Paper SAS2159-2018

Cause-Specific Analysis of Competing Risks Using the PHREG Procedure

Changbin Guo and Ying So, SAS Institute Inc.

ABSTRACT

Competing-risks analysis extends the capabilities of conventional survival analysis to deal with time-to-event data that
have multiple causes of failure. Two regression modeling approaches can be used: one focuses on the cumulative
incidence function (CIF) from a particular cause, and the other focuses on the cause-specific hazard function. These
two quantities, unlike the hazard function and the survival function in conventional survival settings, are not connected
through a simple one-to-one relationship. The Fine and Gray model extends the Cox model to analyze the cumulative
incidence function but is often mistakenly assumed to be the only modeling technique available. The cause-specific
approach that simultaneously models all the cause-specific hazard functions offers a more natural interpretation.

SAS/STAT® 14.3 includes updates to the PHREG procedure to perform the cause-specific analysis of competing risks.
This paper describes how cause-specific hazard regression works and compares it to the Fine and Gray method.
Examples illustrate how to interpret the models appropriately and how to obtain predicted cumulative incidence
functions.

INTRODUCTION

Competing risks arise in studies in which individuals are subject to a number of potential failure events and the
occurrence of one event might impede the occurrence of other events. For example, after a bone marrow transplant, a
patient might experience a relapse, or the patient might die while in remission. For relapse, death is a competing risk
because the event of relapse can no longer occur after the patient dies. The survival function and the hazard function,
two familiar concepts in conventional survival analysis, become elusive under competing risks. To meet the analysis
needs, concepts that pertain to a specific cause of the event have been developed. The cause-specific hazard function
generalizes the classical concept of the hazard function to the competing-risks setting, and it describes the rate of
failure from one event type in the presence of others. The cumulative incidence function quantifies the risk of failure
from a particular event type when there are competing risks.

Competing-risks analysis extends conventional survival analysis. For the latter, statistical methods such as the
Kaplan-Meier estimate, the log-rank test, and the Cox regression are widely used in many applications. Although the
log-rank test and the Cox regression can be adapted with minimal effort to make inferences about the cause-specific
hazard function, they do not automatically lead to a correct analysis of the cumulative incidence function because of
the presence of competing risks. To overcome this hurdle, specialized methods that target the cumulative incidence
function have been developed (Gray 1988; Fine and Gray 1999).

The method of Fine and Gray (1999) extends the Cox regression to model the cumulative incidence function and
marks a milestone in the development of modeling techniques for competing-risks data. Despite achieving great
popularity, the Fine and Gray model has been criticized for its weakness of interpretation. The model covariates,
although they can be interpreted as having an effect on the cumulative incidence function, do not directly link to an
underlying event rate in the real world (Andersen and Keiding 2012). On the other hand, proportional hazards models
for cause-specific hazards are easy to fit and offer a more natural interpretation in terms of rate ratios.

The LIFETEST and PHREG procedures in SAS/STAT software provide a comprehensive set of techniques for the
analysis of competing-risks data. The LIFETEST procedure focuses on nonparametric analysis, and recent updates
include specialized features for analyzing the cumulative incidence function. For example, you can compute the
nonparametric estimate of the cumulative incidence function and use Gray’s (1988) test to investigate group differences.
On the other hand, the PHREG procedure provides two regression approaches for analyzing competing-risks data.
You can apply Fine and Gray’s method to directly model the cumulative incidence function; alternatively, you can fit
Cox proportional hazards models to cause-specific hazard functions. So, Lin, and Johnston (2015) provide a tutorial
on how to apply these techniques to study single causes of failure by using PROC PHREG.

Starting in SAS/STAT 14.3, you can use the EVENTCODE(COX)= option in the PHREG procedure to perform the
cause-specific analysis of competing risks by fitting the cause-specific Cox models to different causes of failure



simultaneously. Moreover, you can make predictions about the cumulative incidence function based on the fitted
models.

This paper first reviews the basic concepts of competing-risks analysis. It then discusses regression modeling
strategies and uses a real-world data example of bone marrow transplantation to illustrate how to perform competing-
risks regression by using Fine and Gray’s method as well as the cause-specific Cox models. Connections and
differences between these two methods are discussed. The last section demonstrates how to use the two approaches
to predict the cumulative incidence function.

BASIC QUANTITIES IN COMPETING RISKS

Let T and C denote the failure time and censoring time, respectively. For data that have K competing risks, the pair
(X, 8) is observed, where X = min(7,C) and § = 1, ..., K is an indicator that has values of 0 for censoring and
other values that designate specific failure causes. For analyzing competing-risks data, two useful quantities are the
cause-specific hazard function and the cumulative incidence function:

e The cause-specific hazard function /g () at time ¢ is the instantaneous rate of failure due to cause k conditional
on survival until time ¢ or later. It is defined as

P<T<T+At,§ =k|T >1)
At '

hi(t) = 1 k=1,....K

€=,

e The cumulative incidence function, denoted by Fj (¢), is the probability of failure due to cause k prior to time t.
It is defined as

F(t)=P(T <t.§=k), k=1,....K

The cumulative incidence function is also referred to as the subdistribution function, because it is not a true
probability distribution.

