
Paper SAS478-2017

Advanced Hierarchical Modeling with the MCMC Procedure

Fang Chen and Maura Stokes, SAS Institute Inc.

Abstract

Hierarchical models, also known as random-effects models, are widely used for data that consist of collections of
units and are hierarchically structured. Bayesian methods offer flexibility in modeling assumptions that enable you to
develop models that capture the complex nature of real-world data. These flexible modeling techniques include choice
of likelihood functions or prior distributions, regression structure, multiple levels of observational units, and so on.

This paper shows how you can fit these complex, multilevel hierarchical models by using the MCMC procedure in
SAS/STAT® software. PROC MCMC easily handles models that go beyond the single-level random-effects model,
which typically assumes the normal distribution for the random effects and estimates regression coefficients. This
paper shows how you can use PROC MCMC to fit hierarchical models that have varying degrees of complexity, from
frequently encountered conditional independent models to more involved cases of modeling intricate interdependence.
Examples include multilevel models for single and multiple outcomes, nested and non-nested models, autoregressive
models, and Cox regression models with frailty. Also discussed are repeated measurement models, latent class
models, spatial models, and models with nonnormal random-effects prior distributions.

Introduction

Hierarchical models, also known as multilevel models or random-effects models, are particularly useful for analyzing
data that are structured in groups. The groups can be natural clusters, demographic units, spatial neighbors, medical
studies, individual subjects, and so on. Each group is assumed to have its own parameters that are different but
related. A hierarchical model has the flexibility to capture and analyze complex data structure and the ability to account
for and estimate effects from different groups. One the strengths of the MCMC procedure is its ability to fit many types
of hierarchical models that require a range of data and modeling assumptions. This paper demonstrates how you can
use PROC MCMC to model cluster-based data.

To learn the basics of PROC MCMC, see Chen (2009), Chen (2011), and Chen (2013). Collectively, the three papers
introduce the essential usage of PROC MCMC, including fitting fixed-effects models and simple random-effects
models, handling missing data, and carrying out inferences and predictions. Chen, Brown, and Stokes (2016) offers
guidance on how you can use PROC MCMC to perform Bayesian analysis in models that are often fitted using mixed
modeling procedures (such as the MIXED and GLIMMIX procedures). Chen, Brown, and Stokes (2016) covers key
elements in handling mixed models, such as coding categorical variables, translating RANDOM and REPEATED
statements, and fitting models that have various covariance types. This paper goes beyond Chen, Brown, and Stokes
(2016) to examine a wider class of statistical models.

Hierarchical models is the subject of a large amount of literature and years of continued study by many statisticians.
For overviews on this topic, see the textbooks by Congdon (2010) and Gelman and Hill (2007), which include many
other references. This paper provides only a basic coverage of hierarchical models and aims to provide guidance on
how to use PROC MCMC to fit these models that have different levels of complexity and modeling assumptions. The
paper is organized as follows.

The section “Multilevel Random-Effects Model” demonstrates how to fit multilevel models that have the most commonly
encountered assumptions: the data are assumed to be conditionally independent given the random effects, and
the units of random effects across groups are conditionally independent given their shared hyperparameters. Such
assumptions are used in a wide range of applications in which cluster samples are drawn according to a hierarchy,
which can be nested (such as students within classrooms) or non-nested (such as patients who go to different clinics).
This section uses a series of examples to show how to use PROC MCMC to fit variations of multilevel random-effects
models, including models that have a single response or multiple responses and models that use nonnormal priors.
The section also covers inferences and predictions.

The section “Dynamic and Autoregressive Models” describes fitting models in which some of the conditional inde-
pendence assumptions are relaxed. Here, the random-effects parameters are assumed to be correlated, and the

1

correlation has an autoregressive nature. A dynamic linear model is used in this section to demonstrate PROC
MCMC’s capability to handle this class of models, which require specific structured correlation among the random
effects. The approach described is general and can be extended to all latent variable models that have similar Markov
structures.

The section “Random-Effects Models for Data with Complex Dependence” discusses modeling data that have a more
complex structure: the observations are dependent on each other and the random effects within the same group are
also dependent on each other. In many situations, prespecified and static correlation structures are not sufficient to
satisfy all the modeling requirements. Dependencies can be data-specific and arbitrary. This section examines this
situation in more depth and uses Cox regression with frailty as an example. The general idea of modeling such data
can be extended to other applications, such as network meta-analysis.

The section “Further Applications” includes illustrative references that are intended to provide guidelines for handling
common situations that arise from hierarchical modeling. Additional material describes how to use PROC MCMC
to incorporate non-nested random effects, model repeated observations, account for heteroscedasticity, handle
longitudinal data, or include spatial structure.

