
1

Paper SAS563-2017

Managing Real-Time Data Streams to High-Performance Analytics Engines

Katherine Taylor, SAS Institute Inc.

ABSTRACT
You’re in the business of performing complex analysis on large amounts of data. This data changes
quickly and often, so you’ve invested in a powerful high-performance analytics engine with the speed to
respond to a real-time data stream. However, you realize an immediate problem upon the implementation
of your software solution: your analytics engine wants to process many records of data at once, but your
streaming engine wants to send individual records. How do you store this streaming data? How do you
tell the analytics engine about the updates? This paper explains how to manage real-time streaming data
in a batch processing analytics engine.

The problem of managing streaming data in analytics engines comes up in many industries: energy,
finance, health care, and marketing to name a few. The solution described in this paper can be applied in
any industry, using features common to most analytics engines. You will learn how to store and manage
streaming data in such a way as to: guarantee the analytics engine has only current information, limit
interruptions to data access, avoid duplication of data, and maintain a historical record of events.

.

INTRODUCTION

The purpose of this paper is to teach you how to enable real-time analysis in a high-performance
analytics engine that receives frequent or real-time streams of data. This paper introduces concepts in a
general way so that they may be applied in any software setting, though the example will be in SAS®.

This paper first identifies the challenges of real-time analysis and defines key concepts like batch
processing engine and real-time data stream. Then it presents the features your analytics engine needs
to support real-time analytics and how to implement a program that uses these features. Lastly, you’ll see
an example of real-time electricity load forecasting that uses these techniques.

CHALLENGE

This day in age, data analysis is often means big data analysis. It’s easier than ever to collect data,
inexpensive to store data, and impressive computing power is very accessible. These are all good things,
but the complexity and speed that we can achieve comes with some challenges.

One aspect of model complexity is in the amount of data they process at one time. The models
implemented in high-performance analytics software tend to take an aggregate, or system, view of things.
They may require observations over a period of time. These models are known to consume and generate
large volumes of data.

High-performance analytics is also about speed. Data must be collected, sent, and received very quickly
so that decisions can be based on the most up-to-date information. This work is usually done by an event
stream processing engine, such as the SAS Event Stream Processor. The event stream processing
engine is connected to the data source and it streams data, ideally in-memory, to the consuming
application. For the analytics engine, it’s the receiving of the real-time stream that is hard.

The challenge for the analytics engine comes from the combination of complexity and speed. Complex
analytics engines generally want one big static collection of data to process. This is known as batch
processing. With a live data stream into the engine, there is no big static collection of data. Things are
moving in and out and not in a predictable way. The engine receiving the data must intelligently
incorporate this movement into its analysis, managing new records, updates, and out-of-date records.
And very importantly, it must do all of this without interrupting an analysis in progress.

2

Also, there is often a challenge in maintaining a historical record of data so that an analysis may be
repeated at a future time. When you have this constraint, you cannot simply update records, replacing the
old with new. You must keep a history of events and values in order to look back.

SOLUTION

NECESSARY FEATURES OF THE ANALYTICS ENGINE

The purpose of this paper is to show you how you can support real-time analytics in an engine that
operates on a big-static collection of data. In order to do this, there are several features that the analytics
engine needs to have. This section covers what they are; the next section covers how you use them.

First the analytics engine needs to be able to receive real-time or near real-time data. Your engine may
support a connection to a specific event stream processor for an in-memory stream; this is ideal. If your
engine does not have this support built-in, you can simply provide data in files, and the files would be
received frequently as data events are sent. Determining the number of events, or records, for the
analytics engine to receive at once will depend on the desired frequency of updates and the speed of the
analysis you perform. This will be covered in more detail the implementation section.

Second, the analytics engine needs to be able to join data in-memory for analysis. This means that you
can have two or more distinct sets of data that are treated as one big collection of data by the analytics
engine. While this is a fairly specific requirement of the analytics engine, it is a common feature of high-
performance analytics engines. This is because big data often needs to be broken into parts for
processing and storage purposes. Without the in-memory join, you would have to create giant files that
are joined copies of the original input data.

Third, the analytics engine needs to be able to filter data in-memory for analysis. You need to be able to
set a common attribute for each data record and tell the analytics engine to filter on this attribute as part
of the analysis. The reason this must be done in memory is because the attribute that is used for the filter
is assigned in-memory. That is the next requirement.