Mathematically, the kth cumulative incidence function can be expressed in terms of all the cause-specific hazard
functions via the integral as follows,

t t
Fk(t)z/(; Su)hi(u)du =/(; Sw)dHi(u), k=1,...,K

where Hi(t) = f(f hi(u)du is the cause-specific cumulative hazard function and S(¢) = exp (— Zle H; (t)) is

the overall survival function, which is the probability of surviving beyond time ¢. It is clear that F(¢) involves not only
hy(¢) but also all the competing cause-specific hazard functions when K > 1. When K = 1, the subdistribution
function degenerates to F;(t) = 1 — exp(—H;(¢)) and becomes a function of only /1 (¢).

The one-to-one relationship does not exist between the cause-specific hazard function and the corresponding
cumulative incidence function when competing risks are present. This feature, as pointed out by Andersen et al.
(2012), is the key to understanding the finesse required in competing-risks analysis and to choosing appropriate
techniques.

AN EXAMPLE OF COMPETING-RISKS DATA

Bone marrow transplant is a standard treatment for acute leukemia. Klein and Moeschberger (2003) present a set of
bone marrow transplant data for 137 patients, divided into three disease groups based on their diagnosis at the time
of transplantation: acute lymphoblastic leukemia (ALL), acute myelocytic leukemia (AML) low-risk, and AML high-risk.
Among the 137 patients in the study, 38 patients were diagnosed as having ALL, 54 patients were diagnosed as
having AML low-risk, and 45 patients were diagnosed as having AML high-risk. There are a number of concomitant
variables in the data set; for simplicity, only the waiting time for transplant is included here.

During the follow-up period, some patients might experience a relapse of the leukemia, and some patients might die
while in remission. The comparison of the disease groups focuses on the occurrence of relapse.

The following statements provide the data. The variable Group designates the disease group of a patient, which is
either ALL, AML low-risk, or AML high-risk. The variable T is the disease-free survival time in days, which is either the
time to censoring, the time to relapse, or the time to death while in remission, whichever occurs first. The indicator



variable Status has three values: 0 for censored observations, 1 for patients who relapse, and 2 for patients who die
before experiencing a relapse. The concomitant variable WaitTime is the waiting time for transplant, in days. Because
this variable has a very large variation, a log transform is applied to stabilize the variance.

proc format;
value DiseaseGroup 1='ALL'
2='AML-Low Risk'
='AML-High Risk';

data bmt;
input Group T Status WaitTime QQ@;
logWaittime=log (WaitTime) ;
format Group DiseaseGroup.;

datalines;

1 2081 0 98 1 1602 0 1720 1 1496 0 127 1 1462 0 168
1 1433 0 93 1 1377 0 2187 1 1330 0 1006 1 996 0 1319
1 226 0 208 1 1199 0 174 1 1111 0 236 1 530 0 151
1 1182 0 203 1 1167 0 191 1 418 2 110 1 383 1 824
1 276 2 146 1 104 1 85 1 609 1 187 1 172 2 129
1 487 2 128 1 662 1 84 1 194 2 329 1 230 1 147
1 526 2 943 1 122 2 2616 1 129 1 937 1 74 1 303
1 122 1 170 1 86 2 239 1 466 2 508 1 192 1 74
1 109 1 393 1 55 1 331 1 1 2 196 1 107 2 178
1 110 1 361 1 332 2 834 2 2569 0 270 2 2506 0 60
2 2409 0 120 2 2218 0 60 2 1857 0 920 2 1829 0 210
2 1562 0 920 2 1470 0 240 2 1363 0 90 2 1030 0 210
2 860 0 180 2 1258 0 180 2 2246 0 105 2 1870 0 225
2 1799 0 120 2 1709 0 90 2 1674 0 60 2 1568 0 920
2 1527 0 450 2 1324 0 75 2 957 0 90 2 932 0 60
2 847 0 75 2 848 0 180 2 1850 0 180 2 1843 0 270
2 1535 0 180 2 1447 0 150 2 1384 0 120 2 414 2 120
2 2204 2 60 2 1063 2 270 2 481 2 920 2 105 2 120
2 641 2 920 2 390 2 120 2 288 2 920 2 421 1 920
2 79 2 90 2 748 1 60 2 486 1 120 2 48 2 150
2 272 1 120 2 1074 2 150 2 381 1 120 2 10 2 240
2 53 2 180 2 80 2 150 2 35 2 150 2 248 1 30
2 704 2 105 2 211 1 90 2 219 1 120 2 606 1 210
3 2640 0 750 3 2430 0 24 3 2252 0 120 3 2140 0 210
3 2133 0 240 3 1238 0 240 3 1631 0 690 3 2024 0 105
3 1345 0 120 3 1136 0 900 3 845 0 210 3 422 1 210
3 162 2 300 3 84 1 105 3 100 1 210 3 2 2 75
3 47 1 90 3 242 1 180 3 456 1 630 3 268 1 180
3 318 2 300 3 32 1 90 3 467 1 120 3 47 1 135
3 390 1 210 3 183 2 120 3 105 2 150 3 115 1 270
3 164 2 285 3 93 1 240 3 120 1 510 3 80 2 780
3 677 2 150 3 64 1 180 3 168 2 150 3 74 2 750
3 16 2 180 3 157 1 180 3 625 1 150 3 48 1 210
3 273 1 240 3 63 2 360 3 76 1 330 3 113 1 240
3 363 2 180

To study the occurrence of relapse, you can estimate the cumulative incidence function of each disease group.
Furthermore, you can use Gray’s (1988) test to compare the disease groups. However, if you also want to adjust for
some concomitant variables, such as the effect of the waiting time for transplant, you need to perform a regression
analysis. The next two sections show how to use the PHREG procedure to fit the standard Cox model, the cause-
specific Cox models, and the Fine and Gray model to the competing-risks data.