Multilevel Random-Effects Model

This section describes how to use PROC MCMC to fit a multilevel random-effects models. In this class of models, the
data, yij (which represents i th observation in the j th group), are assumed to be conditionally independent given the
random effects (�j) or other random effects in the model that appear higher than the data in the hierarchy. Further,
the units of the random effects, �j , are assumed to be conditionally independent of each other given their shared
hyperparameters. This type of data occurs most frequently in practice and is the type of data that can be handled in
PROC MCMC with ease—by default, both the MODEL and RANDOM statements assume this type of conditional
independence on the random variables (in the data or random-effects parameters).

The following data were collected from a two-arm vaccine trial for safety and immunogenicity. A total of 296 subjects
were divided into two groups, with 132 subjects in the control arm and 148 subjects in the treatment arm. The outcome
is the count of adverse experiences (such as fatigue, crying, insomnia, cough, and so on). Forty types of adverse
experience (AE) were categorized into eight body systems (BdSys). For more information about this TwoArms data
set, see Mehrotra and Heyse (2004).

The first few records of the TwoArms data set are shown as follows:

data TwoArms;
nt = 148;
nc = 132;
format term $28.;
input AE BdSys yt yc term $;

datalines;
1 1 57 40 Astenia/fatigue
2 1 34 26 Fever
3 1 2 0 Infection-fungal
4 1 3 1 Infection-viral

... more lines ...

The term variable is the name of the illness or the adverse experience. The variable AE is the numeric coding of
the term variable. These subject variables are equivalent in specifying a model in PROC MCMC, and you can use
them interchangeably in a RANDOM statement. The BdSys represents the body systems. The treatment outcome is
yt, and the control outcome is yc. The variables nc and nt are the number of subjects in the control and treatment
groups, respectively. The total number of subjects are fixed in this example, but they can vary in other scenarios.

This section illustrates how to use PROC MCMC to fit different types of a multilevel hierarchical random-effects model.
The text and model specifications draw from Berry and Berry (2004).

2

Multilevel Model for Single Response

First consider a model that has a single response variable, yc. This variable is modeled using a binomial likelihood,

ycbj � binomial.nt; cbj /

where b D 1; : : : ; 8 labels the body system (BdSys) and j D 1; : : : ; kb labels the adverse experience within the
body system b. The probability cbj is a logistic transformation of the AE-level random effects bj :

cbj D logit.bj /

The first-level random effects bj have a normal prior distribution:

bj � normal.�b; �
2
 /

The second level is the body system, and this stage models the hyperparameters of bj . The hyperparameters
include the BdSys-level random effects �b and parameter �2 . They have the following prior distributions, where
b D 1; : : : ; 8.

�b � normal.�0; �20/

�2 � IG.˛� ; ˇ� /

The third level models the hyper-hyperparameters (parameters of the hyperprior distributions) and have the following
specifications:

�0 � normal.�00; �200/

�20 � IG.˛� ; ˇ� /

In PROC MCMC, you use RANDOM statements to specify the random effects of different levels (the bj and �b
parameters). In addition, the RANDOM statement supports nested hierarchy, which means that a random effect in
the higher hierarchy (for example, the BdSys-level �b) can be hyperparameters to the random effects in the lower
hierarchy (for example, the AE-level bj).

The hyperparameters �2 , �0, and �20 should be declared in the PARMS statement and assigned prior distributions
in the PRIOR statement. You can choose fixed constants for the remaining parameters in the model specification;
these include ˛� ; ˇ� ; �00; �200; ˛� , and ˇ� .

The following PROC MCMC statements fit this model:

proc mcmc data=TwoArms nmc=20000 seed=12707 outpost=OutYc;
parm sig2_g mu_g0 tau2_g0;
prior mu_g0 ~ normal(0, sd=100);
prior sig2_g tau2_g0 ~ igamma(shape=3, scale=1);

random mu_gb ~ normal(mu_g0, var=tau2_g0) subject=BdSys;
random gamma_bj ~ normal(mu_gb, var=sig2_g) subject=AE;
c_bj = logistic(gamma_bj);
model yc ~ binomial(nc, c_bj);

run;

Figure 1 shows the fit of the model.

Figure 1 PROC MCMC Posterior Summaries for the Control Response

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

sig2_g 20000 1.9635 0.6116 0.9074 3.1670

mu_g0 20000 -3.8577 0.3626 -4.5668 -3.1338

tau2_g0 20000 0.3790 0.2310 0.0891 0.8044

3

The mean of the BdSys-level random effects mu_g0 is a large negative value, indicating almost no body system
effects on the binomial probability (the logistic transformation of a large negative value is close to 0). This is not
surprising because only a response variable from the control group is used. By default, the posterior summary
statistics of the random-effects parameters (mu_gb: and gamma_bj:) are not displayed. The posterior samples of
the random-effects parameters are saved automatically to the OUTPOST= data set. You can also use the MONITOR=
option in the RANDOM statement to output posterior summary statistics and diagnostics of specific random-effects
parameters in a PROC MCMC call.