Fourth, the analytics engine needs to be able to associate in-memory an attribute with a data record. This
means that the attribute is not stored in the data record and can be updated without changing the data
record.

What’s noticeably missing from the list above is a requirement to update data records in storage. This is
intentional. This approach imposes the constraint that historical data is preserved because this is often
required in practice. Also, it may be the case that your analytics engine does not support updates of data.
This implementation will force the analytics engine to manage updates without changing the data that’s
been stored.

Another note on the requirements above is that it if your analytics engine lacks some of the features
listed, you may still be able to implement real-time analysis according to the method in this paper. If your
analytics engine can read its data from in-memory sources, you can implement some of the joining and
filtering yourself. This paper will not cover the details of that work around.

PROCESS FOR IMPLEMENTATION

Using the features listed in the section above, you can turn your high-performance analytics engine into a
real-time, or near real-time, high-performance analytics engine.

Keep in mind that this method considers a few key constraints. The first is that there are no changes to
the stored data. The second is that there is no disruption any analysis in progress. The third is that
copying data and processing unnecessary data is to be avoided.

Set up the real-time stream

The first step is to connect the data stream. Your analytics engine may come with support for a particular
streaming engine. In this case, the data can be streamed in memory. Otherwise, you may will need to
write data to disk and program your analytics engine to read data from the files.

3

You need to determine how many records your analytics engine will receive at once. The true real-time
implementation would be to receive records as they come through the event stream. However, this may
not be feasible or desirable for a few reasons. One, the records may be coming too quickly for the speed
of the analytics engine. For example, the analytics engine may take two minutes to process inputs, in
which case updates every two seconds would be impossible. Second, it is convenient to store data as it is
received and storing data one or two records at time would result in too many files to manage. You may
want to set the engine up to pool records until a certain number of records have been received or a
certain amount of time has passed.

The result of the real-time stream will either be a collection of records grouped together by the analytics
engine and held in memory or a set of files on disk. The next step will be to process the data.

Join the data in-memory

The records of data the analytics engine needs to process are distributed among groups of records, either
separate groups in memory or separate files on disk. For analysis, the records need to be treated as one
big collection of data. You need to tell the analytics engine which groups to join together and this joining
of data needs to take place in memory.

Knowing what to tell the analytics engine to join requires some effort. The analytics engine needs to join
all groups, or files, that contain at least one current data record. It should not include any groups that
contain only out-of-date records. You will need to track what is in each group to determine the list of
groups for the analytics engine to join.

If you know you need a historical record of events in order to reproduce an analysis, you may augment
this data set with information about the event and the time the even occurred. Given a time in history, you
can easily determine which groups would need to be joined to reproduce an analysis as of that time.

Filter the data in-memory

The groups of data joined together by the analytics engine may include out-of-date records that should
not be included in analysis. This happens when updates are received erratically. You need to tell the
analytics engine which records of the group should be included in the analysis. You do this by setting an
attribute on each record that the engine will use as a filter. This attribute cannot be stored with the data
record. This attribute, which marks a record for inclusion, will change when updates are received or when
re-running a historical analysis. Some analytics engines support a concept called star schema in which
attributes are linked to records rather than stored with the record. Star schema makes this very easy.

As with the list of groups to join, managing the inclusion attribute requires some effort. Here is an
example of a SAS data set that sets this attribute.

EXAMPLE

The need for real-time analytics exists in every industry. This paper presents an energy and utilities
industry example.

An electric utility must manage its electricity generation to serve electricity demand. This exercise, called
load balancing, relies on an analytics engine to compute the current generation and consumption as well
as to forecast future load. The current load analysis is a sum, but the forecast model is very complex. This
paper will not go into the model itself.

As indicated in the introduction, the implementation process described in this paper is fairly generic. A
number of analytics engines exist, or can be built, that have the features required. This example will be
shown using the SAS High-Performance Risk analytics engine. The High-Performance Risk product has
all necessary functionality out-of-the-box and is easy to use.

4

SET UP THE REAL-TIME STREAM

Overview

The inputs sent to the analytics engine will be the current electricity consumption of each house and
business and the current generation of the plants. This example is a simplification, it leaves out inputs like
weather and commodity prices.