STANDARD COX REGRESSION

Suppose a random sample of n subjects is collected. For the ¢th subject, i = 1,...,n, let X;, §;, and Z; be the
observed time, cause of failure, and covariate vector at time %, respectively. Assume that K causes of failure are
observable (§; € {1,..., K}); § = 0 indicates a censored observation.



For competing-risks data, it is always possible to fit a standard Cox regression model to the overall hazard function
h(t) = Zle hi (¢) by disregarding the different event types. This is sometimes referred to as a composite endpoint
analysis (Wolbers et al. 2014), and it is still widely used in many applications, especially for studying event-free survival
in clinical research.

The Cox proportional hazards model assumes

h(t]Z) = ho(t) exp(B'Z)
where hg(t) is the baseline hazard function and the vector B represents the covariate effects.
The regression coefficients B are obtained by maximizing the partial likelihood L (),

B'Z) 1(8;>0)
_ exp(BZi
L) =] (Z ))

i JER; eXp(ﬂ/Zj

where R; denotes the risk set at X; and contains individuals who do not fail from any causes or are not censored
before X;.

The following statements fit the proportional hazards model for event-free survival by treating relapse (Status=1) or
death (Status=2) as a failure event:

proc phreg data=Bmt;
title 'Composite Endpoint Analysis’';
class Group (order=internal ref=first);
model TxStatus (0)=Group logWaitTime;
run;

Figure 1 displays the estimated effects of the risk factor Group on event-free survival.

Figure 1 Parameter Estimates for Event-Free Survival

Composite Endpoint Analysis
The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Parameter DF Estimate Error Chi-Square Pr > ChiSq Ratio Label
Group AML-LowRisk 1 -0.62604 0.30802 4.1309 0.0421  0.535 Group AML-Low Risk
Group AML-High Risk 1 0.36482 0.27002 1.8255 0.1767  1.440 Group AML-High Risk
logWaittime 1 -0.06243 0.13780 0.2052 0.6505 0.939

Assuming that the Cox model is correct, you can interpret the hazard ratio as the relative risk of an event (relapse or
death). The results show that the risk of the event occurring among the AML high-risk patients relative to the risk of
the event occurring among the ALL patients is 0.5, whereas the risk of the event occurring among the AML low-risk
patients relative to the risk of the event occurring among the ALL patients is 1.4.

Performing the composite endpoint analysis is straightforward for competing-risks data, but it has obvious limitations.
When you combine different event types, the information from the individual causes is lost. For the bone marrow
transplant data, the composite endpoint contains all the events due to relapse or death. The composite endpoint
analysis cannot show the effects of disease group on relapse in the real world, where death can also occur.

COMPETING-RISKS REGRESSION

To study the effect of covariates on the cause-specific outcome, you can model the cause-specific hazard function
or you can model the subdistribution function. The cause-specific approach has a long history of application, and
proportional hazards models are typically assumed (Prentice et al. 1978). In contrast, the model of Fine and Gray
(1999) targets the subdistribution function directly and has become a very popular choice in practice. The Fine and
Gray model is often seen as the default choice to model competing-risks data, but in fact the two approaches focus on
different aspects of analysis and complement each other. Latouche et al. (2013) argue that a proper competing-risks
analysis should report results on all the cause-specific hazards and cumulative incidence functions.
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Modeling the Cause-Specific Hazard

The Cox proportional hazards model can be conveniently adapted to analyze the cause-specific hazard functions
from different event types. For cause k, a separate proportional hazards model can be assumed,

hi(t1Z) = hio(t) exp(B2)

where hro(t) is the baseline of the cause-specific hazard function and the vector B represents the covariate effects
on the event of interest.

Because the K models are mutually exclusive, they can be analyzed independently. For cause &, the regression
coefficients By can be estimated by maximizing the modified partial likelihood,

§i=k
xp(B.Z; !
L(ﬂk)——”( exp(ByZi) )

i JER; exp(ﬂ;cZ,)

where R; denotes the risk set at X; and contains individuals who do not fail from any causes or are not censored
before X;.

The specified cause-specific hazard model has a simple structure and is easy to understand and interpret. But it has
the following limitations:

1. The regression coefficients are assumed to be different between the causes. This does not have to be the case
in general, and in certain applications it might be more natural to set up the model so that certain covariates
have the same effect across different causes. See Andersen et al. (1995) for an in-depth discussion of these
more parsimonious models, and see Gardiner (2016) for an exposition of how to fit them using PROC PHREG
by carefully preparing the necessary data set.

2. The model covariates are assumed to be time-invariant. This does not need to be true in more general
settings. However, the difficulty lies in how to interpret such models in a simple fashion as well as how to
obtain model-based predictions. See Cortese and Andersen (2010) for a comprehensive discussion of how to
incorporate time-dependent covariates into cause-specific regression models.

For a particular cause of interest, you can fit cause-specific Cox models as regular Cox models by using PROC
PHREG. A well-known strategy is to treat all the competing events as censored observations in the analysis. Doing so
ensures that the risk set at each event time contains only those subjects who have not failed from competing events or
are truly censored. This leads to the correct calculation of the partial likelihood for the cause-specific Cox model.