Multilevel Model for Multiple Responses

Once you learn how to use PROC MCMC to fit a multilevel model to one response variable, it is relatively straightforward
to extend the program to include another response variable (yt). The model specification for yt is parallel to that for
yc. The probability of treatment success is denoted as tbj ,

tbj D logit.bj C �bj /

where the �bj are the AE-level treatment effects (log odds ratios). The rest of the model specification mirrors the
hierarchy for the control outcome:

�bj � normal.��b; �
2
� / First-level random effects

��b � normal.��0; �
2
�0/ Second-level random effects

�2� � IG.˛�� ; ˇ�� / Second-level hyperparameter

��0 � normal.��00; �
2
�00/ Third-level hyper-hyperparameter

�2�0 � IG.˛�� ; ˇ�� / Third-level hyper-hyperparameter

You can use multiple MODEL statements to specify different likelihood functions for different response variables.
Therefore, to extend the previous program, you add one additional MODEL statement for the yt variable and two more
RANDOM statements to model the nested random effects on the treatment side. The random effect (gamma_bj) is
the baseline effect, which enters both likelihood functions; the random effect (theta_bj) is the treatment effect, which
enters only the treatment likelihood function.

The following PROC MCMC statements fit the model:

proc mcmc data=TwoArms nmc=20000 seed=12707 outpost=outT;
parm sig2_g mu_g0 tau2_g0 sig2_t mu_t0 tau2_t0;
prior mu_g0 mu_t0 ~ normal(0, sd=100);
prior sig2_g tau2_g0 sig2_t tau2_t0 ~ igamma(shape=3, scale=1);

random mu_gb ~ normal(mu_g0, var=tau2_g0) subject=BdSys;
random gamma_bj ~ normal(mu_gb, var=sig2_g) subject=AE;

random mu_tb ~ normal(mu_t0, var=tau2_t0) subject=BdSys;
random theta_bj ~ normal(mu_tb, var=sig2_t) subject=AE;

c_bj = logistic(gamma_bj);
model yc ~ binomial(nc, c_bj);
t_bj = logistic(gamma_bj + theta_bj);
model yt ~ binomial(nt, t_bj);

run;

Figure 2 shows the fit of the model.

4

Figure 2 PROC MCMC Posterior Summaries for Modeling Both Responses

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

sig2_g 20000 1.5786 0.4168 0.8669 2.4036

mu_g0 20000 -3.7850 0.3346 -4.4652 -3.1454

tau2_g0 20000 0.3737 0.2227 0.0915 0.7922

sig2_t 20000 0.2153 0.0837 0.0822 0.3796

mu_t0 20000 0.3221 0.2539 -0.1758 0.8306

tau2_t0 20000 0.2911 0.1615 0.0885 0.5993

The posterior estimates for parameters in the control group are approximately the same as the analysis that is based
on only the control response. The posterior mean of mu_t0 is around 0.3, indicating a positive shift in probability of
success over the baseline effect.

Alternate Data Coding

Different data coding leads to different approaches of using PROC MCMC to model data that have multiple responses.
In the previous example, the two responses are stored in two separate columns of the input data, with one variable for
each response. When the data are stored in this format (a wide data set), you can use multiple MODEL statements for
the data, matching one MODEL statement to one response variable. Suppose that instead of binomial distributions,
you have a continuous outcome variable and you want to model the response variables by using a multivariate normal
distribution. You can still use this approach by storing the variables in a wide data set and using a multivariate normal
likelihood to model them jointly in a MODEL statement.

You might encounter data that are stored in a long data set, where one variable is used to represent all response
variables. The data set might have an indicator variable that indicates the membership information of each response
value. This type of long data set is frequently used in the MIXED and GLIMMIX procedures. These procedures
support a single MODEL statement, and you use the REPEATED statement with a SUBJECT= variable to model
multiple responses.