Error! Reference source not found. is a picture of the electricity system. There are four houses and
three businesses consuming electricity and two solar farms and three gas plants producing electricity.

Figure 1. The Electricity System of Consumers and Producers

The houses and businesses as well as the plants are all connected to sensors, which stream data
through the SAS Event Stream Processor to SAS High-Performance Risk. You will need to configure the
SAS Event Stream Processor to send records with the necessary fields. This paper does not cover the
ESP configuration.

From High-Performance Risk, you can choose how many records you want SAS High-Performance Risk
to receive at once. In this example, SAS High-Performance Risk is configured to receive a group of three
records. Each time SAS High-Performance Risk receives a group, it runs a project, which creates a risk
cube, which stores the records and intermediate model results on disk.

Table 1 shows the first group records as they are streamed into SAS High-Performance Risk. The fields
InstType and InstID are required for High-Performance Risk. The rest of the fields are custom attributes
describing the records.

StreamID InstType Location RecordID LocationType Role Amount

Day1_Group1 load House_A House_A_Day1Group1 House Consumer 2.1 KWH

Day1_Group1 load House_B House_B_Day1Group1 House Consumer 2.4 KWH

Day1_Group1 load House_C House_A_Day1Group1 House Consumer 2.7 KWH

Table 1. Records streamed from ESP to High-Performance Risk

5

Code

Here is the code to connect to ESP from High-Performance Risk and create a risk cube. The parameters
are based on the ESP stream you configure. The disconnect_count option tells High-Performance Risk to
collect three records from the data stream in a group:

proc High-Performance Risk

task = runproject

expprojlib = work

espmode = on

cube = “c:\temp\Electricity_Day1Group1”

filesprefix = “local\data\risk\ElecLoadFcst_Day1Group1”;

esp

 host = “my_esp_host”

 port = 1111

 positionqryname = “posqry”

 positionwindow = “poswindow”

disconnect_count = 3;

schema

IncludeFilter

data = work.includeSchema

crossclassvar recordID;

performance

 nodes = 10 nthreads = 8;

crossclassvars

 Location LocationType Role InstID;

ccfilter

includeFlag in (“Y”);

run;

quit;

CREATE THE INITIAL ANLAYSIS

It’s easiest to think about the process starting from the very beginning, when the first data is sent to High-
Performance Risk, before any updates are received from the data stream.

In the previous step, High-Performance Risk is configured to create risk cubes when a group of records is
received from ESP. Each group has records for a subset of the electricity system. Once all of the groups
are received, you need to join the risk cubes together to analyze the entire system.

Overview

In the initial analysis, you tell High-Performance Risk to join all of the risk cubes together. You will know
the risk cubes to join together if you actively manage a ledger that identifies the cube with the most
current record for each location. You can produce this ledger using output from ESP that you stream to a
data set. The CurrentStream is generic in this example, in practice this would be a datetime value.

Table 2 shows the risk cubes associated with the current record of each location.

Location CurrentStream Cube

House_A Day1_Update1 Electricity_Day1Group1

House_B Day1_Update1 Electricity_Day1Group1

House_C Day1_Update1 Electricity_Day1Group1

House_D Day1_Update2 Electricity_Day1Group2

Business_X Day1_Update2 Electricity_Day1Group2

Business_Y Day1_Update2 Electricity_Day1Group2

Business_Z Day1_Update3 Electricity_Day1Group3

6

Location CurrentStream Cube

Gas_G1 Day1_Update3 Electricity_Day1Group3

Gas_G2 Day1_Update3 Electricity_Day1Group3

Gas_G3 Day1_Update4 Electricity_Day1Group4

Solar_S1 Day1_Update4 Electricity_Day1Group4

Solar_S2 Day1_Update4 Electricity_Day1Group4

Table 2. Cube manager data set

Code

To join the risk cubes in High-Performance Risk, you run the code below with a data set listing the cubes.
The data set is shown below in table 3. Here is the code to join the risk cubes:

proc High-Performance Risk

task = joincubes

cube = “c:\temp\ElectricLoadForecast”

subcubesds = work.riskcubelist;

ccfilter

includeFlag in (“Y”);

run;

quit;

Table 3 is the data set work.riskcubelist.

Cube

c:\temp\Electricity_Day1Group1

c:\temp\Electricity_Day1Group2

c:\temp\Electricity_Day1Group3

c:\temp\Electricity_Day1Group4

Table 3. List of risk cubes to join in initial anlaysis.

