.

• Forward slashes will need to be replaced with underscores.

10 of 12

Step 2: Assign each Make, Model and Type as a macro variable value using the
CALL SYMPUT routine:

• Three variables will be changing, so three CALL SYMPUT statements are needed.
• STRIP is used to ensure there are no extra blank spaces.
• The last observation in the data set is identified and then that observation

number is stored in the macro variable, NModels so that SAS knows how many
times to cycle through the do loop.

**When the folders were created, compress was not used. The name of
this folder can be manually changed to LandRover since it is the only

manufacturer with this issue. If this was an issue for multiple
manufacturers, the Make variable could have been compressed in the

CALL SYMPUT statement when creating the folders initially.)

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Duplicating Multiple Files

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

• System Copy Method
Step 3: Now that all macro variables have been created, a SYSTEM Copy
statement can be used inside a macro, and these variables are inserted each
time the do loop cycles through:

11 of 12

• After running the code, the log can be searched for Check=1 to see if all files

were duplicated.

• (Symbolgen option is included-to make troubleshooting easier).

• Searching for Check=1 yields no results, and the user receives confirmation

that all checklists are output.

Copy That! - Using SAS® to Create Directories and Duplicate Files
Nicole Ciaccia

Educational Testing Service

Conclusion

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

• Though the coding seen here is relatively simple, it is powerful. It can save the
user a great deal of time and assist considerably in arranging files and
completing organizational tasks.

• These are just a few of the methods that can be used to create directories and
duplicate files, and there is even greater potential for utilizing SAS to interact
with an operating system.

• The reference section of the paper associated with this ePoster gives a more in
depth look at these commands and functions as well as other ways that they can
be used.

12 of 12

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Paper 2489-2018

Copy That! - Using SAS® to Create Directories and Duplicate Files

Nicole Ciaccia, Educational Testing Service

ABSTRACT

Whether it is part of a client’s request or needed for organizational purposes, the creation of several

directories is often required. Along those same lines, business requirements sometimes dictate that the

same document or checklist be filled out for each individual client or product that a company manages.

The monotony of creating and naming folders or doing a save-as function for files is a task that few

eagerly anticipate having to do. With a little help from SAS®, you don’t have to! In this paper we explore

different methods of using SAS system options, functions and commands to create separate directories

and duplicate files based on a given data set. First, we investigate multiple ways to create a single

directory in SAS. Then, using the SAS data set Sashelp.Cars, we use these functions and commands to

create directories for each of the car manufacturers listed in the data set. Finally, we discuss how to use

SAS to copy existing files, and, again using the Sashelp.Cars data set as an example, generate a checklist

for each car model in the data set.

INTRODUCTION

While SAS can be used to create directories and copy files on several operating systems, this paper will

explore doing so using Windows. These concepts can be applied if using other systems, but the

directories would be slightly different (ie instead of ‘C:\Users\’, if using Unix for example, use

'/local/u/abcdef/'). In this paper, DLCREATEDIR, DCREATE, X Commands, System Copy and creating a

Batch file will be used, but these are just a few of the many ways SAS can be leveraged to assist in file

management and organization.

CREATING A SINGLE FOLDER OR DIRECTORY

DLCREATEDIR (a system option)
One of the simplest options that can be used to create a directory is the DLCREATEDIR system option.

When the DLCREATEDIR option is turned on and used with a LIBNAME statement, if a libref is assigned

to a folder that doesn’t exist, SAS will create it. Using this option, a folder can be created with just two

lines of code:

options dlcreatedir;

libname Folder "C:\Cars";

After running this code, a folder named ‘Cars’ now exists on the C drive. If subfolders are needed,
multiple specifications in the LIBNAME statement can be used:

options dlcreatedir;

libname Folder ("C:\Cars", "C:\Cars\Manufacturers");

Note: It is important to put the individual file paths in the proper order - Manufacturers can’t be created

under the Cars directory if Cars has not been created first. For this same reason,

"C:\Cars\Manufacturers" could not be used alone in the LIBNAME statement if C:\Cars did not yet exist.