You can fit the same model that was described in the section “Multilevel Model for Multiple Responses” by using a
long data set with minimal changes. The following DATA step modifies the TwoArms data set by combining the yt
and yc variables into one y variable in the TwoArmsL data set:

data TwoArmsL(drop=nt nc yt yc);
set TwoArms;
y = yt; trt = 1; n = 148; output;
y = yc; trt = 0; n = 132; output;

run;

The binary variable trt indicates whether an observation belongs to the treatment or the control group. Instead of
two MODEL statements for two response variables, you can use DATA step statements in PROC MCMC to construct
success probabilities for different observations in the data set and use a single MODEL statement to model the
response:

p = logistic(gamma_bj + trt * theta_bj);
model y ~ binomial(n, p);

The specifications of the random effects and the hyperparameters remain the same, and you can use the following
program to fit the same model to the TwoArmsL data set:

proc mcmc data=TwoArmsL nmc=20000 seed=12707;
parm sig2_g mu_g0 tau2_g0 sig2_t mu_t0 tau2_t0;
prior mu_g0 mu_t0 ~ normal(0, sd=100);
prior sig2_g tau2_g0 sig2_t tau2_t0 ~ igamma(shape=3, scale=1);

random mu_gb ~ normal(mu_g0, var=tau2_g0) subject=BdSys;
random gamma_bj ~ normal(mu_gb, var=sig2_g) subject=AE;

5

random mu_tb ~ normal(mu_t0, var=tau2_t0) subject=BdSys;
random theta_bj ~ normal(mu_tb, var=sig2_t) subject=AE;

p = logistic(gamma_bj + trt * theta_bj);
model y ~ binomial(n, p);

run;

This analysis provides the same posterior estimates as the analysis in the section “Multilevel Model for Multiple
Responses”.

Nonstandard Prior for Random Effects

Previous examples used the normal prior distribution on the random effects �bj . An alternative mixture prior was
proposed by Berry and Berry (2004) to indirectly infer the probability that �bj D 0. This modeling enables you to
directly infer whether the probability of a patient experiencing a particular adverse effect is the same in both arms of
the study. The mixture prior has the following marginal distribution, where ˛� and ˇ� are hyperparameters:

�bj � �bIŒ0� C .1 � �b/ � normal.��b; �
2
�b/

�b � beta.˛� ; ˇ�/

You cannot directly specify the mixture prior on �bj in PROC MCMC because PROC MCMC requires that a parameter
is either continuous (for example, a normal prior or the general prior) or discrete (for example, a Poisson prior
or dgeneral prior). The parameter cannot be continuous sometimes and discrete other times. The solution is to
reparametrize the marginal distribution and represent the mixture model by using a latent class model:

pb � beta.˛� ; ˇ�/

zbj � binary.pb/

�.�bj / D

�
normal.��b; �� 2/ if zbj D 0
P.�bj D 0/ D 1 if zbj D 1

The term pb is the mixture probability for each BdSys, and zbj is the latent variable that identifies the mixture
component for each observation (that is, either �bj D 0 when the vaccine has no effect on adverse experience or
�bj ¤ 0 when the vaccine has an effect). The hyperparameters ˛� and ˇ� take on a truncated exponential prior
(values greater than 1).

A random-effects model that uses a mixture prior on �bj can be fitted using the following PROC MCMC statements:

proc mcmc data=TwoArms nmc=50000 seed=12707 outpost=outM;
parm sig2_g mu_g0 tau2_g0 sig2_t mu_t0 tau2_t0;
prior mu_g0 mu_t0 ~ normal(0, sd=100);
prior sig2_g tau2_g0 sig2_t tau2_t0 ~ igamma(shape=3, scale=1);

random mu_gb ~ normal(mu_g0, var=tau2_g0) subject=BdSys;
random gamma_bj ~ normal(mu_gb, var=sig2_g) subject=AE;

random mu_tb ~ normal(mu_t0, var=tau2_t0) subject=BdSys;
random theta_bj ~ normal(mu_tb, var=sig2_t) subject=AE;

parm a b;
prior a b ~ expon(scale=1, lower=1);
random p ~ beta(a, b) subject=BdSys;
random z ~ binary(p) subject=Term;

c_bj = logistic(gamma_bj);
model yc ~ binomial(nc, c_bj);
t_bj = logistic(gamma_bj + (1 - z) * theta_bj);
model yt ~ binomial(nt, t_bj);

run;

6

The added PARMS and PRIOR statements declare two hyperparameters of the beta prior (for pb) and assign the
truncated exponential prior distribution to them. Two RANDOM statements are used to specify the pb and the zbj . In
the t_bj assignment statement, the (1-z) trick is used to zero out the effect of �bj when zbj D 1.