When High-Performance Risk is asked to analyze the joined risk cube created above, it will load data
from the risk subcubes and join the records together in memory.

To analyze the initial system, you run the code below or you open the risk cube in the High-Performance
Risk user interface:

proc High-Performance Risk

task = query

cube = “c:\temp\ElectricLoadForecast”;

query _tree_;

output

summary = work.HPRSummary;

run;

quit;

The output will include the current generation and consumption and the forecast generation and
consumption output from the model. The actual model and analysis specifications are configured using
the COMPILE and RISK procedures. That code is outside the scope of this paper.

7

RECEIVE UPDATES AND RUN ANALYSIS

Overview

After the initial data is received, updates will begin to stream into the analytics engine. In this example,
High-Performance Risk is configured to receive updates in groups of three. Updates include new values
for electricity generation or consumption, the addition of consumers or production units, and discontinued
consumers or units.

In this example, the first set of updates are new consumption amounts for houses A and B and a new
generation amount for solar farm S1. The updates are received by High-Performance Risk and stored in a
risk cube.

Table 4 shows the updated records.

StreamID InstType Location RecordID LocationType Role Amount

Day1_Group5 load House_A House_A_Day1Group5 House Consumer 2.1 KWH

Day1_Group5 load House_B House_B_Day1Group5 House Consumer 2.4 KWH

Day1_Group5 load Solar_S1 Solar_S1_Day1Group5 Solar Producer 115 KWH

Table 4. First set of updates received from the data stream

Code

This is the code to create the risk cube containing the updates:

proc High-Performance Risk

task = runproject

expprojlib = work

espmode = on

cube = “c:\temp\Electricity_Day1Group5”

…

run;

quit;

Table 5 shows an updated cube manager data set

Location CurrentStream Cube

House_A Day1_Update5 Electricity_Day1Group5

House_B Day1_ Update5 Electricity_Day1Group1

House_C Day1_Update1 Electricity_Day1Group1

House_D Day1_Update2 Electricity_Day1Group2

Business_X Day1_Update2 Electricity_Day1Group2

Business_Y Day1_Update2 Electricity_Day1Group2

Business_Z Day1_Update3 Electricity_Day1Group3

Gas_G1 Day1_Update3 Electricity_Day1Group3

Gas_G2 Day1_Update3 Electricity_Day1Group3

Gas_G3 Day1_Update4 Electricity_Day1Group4

Solar_S1 Day1_Update5 Electricity_Day1Group5

Solar_S2 Day1_Update4 Electricity_Day1Group4

Table 5. Cube manager data set after fist set of updates

8

It is recommended that in addition to Table 5, you create a data set that contains the names of the events
and the time stamp of the events. This provides a way to look back in history to reproduce analysis as of
a certain date and time. Note, tables 4 and 5 should be kept separately as shown here because table 4
will be used regularly and should only be as long as the number of locations. Table 5 will grow very large
and will need regular archiving, and it will be used seldomly.

Table 6 shows a full historical view of events. The StreamID represents the time stamp of the event.

Location StreamID Cube Event

House_A Day1_Update5 Electricity_Day1Group5 Update

House_A Day1_Update1 Electricity_Day1Group1 Create

House_B Day1_Update5 Electricity_Day1Group1 Update

House_B Day1_Update1 Electricity_Day1Group1 Create

House_C Day1_Update1 Electricity_Day1Group1 Create

House_D Day1_Update2 Electricity_Day1Group2 Create

Business_X Day1_Update2 Electricity_Day1Group2 Create

Business_Y Day1_Update2 Electricity_Day1Group2 Create

Business_Z Day1_Update3 Electricity_Day1Group3 Create

Gas_G1 Day1_Update3 Electricity_Day1Group3 Create

Gas_G2 Day1_Update3 Electricity_Day1Group3 Create

Gas_G3 Day1_Update4 Electricity_Day1Group4 Create

Solar_S1 Day1_Update5 Electricity_Day1Group5 Update

Solar_S1 Day1_Update4 Electricity_Day1Group4 Create

Solar_S2 Day1_Update4 Electricity_Day1Group4 Create

Table 6. Cube manager data set after fist set of updates

To incorporate the updates into the analysis, you create a new join risk cube in High-Performance Risk
that is made up of the unique risk cubes from your updated risk cube manager data set (see table 5).