As an illustration, the following statements fit the cause-specific Cox model to relapse (Status=1) by treating death
(Status=2) as censored:

proc phreg data=Bmt;
title 'Cause-Specific Hazard Regression for Relapse';
class Group (order=internal ref=first);
model TxStatus (0,2)=Group logWaitTime;

run;

Note that the designated codes for censoring include the value 0, which indicates true censoring, and the value 2,
which represents death.

Figure 2 displays the estimated effects of the risk factor Group on relapse.

Figure 2 Parameter Estimates for Relapse (Status=1)

Cause-Specific Hazard Regression for Relapse
The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Parameter DF Estimate Error Chi-Square Pr > ChiSq Ratio Label
Group AML-LowRisk 1 -1.07299 0.46245 5.3836 0.0203  0.342 Group AML-Low Risk
Group AML-High Risk 1 0.55111 0.36464 2.2842 0.1307 1.735 Group AML-High Risk
logWaittime 1 -0.23061 0.19440 1.4071 0.2355 0.794
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In large part, the cause-specific hazard ratio resembles the hazard ratio in a standard Cox regression, and it quantifies
the strength of association between the cause-specific hazard rate and the covariates. A value greater than 1 implies
an elevated rate, and a value less than 1 implies otherwise. However, because competing risks are present, it is
no longer appropriate to interpret the cause-specific hazard ratios in terms of a relative risk type of measure as
regular hazard ratios. As Andersen et al. (2012) point out, this is a direct consequence of the loss of the one-to-one
relationship between the cause-specific hazard function and the cumulative incidence function.

Starting in SAS/STAT 14.3, you don’t have to call PROC PHREG multiple times to fit all the cause-specific Cox models.
Instead, you can simply specify the EVENTCODE(COX)= option in the MODEL statement. This option enables you to
fit cause-specific Cox models to all the causes simultaneously. As a syntax requirement, you must specify a particular
value that indicates which event type is the event of interest. But this piece of information does not interfere with
fitting the cause-specific Cox models and is used only to select the cumulative incidence function for inferences and
predictions.

The following statements fit the cause-specific Cox model to all the causes by using the EVENTCODE(COX)= option:
proc phreg data=Bmt;
title 'Cause-Specific Hazard Regression for Relapse and Death';
class Group (order=internal ref=first);

model TxStatus (0)=Group logWaitTime / eventcode (cox)=1;
run;

By default, PROC PHREG finds all the unique code values that have not been designated as censoring from the data
set and fits a separate cause-specific Cox models to each of them.

Figure 3 displays the estimated effects of the risk factor Group on relapse and death, respectively.

Figure 3 Parameter Estimates for Relapse (Status=1) and Death (Status=2)

Cause-Specific Hazard Regression for Relapse and Death
The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Parameter DF Estimate Error Chi-Square Pr > ChiSq Ratio Label
Group AML-LowRisk 1 -1.07294 0.46245 5.3830 0.0203  0.342 Group AML-Low Risk
Group AML-High Risk 1 0.55118 0.36465 2.2847 0.1307  1.735 Group AML-High Risk
logWaittime 1 -0.23061 0.19440 1.4071 0.2355 0.794

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Parameter DF Estimate Error Chi-Square Pr > ChiSq Ratio Label
Group AML-LowRisk 1 -0.23553 0.42702 0.3042 0.5812 0.790 Group AML-Low Risk
Group AML-High Risk 1 0.13265 0.40784 0.1058 0.7450 1.142 Group AML-High Risk
logWaittime 1 0.11202 0.19536 0.3288 0.5664 1.119

As you can see, the risk factor Group has different effects on relapse and death.

It is crucial to check the proportional hazards assumption for the cause-specific Cox model. You can use existing
techniques for checking standard Cox regression. The following statements fit the cause-specific Cox model for the
event of relapse and use the ASSESS statement to check the proportionality assumption:

proc phreg data=Bmt;
class Group (order=internal ref=first);
model TxStatus(0,2)=Group logWaitTime;
assess ph / resample seed=1234;

run;

Figure 4 displays the observed and simulated score processes for checking the variable Group.



Figure 4 Score Processes for the Variable Group

Figure 5 displays the results from assessing all model covariates on the basis of the supremum test of Lin, Wei, and
Ying (1993).



Figure 5 Proportionality Tests

Supremum Test for Proportionals Hazards Assumption

Maximum

Absolute Pr >
Variable Value Replications Seed MaxAbsVal
GroupAML_Low_Risk 1.7335 1000 1234 0.0200
GroupAML_High_Risk  1.0871 1000 1234 0.2200
logWaittime 0.7022 1000 1234 0.3110

It appears that the proportionality assumption for the covariate Group is questionable because one of its two p-values
is less than 0.05.

Modeling the Cumulative Incidence

Analogous to the relationship between the hazard function and the survival function in the absence of competing
risks, Fine and Gray (1999) define the subdistribution hazard, which is the hazard of the cumulative incidence function

Fi (1),
~ d
he (1) = mn log(1 — F (1))
t
Note that in the presence of competing risks, the subdistribution hazard ﬁk (¢) is not the same as the cause-specific
hazard Ay (t).