This parametrization of the mixture prior estimates the probability that the treatment and control have the same effect
on adverse experiences. You can estimate the probability of each AE by computing the posterior mean of each of the
latent variables zbj—for example, by using PROC MEANS as follows (results not shown):

proc means data=outM mean;
var z:;

run;

This section illustrates how to fit models by using a nonnormal prior on the random effects. The marginal mixture prior
distribution is reparameterized using latent variables, and the standard beta and binary prior distributions can be used
to specify the same model in the RANDOM statement. In situations where the reparametrization is not possible, you
can record the distribution and use the general function in the RANDOM statement. The general function in the
RANDOM statement works the same way as the general function in the PRIOR or MODEL statement. Remember
to always specify the density on a logarithmic scale, use the INIT= option in the RANDOM statement to set the initial
values, and use the dgeneral function to specify discrete prior distributions.

Odds Ratios and Risk Ratios

In many analyses, you want to provide measures such as odds ratios and risk ratios. These measures are functions
of the random effects: the �bj are the log odds ratios, and the ratios of the two probabilities, cbj =tbj , are the relative
risk ratios. To carry out posterior inferences, all you need are the posterior samples of all the model parameters. Once
you complete a PROC MCMC run, you can compute these quantities by using a DATA step to compute functions of
the random effects as follows:

data ratios;
set outm;
array theta[40] theta:;
array gamma[40] gamma:;
array or[40];
array rr[40];
do i = 1 to 40;

or[i] = exp(theta[i]);
rr[i] = logistic(gamma[i]) / logistic(theta[i]);

end;
keep or: rr:;

run;

The outm data set is the data set that is specified in the OUTPOST= option from the model that uses the mixture
prior on �bj . The first two ARRAY statements store all the random-effects variables in the theta and gamma arrays. A
DO loop computes the odds and risk ratios. To compute these posterior summary statistics, you can use either SAS®

procedures (such as PROC MEANS) or autocall postprocessing macros (such as %SUMINT).

%sumint(data=ratios, var=or1-or4 rr1-rr4);

You can also use the %CATER autocall macro to display side-by-side 95% highest posterior density (HPD) intervals of
these quantities as follows:

%cater(data=ratios, var=or:);
%cater(data=ratios, var=rr:);

Figure 3 shows posterior estimates of some of the odds ratios and risk ratios.

7

Figure 3 Odds Ratios and Risk Ratios

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

or1 50000 1.8641 1.7311 0.0610 4.2343

or2 50000 1.8759 1.7882 0.0845 4.7591

or3 50000 1.9554 1.7965 0.1137 4.7548

or4 50000 1.9875 2.3829 0.1046 4.7447

rr1 50000 0.5787 0.3299 0.2896 1.0027

rr2 50000 0.3768 0.2020 0.1781 0.6535

rr3 50000 0.0192 0.0189 0.00154 0.0455

rr4 50000 0.0298 0.0261 0.00328 0.0674

Figure 4 displays the odds ratios and relative risk ratios that are estimated from the model.

Figure 4 Odds Ratios and Relative Risk Ratios

Odds Ratios Risk Ratios

You can also compute functions of random-effects parameters directly in a PROC MCMC program, using a similar
idea as in the DATA step. For example, you can insert the following four lines in a multilevel model program in PROC
MCMC:

array or[40];
array rr[40];
or[ae] = exp(theta_bj);
rr[ae] = c_bt / t_bj;

In each of the simulation iterations, PROC MCMC steps through the input data set and computes the odds ratios and
risk ratios based on every random-effects parameter. You add the monitor=(or rr) option in the PROC MCMC
statement to save the transformations of the random variables. The results will be the same as those produced by the
DATA step calculations, but you will have added some overhead to the PROC MCMC call. See Chen (2011) for a
more detailed discussion about monitoring functions of random-effects parameters in a PROC MCMC call.

Predictions

With hierarchical models, you might be interested in two different types of predictive distribution: the first is a new
observation that corresponds to an existing random effect (for example, the number of positive outcomes in a new
vaccine trial among subjects who report diarrhea in body system 2), and the second is a new observation that
corresponds to new or unknown random effects (for example, the number of positive outcomes in a new vaccine trial).
The first type of prediction is conditioned on known random effects because you are inferring from a particular unit;
the second type of prediction is conditioned on the marginal distribution, where all the uncertainties with respect to the
random effects have been integrated out.

You can use the PREDDIST statement in PROC MCMC to perform both types of predictions.

8

The following statements generate two prediction data sets, pred1 and pred2, which correspond to the two types of
prediction scenarios:

data pred1;
nt = 100;
nc = 100;
format term $10.;
input AE BdSys term $;

datalines;
9 2 Diarrhea

;

data pred2;
nt = 100;
nc = 100;

;

The pred1 data set represents the scenario of a future two-arm trial in which each arm has 100 subjects, who all
report AE=9 (Diarrhea) in BdSys=2. The pred2 data set contains only the number of subjects in the trials, with no
information about adverse experience or body systems.