Since these SAS librefs were only needed to create folders, they can be cleared afterward if desired:

libname Folder clear;

DCREATE (a function)
Another way to create a directory is using the DCREATE function. The syntax is as follows:

new-directory=DCREATE(‘new-directory-name’, ’parent-directory’);

New-directory-name is the name of the directory that will be created. It can be either a character

constant, a variable or expression. Parent-directory is the path where the new directory will be created.

This argument is optional. If a parent directory is not specified in the DCREATE function, the current

directory is the default and the folder will be output there.

Since DCREATE is a function, it can be used in a data step. Consider the following code:

Data _null_;

 NewDirectory=dcreate('Cars','C:\');

Run;

In this case, a new folder, Cars, is created on the C drive.

Using X Statements (X ‘md’)
The X statement can be used to give the operating system a command directly from SAS. After

submitting an X statement, the SAS session is exited and the processor is temporarily accessed. The

syntax is X ‘command’ where command is the desired command to give the operating system. There are

a variety of these commands that can be issued, but we will specifically be looking at X ‘md’ which

makes directories. When using X ‘md’ the syntax is:

X ‘md new-directory-file-path’;

For example, the code shown below would instruct Windows to leave SAS temporarily to create a folder,

‘Cars’ and a subfolder, ‘Manufacturers’ on the C: drive:

Data _null_;

 X 'md C:\Cars\Manufacturers';

Run;

Notice this is different from using DLCREATEDIR in that both the Cars and Manufacturers folders can be

created at the same time with one X statement.

When issuing an X statement, a DOS Window automatically opens and submits the command. In order

to close the DOS Window, you must type ‘exit.’

To avoid having to do this and have the DOS window close automatically, the noxwait option can be

added. This allows the processor to go back to the SAS session automatically so that the program will

continue to run without the user having to do anything else. Adding noxwait to the previous example:

options noxwait;

Data _null_;

 X 'md C:\Cars\Manufacturers';

Run;

CREATING MULTIPLE FOLDERS OR DIRECTORIES

Now that creating a single directory has been explored, this knowledge can be extended to create

multiple directories based off of the SAS data set SAShelp.Cars. The coding below uses DLCREATEDIR and

the CALL EXECUTE routine to do so. While any of the above methods could be used, DLCREATEDIR was

chosen because it is the simplest method.

The objective is to create a folder for each of the car manufacturers listed in the data set under the

variable Make.

In the coding below, SAS cycles through the data set and executes a LIBNAME statement for each

observation. The corresponding value of Make for each observation is inserted into the LIBNAME

statement as the name of the folder to be created under C:\Cars\Manufacturers (which already exists

from the previous coding above). As SAS cycles through the data set, each of the desired folders is

created as necessary:

options dlcreatedir;

Data _null_;

Set Sashelp.Cars;

Call Execute("libname Folder 'C:\Cars\Manufacturers\" || Make || "';");

Run;

Though there are repeated values of the Make

variable in the data set, each folder is only created

the first time the value is encountered during the

data step. Hence, the repeated values will not add

much more processing time. However if desired, the

data set could be copied and sorted using the

nodupkey option to eliminate any duplicates.

DUPLICATING FILES

Using X Statements (X ‘copy’)
Similar to how X ‘md’ can create directories, the X statement can also be used to duplicate files. Instead

of putting md in the command argument, the Copy command can be used in order to duplicate files.

The syntax in this context is:

 X ‘Copy original-file output-file’;

Original-file is the file path of the document that is to be duplicated. Output-file is the file path where

the duplicated file should be placed.

In the code below, the Document1 excel file located in C:\Input is specified as the file to duplicate, and it

should be copied to C:\Output, this time named Document2. Again, the noxwait option is included so

that the DOS window closes automatically:

options noxwait;

Data _null_;

 X 'Copy C:\Input\Document1.xlsx C:\Output\Document2.xlsx';

Run;

It is important to note that X commands are global statements so they cannot be executed conditionally.