In the spirit of the Cox model, Fine and Gray (1999) introduce a way to model the cumulative incidence function by
imposing the proportional hazards assumption on the subdistribution hazards,

i (t12) = hyo(t) exp(B2)

where l;ko(t) is the baseline of the subdistribution hazard of cause k. The Fine and Gray model is also known as the
proportional subdistribution hazards model.

The regression coefficients B can be estimated by maximizing the following pseudo-likelihood function,

§i=k
- xp(B.Z; '
L(Bx) = | | ( Ne P(BxZi) )

i JER; Wij exp(ﬂ;czj)

where R; is the risk set, which includes subjects who are still under observation and those who have experienced a
competing event before X;. The covariance matrix of the parameter estimator is computed as a sandwich estimate.

The subject-specific weights w;; are calculated as follows. Subjects who experience no event of interest before X;
are given a weight w;; = 1, and subjects who experience competing events before X; are given a weight w;; that
decreases with time,
G(X))
Wij = x—————
G (min(X;, X;))

where G(t) is the Kaplan-Meier estimate of the survival function of the censoring distribution, which is the cumulative
probability that a subject is still being followed at time £.

In more general settings, it is possible to allow the weights to depend on a set of covariates, such as via a proportional
hazards model. Although the PHREG procedure does not currently support this feature, you can follow the discussion
of Geskus (2016) to create an intermediate data set that contains the estimated weights and then use PROC PHREG
to fit the model.

The new risk set R; is modified from the risk set definition that comes from the regular partial likelihood in order
to accommodate the subdistribution hazard. The difference is that the new risk set includes subjects who have
experienced a competing event before X; and are therefore immortal. Because of this unnatural formulation, you must
take extra care in interpreting the Fine and Gray model, since the subdistribution hazard function might not have the
proper interpretation of an instantaneous risk of failure (Andersen and Keiding 2012). Austin and Fine (2017) provide
practical recommendations for interpreting the regression coefficients and reporting the results properly.



The Fine and Gray method has been available in the PHREG procedure since SAS/STAT 13.1. The following
statements use PROC PHREG to fit the Fine and Gray model:

proc phreg data=Bmt;
title 'Fine and Gray Analysis of Relapse’';
class Group / order=internal ref=first param=glm;
model TxStatus(0) = Group logWaitTime / eventcode=1;
hazardratio 'Subdistribution Hazards' Group / diff=pairwise;
run;

To designate relapse (Status = 1) as the event of interest, you specify EVENTCODE=1 in the MODEL statement.
The HAZARDRATIO statement requests the subdistribution hazard ratio for each pair of disease groups. The
DIFF=PAIRWISE option performs an analysis of all the pointwise subdistribution hazard ratios.

Figure 6 shows a significant effect on relapse between the disease groups (p = 0.0009).

Figure 6 Subdistribution Hazard Regression

Fine and Gray Analysis for Relapse

The PHREG Procedure

Type 3 Tests
Wald
Effect DF Chi-Square Pr > ChiSq
Group 2 13.6866 0.0011
logWaittime 1 2.1283 0.1446

The subdistribution hazard ratio estimates of one disease group relative to another are displayed in Figure 7.

Figure 7 Pairwise Subdistribution Hazard Ratios

Subdistribution Hazards: Hazard Ratios for Group

95%
Wald
Point Confidence
Description Estimate Limits

Group AML-Low Risk vs AML-High Risk 0.231 0.106 0.503
Group AML-High Risk vs AML-Low Risk 4323 1.990 9.394

Group AML-Low Risk vs ALL 0.362 0.155 0.843
Group ALL vs AML-Low Risk 2.765 1.186 6.445
Group AML-High Risk vs ALL 1.564 0.763 3.203
Group ALL vs AML-High Risk 0.640 0.312 1.310

The subdistribution hazard of relapse for the AML high-risk patients is 4.3 times that of the AML low-risk patients (95%
Cl 1.99 to 9.39) and 1.6 times that of the ALL patients (95% CI 0.76 to 3.20). The subdistribution hazard of relapse of
the ALL patients is 2.8 times that of the AML low-risk patients (95% CI 1.19 to 6.45).

Although the Fine and Gray model was developed specifically to analyze a single cause of failure, it is not uncommon
in practice to apply it to each cause of failure. You should perform such exercises with caution because in general
the subdistribution models for different causes cannot hold together over the entire time horizon. The subdistribution
models might be consistent in restricted time ranges, but such an assumption needs to be formally justified (Latouche
et al. 2013).

There are various ways to check the proportionality assumption of the Fine and Gray model. Although PROC PHREG
has no specialized model-checking feature, you can use the log minus log of the subdistribution hazard or the
Schoenfeld residuals for this purpose (Fine and Gray 1999).



CUMULATIVE INCIDENCE PREDICTION

Atfter fitting the competing-risks models, you can use the models to make predictions about future cumulative incidence
functions. For the Fine and Gray model, predicting CIFs for the event you are modeling is a straightforward task,
because the subdistribution hazard is being modeled directly and the CIF is only one transformation away. In contrast,
predicting CIFs on the basis of the cause-specific Cox models involves more tedious calculations.

The Fine and Gray Model

Suppose that a Fine and Gray model has been fitted to the kth cause by using the covariates Z. With the time-invariant
covariates Z = z(, the cumulative incidence function can be estimated by

Fy(t]20) = 1 — exp[—Axo(?) exp(B}20)]

where f\ko(t) is the Breslow estimator of the baseline cumulative subdistribution hazard function derived from the
pseudo-likelihood function. Its calculation incorporates the modified risk sets and the gradual reduction of weights for
the immortal subjects.