You can add the following two statements to previous PROC MCMC programs, and the procedure draws posterior
predictive samples of the treatment and control outcomes accordingly:

preddist covariates=pred1 outpred=predout1 stats=brief;
preddist covariates=pred2 outpred=predout2 stats=brief;

In predictions based on pred1, PROC MCMC draws new response values from a predictive distribution that is
conditioned on the posterior samples of the random-effects parameters for AE=9 and BdSys=2. In predictions
based on pred2, PROC MCMC first generates the random-effects parameters from their marginal distributions (also
conditional on the posterior samples of other model parameters), and then uses the newly sampled random-effects
parameters in drawing samples from the predictive distributions for the response variables.

Figure 5 shows posterior histograms of predicted outcome in the two-arm trials. The variable yc_1 (left panel) is
from the control arm, and the variable yt_1 (right panel) is from the treatment arm. The darker histograms display
the expected outcomes from 100 subjects that have group information; the light histograms display the expected
outcomes from 100 new subjects.

Figure 5 Comparing Two Predictions

9

Subject Identifiers in a Multilevel Model

The coding of the subject identifier variables is important when you use PROC MCMC to fit a multilevel random-effects
model. There are different ways of representing subject levels, and each would entail different syntax specification. In
the TwoArms analysis, the variable AE is the symptom identifier, which has a unique value for every symptom. You
use AE as a SUBJECT= variable in the symptom-level random effects, and that specification results in 40 unique
random-effects parameters for that effect.

In some data sets, the coding scheme can be different. For example, AE can be coded as repeats within the BdSys
level as follows:

AE BdSys
1 1
2 1
3 1

...
1 2
2 2
3 2
4 2

...

Many SAS users might be familiar with this type of data representation. The corresponding syntax for specifying
nested models that is used in mixed modeling procedures (such as PROC GLIMMIX) is SUBJECT=AE(BdSys).
This syntax ensures that there are 40 unique AE-level random effects. Because the RANDOM statement in PROC
MCMC does not support nested-effects syntax, you must preprocess the input data set in order to fit the same nested
hierarchical model. One simple solution is to use the DATA step to concatenate the AE and the BdSys variables:

UniqAE = trim(AE)||'_'||trim(BdSys);

You then use the new subject variable in the RANDOM statement for the AE-level random effects:

random theta_bj ~ normal(mu_tb, var=sig2_t) subject=UniqAE;

Summary of Analysis of Multilevel Random-Effects models

This section illustrates how to use PROC MCMC to fit the most frequently encountered multilevel hierarchical models,
with a conditional independence assumption imposed on both the data and the random effects. This type of model is
easy to fit in PROC MCMC because both the MODEL statement and the PRIOR statement assume such conditional
independence. The examples demonstrate how you can fit a four-level hierarchical model, and you can extend these
examples to more complex scenarios. PROC MCMC does not restrict the number of random effects that you can
specify, where or how they enter a model, or how many response variables that you can include. The flexibility in the
syntax ensures that you can easily account for covariates information and use a combination of the RANDOM and
MODEL statements with programming statements to represent your model of interest to any level of detail.

Dynamic and Autoregressive Models

This section demonstrates how you can fit models in which some of the conditional independence assumptions
are lifted. By default, a RANDOM statement assumes that all the random-effects parameters are independent of
each other, a priori , conditional on the shared hyperparameters. Most commonly, �j � normal.�; �2/ and the
hyperparameters are not functions of other random-effects parameters �k for k ¤ j. This assumption is often violated
in models that involve a time variable. Common examples include autoregressive models or dynamic models. This
section illustrates how to fit a hierarchical model when the prior of the random-effects parameter depends on other
random-effects parameters.

The basic model described in this section is a dynamic linear model that models a univariate response. The idea of
how to fit such model can be extracted and extended to other required scenarios of a similar autoregressive nature,
including multivariate data. In its most basic representation, a dynamic linear model can be written as two models (an
observation equation and a process equation),

yt D Ftzt C �t ; �t � normal.0; �2� /

zt D Gtzt�1 C !t ; !t � normal.0; �2!

10

where yt are observations that are indexed by time t D 1; : : : ; n, and Ft is the observation operator, which acts as a
linear transformation function on the latent (unobserved) variable zt . The latent variable zt evolves according to the
transition operator Gt , and it depends on hidden variables in the past. The errors are assumed to be independent. All
the scale parameters can be generalized to matrix parameters, and there can be multiple time dependencies.

The dynamic linear model can be seen as a hierarchical model that has three levels: the first level is the likelihood
function on the data yt ; the second level is on the unknown states zt , and the process equation specifies the dynamic
part of the prior distribution; and the third level models the uncertainty that is related to the hyperparameters of the
zt . In PROC MCMC, you use the MODEL statement to specify the observation equation for the data, the RANDOM
statement to specify the prior for the latent variables, and the PRIOR statement to specify the prior distributions of the
hyperparameters to the random effects.