System Copy
Similar to X Commands, the SYSTEM function can also be utilized to instruct the operating system to

perform a desired command. The syntax for this function is System (command). Similar to an X

statement, the command argument in the SYSTEM function can use the same format:

System (‘Copy original-file output-file’);

A helpful attribute of the SYSTEM function is that it generates a return code that denotes if the
command executed or not. This return code is dependent on the operating environment. By default, for
Windows 7, SYSTEM will return 0 if the command executes properly and 1 if it does not. This return code
can then be leveraged as a future condition (ie if command processed successfully, continue. If not, stop
processing the code). In the coding below, the same Document1 file will again be duplicated, but this
time a variable, check, is created that stores the return code and states whether or not the command
executed:

options noxwait;

Data _null_;

 Check= system('Copy C:\Input\Document1.xlsx C:\Output\Document2.xlsx');

 put Check=;

Run;

After running this code, the log states that Check=0, meaning the command executed properly.

Unlike X commands, the SYSTEM function can be used conditionally if desired. The coding below would

only execute successfully on Mondays. All other days, the file would not copy:

options noxwait;

Data _null_;

 if "&sysday"="Monday" then do;

 Check=system('Copy C:\Input\Document1.xlsx C:\Output\Document2.xlsx');

 end;

put Check=;

Run;

Create a Batch file
Finally, SAS can be used to output a batch file that can then be run to duplicate files. A batch file is

essentially a script that tells the operating system what to do, made up of a series of commands to be

performed by the processor. For Windows, the extension for this plain text file is .bat. When the batch

file is double clicked, the commands contained within are carried out. This file can be created manually

by typing the appropriate commands in a text editor, such as Notepad or Textpad, and saving it with the

.bat extension. SAS can be used to create this file automatically.

Within a datastep, we define a variable, final, and enter in the desired command with the same syntax

as when System Copy was used: ‘Copy original-file output-file’. The output location for the batch file is

defined with a file statement, and the put statement specifies that the ‘final’ variable should be written

out to this file:

Data _null_;

 final='Copy C:\Input\Document1.xlsx C:\Output\Document2.xlsx';

 file "C:\Input\setup.bat";

put @1 final;

Run;

The folder C:\Input now contains a batch file named setup. Once the file is double clicked on,

Document1.xlsx will be copied into C:\Output as Document2.xlsx.

Note: the batch file remains in C:\Input and should be deleted after it has been run. (If desired, it is

possible to add coding to have the .bat automatically delete after being run.)

Duplicating Multiple Files

While using SAS to copy a single file doesn’t seem particularly useful, the true potential for this coding

becomes clear when applied to a more authentic scenario. Returning to the Sashelp.Cars data set, there

are 6 different types of cars listed in the Type variable – Hybrid, Sedan, Sports, SUV, Truck and Wagon.

Suppose a company has separate checklists for each vehicle type and needs to output the correct

checklist in the appropriate Make folder for each Model of car. Using the first observation as an

example, an SUV checklist would need to be output in the Acura folder with the name MDX.

There are 428 observations in the Cars data set. How can all of these checklists be output in an efficient

manner? The folders all exist from the previous exploration of using DLCREATEDIR. The task at hand

then becomes copying the correct checklist and placing it in the correct folder with the correct name.

The coding strategies for duplicating referenced above can be extended to copy multiple files and fulfill

this business need.

First let’s examine creating these checklists using a batch file. Remembering that the syntax for the

command contained in the batch file is ‘Copy original-file output-file’, SAS needs to cycle through the

Cars data set and output a line for each time a file needs to be copied with the corresponding file to be

copied, output file name, and output file location.

Assume a copy of each of the checklists exists as an .xlsx document in C:\Checklists.

The code below once again defines a variable, final, that is equal to the desired command. In this case,

final is set up as a shell, concatenating certain parts of the statement that will stay the same in every

line, but also inserting the 3 variables that will change depending on each observation:

Data Checklists (keep=final);

Set Sashelp.cars;

 Model=translate(Model,'_','/');

 final=cat('COPY "','C:\Checklists\',strip(Type),'.xlsx" ',

 '"C:\Cars\Manufacturers\',strip(Make),'\',strip(Model),'.xlsx"');

Run;

Notice that the CAT version of the concatenate function is used instead of CATS because any leading or

trailing spaces are included intentionally and we do not want them stripped before concatenating. The

STRIP function is used with each of the variables so that any unintentional leading or trailing spaces

within these values are stripped. Also, there are car models in the data with forward slashes (ie.