You can predict the cumulative incidence by using the BASELINE statement in PROC PHREG. You use the
COVARIATES= option to specify a data set that contains settings for predicting the cumulative incidence func-
tions. You can also display the cumulative incidence curves by specifying the PLOTS=CIF option in the PROC PHREG
statement.

The following statements use the PHREG procedure to plot the predicted cumulative incidence function for each
disease group at logWaitTime = 5.2, the median value of the log of the waiting times:

Data Risk;
logWaitTime=5.2;
Group=1; output;
Group=2; output;
Group=3; output;
format Group DiseaseGroup.;
run;

ods graphics on;
proc phreg data=bmt plots(overlay=stratum)=cif;
title 'Fine and Gray Analysis of Relapse’';
class Group / param=glm order=internal ref=first;
model TxStatus(0) = Group logWaitTime / eventcode=1;
baseline covariates=risk out= null_ / rowid=Group;
run;

The OUT= option in the BASELINE statement produces an output data set that contains the predicted values, but
specifying the keyword _NULL_ disables it. When the ROWID= option is specified, the formatted names of Group are
used to identify the predicted CIF curves in the plot.

Figure 8 displays the predicted CIF curves for all three disease groups. You can see that at any given time after the
transplant, an AML high-risk patient is more likely to relapse than an ALL patient, and an ALL patient is more likely to
relapse than an AML low-risk patient.
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Figure 8 CIFs of the Three Disease Groups at logTimeWait = 5.2

The Fine and Gray model focuses on only one cause of failure. To obtain predictions for the competing causes, you
need to fit separate models. As an example, the following statements fit the Fine and Gray model to death without
relapse by treating relapse as a competing risk and plot the predicted CIF curves at given covariate patterns:

proc phreg data=bmt plots(overlay=stratum)=cif;
title 'Fine and Gray Analysis of Death';
class Group / param=glm order=internal ref=first;
model TxStatus(0) = Group logWaitTime / eventcode=2;
baseline covariates=risk out=_null_ / rowid=Group;
run;

Figure 9 displays the predicted CIF curves for all three disease groups.
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Figure 9 CIFs of the Three Disease Groups at logTimeWait = 5.2

As discussed in the previous section, you must exercise caution when presenting the results from the Fine and Gray
models for different event types, because no more than one of the fitted models can be correct.

The Cause-Specific Cox Models

As the previous section shows, predicting the CIF on the basis of the Fine and Gray model is straightforward.
Technically, things work quite differently under the cause-specific survival analysis framework. To predict the CIF for a
particular cause of failure, you need to use the fitted cause-specific Cox model for each cause of failure.

Assume that separate models have been fitted to each of the K causes by using the covariates Z. For the kth
cause-specific Cox model, the predicted cumulative cause-specific hazard function estimate for an individual with the
covariates Z = zg is

Ax(t]20) = exp(Byz0) Ako(?)

where ﬁk is the maximum partial likelihood estimate and Ako(t) is the Breslow estimator of the baseline cumulative
cause-specific hazard function.

The predicted survival function is

S(t|20) = I1 [1 - AO(S|Z0)]

s:X;=s<t,A; >0
A K ~
where Ag(t]|zo) = D j—; Ak(t]20)

The predicted cumulative incidence is
t
Fettlao) = [ S laopd Aol
0

The cause-specific Cox models enable you to predict cumulative incidence for different causes of failure simultaneously.
Furthermore, the estimator { Fy (t|zo) : Kk = 1, ..., K} has the following property:

K
Y Filtlze) = 1— S(t]z)
1
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Based on the counting process and martingale theory (Andersen et al. 1995), the variance estimator of ﬁk (t|zg) is a
sum of two terms,

A2 A2 A2
0y (t]z0) = 0y, (t|z0) + G4, (t20)

where the two summands quantify different sources of uncertainty associated with the estimation process and have
very technical expressions. See Rosthgj, Andersen, and Abildstrom (2004) for a complete presentation of the details.

In PROC PHREG, the syntax to obtain predictions of the CIFs is almost identical between the cause-specific survival
analysis and the Fine and Gray analysis. As a requirement, you must designate a cause of interest in the EVENTCODE
option. The following statements use PROC PHREG to perform the cause-specific survival analysis and estimate the
CIF for the event of relapse (Status=1):

proc phreg data=Bmt plots (overlay)=cif;
title 'Cause-Specific Survival Analysis';
class Group (order=internal ref=first);
model TxStatus (0)=Group logWaitTime / eventcode (cox)=1;
baseline covariates=Risk out=0Outl cif=_all timelist=300 600;
run;

The COVARIATES= option in the BASELINE statement specifies the data set that contains the covariate settings for

predicting cumulative incidence functions for relapse, and the OUT= option saves the prediction results in a SAS®
data set. The TIMELIST= option specifies a list of time points at which CIF predictions are performed for the output
data set. The PLOTS= option in the PROC PHREG statement displays the cumulative incidence curves for relapse.

Figure 10 displays the CIF of the event Relapse (Status=1) for the three Group groups. The curves resemble those
that are derived from the Fine and Gray model (Figure 8).