This type of prior distribution on the zt requires access to lag values of random-effects parameters according to the
time variable. Suppose that the effect variable is z (the effect name in a RANDOM statement). Use the following rules
to construct symbols to access lag or lead variables of z:

z.Li : the i th lag of the variable z, which looks back to the past.

z.Ni : the i th lead of the variable z, which looks forward to the future.

This construction is allowed for random variables that are associated with an index. For random-effects parameters,
the index corresponds to the SUBJECT= variable of the statement. Random-effects parameters from a RANDOM
statement are indexed according to the order of the unique subject values. When a lag or a lead variable of order k is
used in a PROC MCMC program, the variable is resolved according to the underlying index.

For example, the following RANDOM statement specifies a first-order Markov dependence in the random effect theta,
which is indexed by the subject variable time:

random theta ~ normal(theta.l1,sd=1) subject=time;

This statement corresponds to the following prior:

�t � normal.�t�1; sd=1/

At each observation, PROC MCMC fills in the symbol theta with the random-effects parameter �t that belongs to the
current cluster t. To fill in the symbol theta.l1, the procedure looks back and finds a lag-1 random-effects parameter,
�t�1, from the last cluster t–1. As the procedure moves forward in the input data set, these two symbols are constantly
updated as appropriate.

When the index is out of range, such as t–1 when t is 1, PROC MCMC fills in the missing state from the ICOND=
option in the RANDOM statement. For more information about the initial conditions, see the chapter "The MCMC
Procedure" in SAS/STAT User’s Guide.

The following example fits a time-varying coefficients model to observed quarterly coal consumption in the United
Kingdom for the years 1960–1986. It is based on an example that is published in Congdon (2003, p. 207), which in
turn is based on a model and data that are published in Harvey (1989). The following statements create the data
set UKcoal, which contains the variables Coal, Y, Year, Quarter, and T. The variable Coal measures quarterly coal
consumption. Y is a variance-stabilizing transformation of Coal; specifically, it is the natural logarithm of Coal divided
by 1,000. The variables Year and Quarter represent the years and quarters of the observations. The variable T
indexes the observations.

data UKcoal;
input coal year quarter @@;
t=_N_;
Y=log(coal/1000);
datalines;

303 1960 1 169 1960 2 152 1960 3 257 1960 4
247 1961 1 189 1961 2 146 1961 3 220 1961 4
248 1962 1 195 1962 2 141 1962 3 235 1962 4
278 1963 1 167 1963 2 150 1963 3 261 1963 4
244 1964 1 174 1964 2 104 1964 3 228 1964 4

11

... more lines ...

Figure 6 displays the log-transformed coal consumption time series. It is reasonable to assume homogeneity of the
variance of the series.

Figure 6 Quarterly UK Coal Consumption (1960–1986) on the Logarithmic Scale

The following specification describes a smoothing model that appears in Congdon (2003, p. 207) for a time series that
has seasonal effects and a secular trend:

yt � normal.zt ; �2y / Observational model

zt D �t C st Underlying trend after allowing for seasonal effects

�t � normal.�t�1 C ˛t�1; �2�/ Evolution in mean

˛t�1 � normal.�˛t�2; �2˛ / Increments in mean

st � normal.�st�1 � st�2 � st�3; �2s / Seasonality

The first expression is the observational model. The mean of the response (second expression) variable consists of a
trend (�t) plus seasonal effects (st). Both �t and st depend on their past effects, in addition to the autoregressive
drifting term ˛t�1.

To simplify the presentation without loss of generality, the initial conditions for st and ˛t are assumed to be zero when
the index is out of range, and the initial condition for �t (named �0) is treated as unknown and is estimated in the
program. The normal prior with large variance is used on � and �0, and the inverse gamma prior is used on the four
variance terms.

The following statements use PROC MCMC to fit the time-varying coefficients model:

proc mcmc data=UKcoal nmc=50000 seed=112701 outpost=CoalOut propcov=quanew;
parms phi mu0;
parms sig2_a sig2_s sig2_m sig2_y;
prior phi mu0 ~ normal(0,var=100);
prior sig2: ~ igamma(shape = 3/10, scale = 10/3);
random alpha ~ normal(phi*alpha.l1, var=sig2_a) subject=t;
random s ~ normal(-s.l1-s.l2-s.l3, var=sig2_s) subject=quarter;
random mu ~ normal(mu.l1 + alpha.l1, var=sig2_m) subject=t icond=(mu0);
z = mu + s;
model y ~ normal(z,var=sig2_y);
preddist outpred=TVCoutpred;

12

ods output PredSumInt=TVCPredSumInt;
run;

The three RANDOM statements specify the three autoregressive latent variables, in ˛t , st , and �t . The lag variables
enable you to look back and access different lag values of these variables, as specified in the statistical model.
The PREDDIST statement requests sampling of the response variables. Because no data set is provided in the
COVARIATES= option, PROC MCMC uses the default UKcoal data set for prediction. In this situation, the predicted
samples of the fitted values are predicted.