Observation 6, 3.5 RL w/Navigation 4dr). Since Model will be used as the file name and Windows doesn’t

allow forward slashes in file names, these are replaced with underscores using the TRANSLATE function.

Once this code is run, the data set Checklists looks like this:

A line is output for each observation in the Cars data set with directions to copy the correct checklist and

output it to the appropriate folder with the appropriate file name.

Adding in a file and a put statement to the coding above results in the batch file being output:

Data Checklists (keep=final);

Set Sashelp.cars;

 Model=translate(Model,'_','/');

 final=cat('COPY "','C:\Checklists\',strip(Type),'.xlsx" ',

 '"C:\Cars\Manufacturers\',strip(Make),'\',strip(Model),'.xlsx"');

 file "C:\Cars\.setup.bat";

 put @1 final;

Run;

Once the batch file is run, the checklists will appear in each of the Manufacturers folders.

While creating a batch file is relatively simplistic in terms of coding, one drawback of using this method

is that the SAS log only displays if the batch file was created correctly. It does not state if the commands

in the batch file performed as expected, since that is done outside of SAS. If it is important to the user to

be able to check that the files were duplicated successfully without going into the folders and checking

manually, the SYSTEM Copy method might be better suited.

To accomplish this, we will use the CALL SYMPUT routine to make variables out of the Make, Model,

Type, and observation number for each observation in the data set. Then, these variables will be

inserted into a SYSTEM COPY statement that is contained within a do loop macro. Using a do loop macro

allows SAS to cycle through and execute the SYSTEM COPY function for each observation in the data set.

Because the values of Type, Model and Make will be used within SYSTEM, some data manipulation

needs to occur before using them to create variables in order for the code to run successfully. The

duplication will not complete if there are spaces in the values of variables, so all spaces need to be

changed to underscores or compressed. Additionally, just like when creating the batch file, no forward

slashes can be included in the final file names, so these will once again be replaced using the TRANSLATE

function:

Data CarModels (keep=make model type);

Set Sashelp.cars;

 Model=(tranwrd(strip(Model), ' ', '_'));

 Model=translate(Model,'_','/');

 Make=compress(Make);

Run;

The Cars data set is read in and the Model variable is stripped of all trailing and leading blanks. Then all

remaining spaces, (such as those in between words), are changed to underscores using the TRANWRD

function. All forward slashes are changed to underscores using the TRANSLATE function, and then all

spaces in the Make variable are eliminated using the COMPRESS function. (This statement is needed

because the car manufacturer Land Rover has a space and if the space is left, the checklists will not

output. When the folders were created, compress was not used. The name of this folder can be

manually changed to LandRover since it is only one manufacturer with this issue, or if this was an issue

for multiple manufacturers, the Make variable could have been compressed when creating the folders

initially.)

Now that the necessary manipulations to the data have been made, they can each be turned into macro

variables using CALL SYMPUT:

Data _null_;

Set CarModels end=last;

 call symput(cats("Make",_N_),strip(Make));

 call symput(cats("Model",_N_),strip(Model));

 call symput(cats("Type",_N_),strip(Type));

 if last then do;

 call symput("NModels", _N_);

 end;

Run;

In the first Call SYMPUT statement, a macro variable is created for each observation in the data set

based off of the variable Make. The name of the macro variable is the concatenation of the word

“Make” with the observation number. The value each macro variable is defined as is the corresponding

value of Make for that observation. STRIP is used to ensure there are no extra blank spaces. Since Model

and Type will also be used, two more CALL SYMPUT statements are needed to repeat the process for

these variables as well.

Using the screen shots below as an example, the macro variable Make100 resolves as Chrysler because

Chrysler is the 100th observation in the data set. The same is true for Model100 and Type100 - they

correspond to the values of Model and Type for the 100th observation.

In addition to defining the values of the variables that will be inserted into the SYSTEM COPY statement,

SAS will also need to know how many times to cycle through the do loop. The coding above identifies

the last observation in the data set and then that observation number is stored in the macro variable,

NModels.