Figure 10 CIFs of the Three Disease Groups at logTimeWait = 5.2 (Cause-Specific Survival Analysis)

Because the cause-specific Cox models are compatible with one another, you can make CIF predictions for different
causes simultaneously. The following statements repeat the fitting of the cause-specific Cox models but predict the
CIFs for death without relapse (Status=2):

proc phreg data=Bmt plots (overlay)=cif;
title 'Cause-Specific Survival Analysis';
class Group (order=internal ref=first);
model TxStatus (0)=Group logWaitTime / eventcode (cox)=2;
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baseline covariates=Risk out=0ut2 cif=_all_timelist=300 600;
run;

Figure 11 displays the CIFs of death without relapse (Status=2) for the three groups.

Figure 11 CIFs of the Three Disease Groups at logTimeWait = 5.2 (Cause-Specific Survival Analysis)

You use the following statements to display the CIF estimates for the ALL risk group (Group=1):

proc print data=Outl (where=(Group=1l));
title 'CIF Estimates for Relapse and 95% Confidence limits for the ALL Group';
run;

proc print data=Out2 (where=(Group=1l));
title 'CIF Estimates for Death and 95% Confidence limits for the ALL Group';
run;

Figure 12 shows the point estimate and the confidence limits for the cumulative incidence at selected times for the
ALL patients.
Figure 12 Cumulative Incidence Prediction (Cause-Specific Survival Analysis) for the ALL Group

CIF Estimates for Relapse and 95% Confidence limits for the ALL Group

Obs logWaitTime Group T CIF StdErrCIF LowerCIF UpperCIF
1 52  ALL 300 0.23501 0.063654 0.13821 0.39961
2 52  ALL 600 0.30423 0.075133 0.18749 0.49364

CIF Estimates for Death and 95% Confidence limits for the ALL Group

Obs logWaitTime Group T CIF StdErrCIF LowerCIF UpperCIF
1 5.2  ALL 300 0.18845 0.056040 0.10522 0.33754
2 52  ALL 600 0.26346 0.071022 0.15533  0.44687

A useful way to display the predicted CIFs in a cause-specific survival analysis is to make a stacked CIF plot. PROC
PHREG does not provide this plot in SAS/STAT 14.3, but you can produce it by using the predicted CIFs. Suppose
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you want to generate the stacked CIF plot for the first covariate pattern used previously. First, you need to perform the
cause-specific survival analysis by using PROC PHREG and save the predicted CIF for each cause to separate data
sets. Multiple calls of PROC PHREG are needed because each call can produce CIF predictions for only one single
cause at a time. The following statements generate two data sets, O1 and 02, for relapse and death, respectively:

Data Risk;
set Risk;
if N_=1;
run;

proc phreg data=Bmt plots (overlay)=cif;
class Group (order=internal ref=first);
model TxStatus (0)=Group logWaitTime / eventcode (cox)=1;
baseline covariates=Risk out=01 cif=cif;

run;

proc phreg data=Bmt plots (overlay)=cif;
class Group (order=internal ref=first);
model TxStatus (0)=Group logWaitTime / eventcode (cox)=2;
baseline covariates=Risk out=02 cif=cif2;

run;

By default, the predicted CIF for the cause of interest is a step function with jumps at the observed event times. To
generate a stacked plot, you need to align the predicted CIFs for different causes with the same set of time points.

The following statements obtain the predicted CIFs for the combined set of event times by using simple DATA step
operations:

date temp;
t = 1200;
run;

data 012;
merge Ol O2 (keep=t) temp;
by t;
retain a 0;
if cif ne . then a=cif;
else cif=a;
drop a;

run;

data 021;
merge 02 Ol (keep=t) temp;
by t;
retain a 0;
if cif2 ne . then a=cif2;
else cif2=a;
drop a;

run;

Suppose you want to stack the predicted CIF for death onto the predicted CIF for relapse. You need to calculate the

sum of the two CIFs at each time point. The following statements perform these calculations for a time horizon of
1,200 days:

data Stacked;
merge 012 021;

by t;

if t£<=1200;

one = 1;

zero = 0;

sum = cif+cif2;
run;

The following statements create the stacked plot of the CIFs by using PROC SGPLOT:
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proc sgplot data=Stacked;
title 'Stacked Plot of the CIFs';
band x=t upper=one lower=sum / fillattrs=graphdatal name='a' transparency=0.5 type=step
legendlabel="'Event—free';
band x=t upper=sum lower=cif / fillattrs=graphdata2 name='b' transparency=0.5 type=step
legendlabel="'Death’';
band x=t upper=cif lower=zero / fillattrs=graphdata3 name='c' transparency=0.5 type=step
legendlabel="'Relapse';
keylegend 'a' 'b' 'c';
xaxis grid label='T' offsetmin=0 offsetmax=0 values=(0 to 1200 by 200);
yaxis grid label='Probability' values=(0 to 1 by 0.2) offsetmin=0 offsetmax=0;
run;

Figure 13 displays the stacked plot of the CIFs for the ALL group.

Figure 13 Stacked CIF Plot for the ALL Group at logTimeWait = 5.2 (Cause-Specific Survival Analysis)

As you can see, the stacked plot is effective in displaying the progression of failures from different event types over
time. Note that the area labeled “Event-free” corresponds exactly to the predicted overall survival function S(¢|zo),
which is the complement of the sum of all predicted CIFs.