Table 7 shows the new risk subcube list you pass to High-Performance Risk for the join.

Cube

c:\temp\Electricity_Day1Group1

c:\temp\Electricity_Day1Group2

c:\temp\Electricity_Day1Group3

c:\temp\Electricity_Day1Group4

c:\temp\Electricity_Day1Group5

Table 7. List of risk cubes to join in initial analysis.

Here is the code to incorporate the updates. Note the CLEAN task, which is necessary to update the join
cube:

proc High-Performance Risk

task = clean

cube = “c:\temp\ElectricLoadForecast”;

run;

quit;

proc High-Performance Risk

task = joincubes

cube = “c:\temp\ElectricLoadForecast”

subcubesds = work.riskcubelist;

9

schema

IncludeFilter

data = work.includeSchema

crossclassvar recordID;

ccfilter

includeFlag in (“Y”);

run;

quit;

When this code finishes, the joined risk cube will contain two observations for houses A and B and two
observations for solar farm S1. SAS High-Performance Risk must be told to discard the old observations
when it computes the analysis. The schema statement and ccfilter statement in the code above are used
for that.

SAS High-Performance Risk has the capability to filter records out of the analysis at run-time based on
any attribute. In this example, the attribute will be called includeFlag and it will take value “Y” to indicate
the record is to be included and “N” to indicate the record is to be excluded.

The attribute will be assigned in a separate SAS data set, known to High-Performance Risk as a schema
data set, and will be linked to the records based on recordID_time, which captures the location (ie which
house, business, or plant) in the record and the time of the record. The schema data set can be updated
any time and is read by High-Performance Risk at the time the analysis is run.

Table 8 shows the schema data set after the first set of updates is received. This is the data set
work.includeSchema that is specified on creation of the joined risk cube.

RecordID IncludeFlag

House_A_Day1Group5 Y

House_A_Day1Group1 N

House_B_Day1Group5 Y

House_B_Day1Group1 N

House_C_Day1Group1 Y

House_D_Day1Group2 Y

Business_X_Day1Group2 Y

Business_Y_Day1Group2 Y

Business_Z_Day1Group3 Y

Gas_G1_Day1Group3 Y

Gas_G2_Day1Group3 Y

Gas_G3_Day1Group4 Y

Solar_S1_Day1Group5 Y

Solar_S1_Day1Group4 N

Solar_S2_Day1Group4 Y

Table 8. Schema data set to mark records for inclusion after first set of updates

Now the out-of-date records are marked for exclusion and the updates are marked for inclusion. The
CCFILTER statement that you specify when you create the joined risk cube tells High-Performance Risk
to apply a filter that only includes records where includeFlag is set to “Y.”

The results of the analysis on the updated risk cube will incorporate the updates to houses A and B and
solar farm S1.

A quick note on interruption of current processes: the way this is implemented in High-Performance Risk,
there is no interruption of analyses in progress. The joined risk cube, described earlier as a set of
instructions, can be updated without bothering existing sessions. All sessions use the set of instructions

10

to do an initial load of data into memory and start the analysis and then they’re done with it. The same
thing is true of the schema data set.

CONTINUING THE UPDATES

Updates will continue to stream into High-Performance Risk and the steps above are repeated with each
update. The number of risk cubes joined each time will grow and shrink in the process of updating
existing records. In this paper’s example, the number of risk cubes grew from four to five when the first
update was received. Once an update is received for House C, the first risk cube will be entirely replaced
and it will no longer be in the list of risk cubes to join. For best performance, you should try to keep the
number of risk cubes joined under 1,000 if possible.

CONCLUSION

It is possible to configure a high-performance analytics engine to respond to real-time data streams even
if the engine is designed to process data in single batches. Further, it is possible to do this without
interrupting analysis in progress and without changing any stored data.

ACKNOWLEDGMENTS

Stacey Christian and Don McAllister reviewed this paper and provided valuable feedback.

RECOMMENDED READING

 SAS® Risk Dimensions and SAS® High-Performance Risk Procedures Guide

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Katherine Taylor
Katherine.taylor@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brands and product
names are trademarks of their respective companies.

mailto:Katherine.taylor@sas.com