Now that all of the appropriate macro variables have been created, a SYSTEM Copy statement can be

used inside a macro, and these variables are inserted each time the do loop cycles through:

options noxwait symbolgen;

%macro copychecklists;

%do i=1 %to &NModels;

 Data _null_;

 Check=system("Copy C:\Checklists\&&Type&i...xlsx

 C:\Cars\Manufacturers\&&Make&i..\&&Model&i...xlsx");

 put Check=;

 Run;

%end;

%mend copychecklists;

%copychecklists;

This code takes a few minutes to run, but once it is complete, all checklists are present in the correct

folders. While the code takes slightly longer and the file names don’t look exactly the same as in the

data set (they do with batch file), the log can easily be scanned for Check=1 to see if all files were

duplicated as expected. (This is why the SYMBOLGEN option is included-to make troubleshooting

easier). Searching for Check=1 yields no results, and the user receives confirmation that all checklists are

output.

CONCLUSION

The coding included in this paper is relatively simple, and often the desired task can be accomplished in

just a few lines of code. Though short, it is powerful code that can save the user a great deal of time and

assist considerably in arranging files and completing organizational tasks. These are just a few of the

methods that can be used to create directories and duplicate files, and there is even greater potential

for utilizing SAS to interact with an operating system. The references included at the end of this paper

give a more in depth look at these commands and functions as well as other ways that they can be used.

REFERENCES

Hemedinger, C. (2013, July 2). SAS Trick: get the LIBNAME statement to create folders for you [Blog post].

Retrieved from http://blogs.sas.com/content/sasdummy/2013/07/02/use-dlcreatedir-to-create-folders/

Hurley, G. (2006). Xamining the X Statement (and Some Other Xciting Code) [Paper no. 036-31]. In SUGI 31

Proceedings, San Francisco, CA. Retrieved from http://www2.sas.com/proceedings/sugi31/036-31.pdf

Jia, J., & Lin, A. (2015). Yes, SAS® can do! ---Manage external files with SAS programming [Paper no. 3262-

2015]. In Proceedings of the SAS Global Forum, Dallas TX. Retrieved from

http://support.sas.com/resources/papers/proceedings15/3262-2015.pdf

Patrick. (2011, December 20). Copying and renaming a file [Blog post]. Retrieved from

https://communities.sas.com/t5/SAS-Procedures/Copying-and-renaming-a-file/td-p/17715

SAS Institute Inc. (2009). DCREATE. In SAS® Component Language 9.2: Reference. Retrieved from

http://support.sas.com/documentation/cdl/en/sclref/59578/HTML/default/viewer.htm#a000308115.htm

SAS Institute Inc. (2010). Running Windows or MS-DOS commands from within SAS. In SAS® 9.2

Companion for Windows(2nd ed.). Retrieved from

http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm#exittemp.htm

SAS Institute Inc. (2010). X Command: Windows. In SAS® 9.2 Companion for Windows(2nd ed.). Retrieved

from http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm#win-cmd-

x.htm

SAS Institute Inc. (2011). SYSTEM Function. In In SAS® 9.2 Language Reference: Dictionary(4th ed.).

Retrieved from

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000245956.htm

http://blogs.sas.com/content/sasdummy/2013/07/02/use-dlcreatedir-to-create-folders/
http://www2.sas.com/proceedings/sugi31/036-31.pdf
http://support.sas.com/resources/papers/proceedings15/3262-2015.pdf
https://communities.sas.com/t5/SAS-Procedures/Copying-and-renaming-a-file/td-p/17715
http://support.sas.com/documentation/cdl/en/sclref/59578/HTML/default/viewer.htm#a000308115.htm
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm%23exittemp.htm
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm%23win-cmd-x.htm
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm%23win-cmd-x.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm%23a000245956.htm

ACKNOWLEDGEMENTS

Special thanks go out to Stephanie Fournier-Zajac, Matthew Duchnowski and Christopher Kelbaugh of
Educational Testing Service for their inspiration, guidance and feedback on this paper. I am extremely
grateful for all of the advice you have provided along the way.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Nicole Ciaccia
Educational Testing Service
660 Rosedale Rd, MS 14P
Princeton, NJ 08541
(609) 734-1612
nciaccia@ets.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

mailto:nciaccia@ets.org

	2489-2018-eposter.pdf
	2489-2018.pdf