SUMMARY

Competing-risks analysis extends conventional survival analysis to handle data that have multiple event types. The
cause-specific hazard function and the cumulative incidence function are two important quantities of interest. You can
apply the Fine and Gray method to model the cumulative incidence function, or you can perform the cause-specific
survival analysis by modeling the cause-specific hazards. The former approach models the CIF for one particular
cause of failure, and the latter approach models the cause-specific hazard of every competing cause.

You can use PROC PHREG in SAS/STAT 14.3 to analyze competing-risks data by specifying the EVENTCODE
option in the MODEL statement. To carry out the Fine and Gray analysis, you specify EVENTCODE(FG)= or simply
EVENTCODE-=. You use the BASELINE statement to predict the CIFs. To perform the cause-specific survival analysis,
you specify EVENTCODE(COX)=. PROC PHREG fits a cause-specific Cox model for each competing cause and
predicts the CIF for the cause of interest if the BASELINE statement is specified.
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Both the Fine and Gray model and the cause-specific Cox models are extensions of the classical Cox model and
inherit its proportionality assumption. Model checking is a necessary step to ensure model validity. It is convenient to
check the proportionality assumption in the cause-specific Cox models because you can use all the existing tools for
assessing the Cox model.

REFERENCES

Andersen, P. K., Borgan, @., Gill, R. D., and Keiding, N. (1995). Statistical Models Based on Counting Processes.
Corrected 3rd printing. New York: Springer.

Andersen, P. K., Geskus, R. B., de Witte, T., and Putter, H. (2012). “Competing Risks in Epidemiology: Possibilities
and Pitfalls” International Journal of Epidemiology 41(3):861-870. doi:10.1093/ije/dyr213.

Andersen, P. K., and Keiding, N. (2012). “Interpretability and Importance of Functionals in Competing Risks and
Multistate Models.” Statistics in Medicine 31(11-12):1074—1088.

Austin, P. C., and Fine, J. P. (2017). “Practical Recommendations for Reporting Fine-Gray Model Analyses for
Competing Risk Data.” Statistics in Medicine 36(27):4391-4400.

Cortese, G., and Andersen, P. K. (2010). “Competing Risks and Time-Dependent Covariates.” Biometrical Journal
52(1):138-158.

Fine, J. P, and Gray, R. J. (1999). “A Proportional Hazards Model for the Subdistribution of a Competing Risk.” Journal
of the American Statistical Association 94:496-509.

Gardiner, J. C. (2016). “Competing Risks Analyses: Overview of Regression Models.” In Proceedings of the
SAS Global Forum 2016 Conference. Cary, NC: SAS Institute Inc. http://support.sas.com/resources/
papers/proceedingsl6/8620-2016.pdf.

Geskus, R. B. (2016). Data Analysis with Competing Risks and Intermediate States. Boca Raton, FL: Chapman &
Hall/CRC.

Gray, R. J. (1988). “A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk.” Annals
of Statistics 16:1141-1154,

Klein, J. P., and Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and Truncated Data. 2nd ed.
New York: Springer-Verlag.

Latouche, A., Allignol, A., Beyersmann, J., Labopin, M., and Fine, J. P. (2013). “A Competing Risks Analysis
Should Report Results on All Cause-specific Hazards and Cumulative Incidence Functions.” Journal of Clinical
Epidemiology 66(6):648—653.

Lin, D. Y., Wei, L. J., and Ying, Z. (1993). “Checking the Cox Model with Cumulative Sums of Martingale-Based
Residuals.” Biometrika 80:557-572.

Prentice, R. L., Kalbfleisch, J. D., Peterson, J., A. V., Flournoy, N., Farewell, V. T., and Breslow, N. E. (1978). “The
Analysis of Failure Times in the Presence of Competing Risks.” Biometrics 34:541-554.

Rosthgij, S., Andersen, P. K., and Abildstrom, S. Z. (2004). “SAS Macros for Estimation of the Cumulative Incidence
Functions Based on a Cox Regression Model for Competing Risks Survival Data.” Computer Methods and Programs
in Biomedicine 74(1):69-75.

So, Y., Lin, G., and Johnston, G. (2015). “Using the PHREG Procedure to Analyze Competing-Risks Data.” In
Proceedings of the SAS Global Forum 2015 Conference. Cary, NC: SAS Institute Inc. http://support.sas.
com/resources/papers/proceedingsl5/SAS1855-2015.pdf.

Wolbers, M., Koller, M. T., Stel, V. S., Schaer, B., Jager, K. J., Leffondré, K., and Heinze, G. (2014). “Competing Risks
Analyses: Objectives and Approaches.” European Heart Journal 35(42):2936—2941.

17


http://support.sas.com/resources/papers/proceedings16/8620-2016.pdf
http://support.sas.com/resources/papers/proceedings16/8620-2016.pdf
http://support.sas.com/resources/papers/proceedings15/SAS1855-2015.pdf
http://support.sas.com/resources/papers/proceedings15/SAS1855-2015.pdf

ACKNOWLEDGMENTS

The authors thank Ed Huddleston for his valuable editorial assistance in preparing this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Changbin Guo Ying So

SAS Institute Inc. SAS Institute Inc.
SAS Campus Drive SAS Campus Drive
Cary, NC 27513 Cary, NC 27513

changbin.guo@sas.com  ying.so@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

18