Figure 7 shows the overlay of the predicted mean with observed data. The solid red line represents the original
in-sample response variable, the dashed blue line represents the mean of the predictive distribution, and the light-blue
shaded area represents the 95% HPD interval.

Figure 7 Prediction of the Dynamic Linear Model

The predicted mean values follow the observed values closely (the solid and dashed lines are almost indistinguishable).
You can also use PROC MCMC to make out-of-range predictions. For more information, see the chapter “The MCMC
Procedure” in SAS/STAT User’s Guide.

Random-Effects Models for Data with Complex Dependence

Although conditional independent models and Markov-structured models are pervasive in practice, some analyses
require modeling assumptions to be further relaxed in order to capture the complex dependency among the data.
In many such models—including Cox regression models, item response models, discrete choice models, network
meta-analysis models, and so on—the likelihood function of an observation depends on other observations in an
arbitrary case-specific fashion. To further complicate the modeling task, you often must build a hierarchical model on
top in order to account for and infer cluster-level effects. This section illustrates how you can use PROC MCMC to fit a
random-effects model that has complex dependence.

This example uses a leukemia data set from Freireich et al. (1963). This study includes 21 pairs of patient; within
each pair, one patient receives the drug 6-mercaptopurine (6-MP), and the other patients receives a placebo. The
following DATA step generates the data set leuk:

data leuk;
input time event x id;

datalines;
1 1 -0.5 1
1 1 -0.5 2
2 1 -0.5 3
2 1 -0.5 4
3 1 -0.5 5

13

4 1 -0.5 6
4 1 -0.5 7

... more lines ...

The time variable is the failure time, event is the censoring indicator variable, x is a covariate, and ID is the pairing
indicator. The likelihood function used in this analysis is the Breslow likelihood function, which is generally expressed
as

L.ˇ/ D

nY
iD1

24 diY
jD1

exp.ˇ0Zj .ti //P
l2Ri

exp.ˇ0Zl .ti //

35vi

where ˇ is the vector of parameters, n is the number of patients, ti is the i th time, Zl .t/ is the vector of explanatory
variables, di is the multiplicity of failures at ti , Ri is the risk set for the i th time ti , and vi is the censoring indicator.
The covariates Zl .ti / can depend on the survival time but are assumed to be time-independent here. To extend the
Brewslow likelihood to the frailty model, you add a random effects i to the regression mean of ˇ0Zj .ti /.

Cox Models

First consider fitting a Cox regression without the frailty. Because the Breslow likelihood function is not a standard
distribution, you must use the general function to specify the likelihood, on a logarithmic scale. The numerator involves
a regression model and is easy to write as beta * x, where beta is the regression coefficient. The denominator
requires observations from the risk set, which involves patients who have equal or longer time values than the current
observation. This is where the data dependency comes in—the likelihood value for any observation depends on
other records. One solution is to transpose the data in such a way that each row of the data (for an individual patient)
contains information from all patients who are in the individual patient’s risk set. Although it is possible to implement
this approach, doing so requires substantial preprocessing of the input data set, is prone to programming mistakes,
and can be difficult to generalize. Another solution is to reformulate the survival model as a Poisson counting process
and fit a Poisson model (Clayton 1991; Spiegelhalter et al. 1996). This solution also requires substantial preprocessing
of the data.

The general approach taken here is to specify the Breslow likelihood function as it is and find a way to construct
the likelihood for each observation by including records from other rows of the input data set. First, you use the
read_array function to save the data (for example, all time values) in an array. To construct a likelihood for each
observation, you compare the current time value to all survival time values, identify patients in the risk set, and
accumulate the denominator term.

The following statements illustrate how to use PROC MCMC to fit a Cox regression model:

proc mcmc data=leuk outpost=outCox nmc=20000 seed=176;
array tAry[1] / nosym;
array xAry[1] / nosym;
begincnst;
rc = read_array("leuk", tAry, "time");
rc = read_array("leuk", xAry, "x");
endcnst;

parms beta 0;
prior beta ~ normal(0, prec=1e-6);

if(event eq 0) then
loglike = 0;

else do;
b = beta * x;
S = 0;
do i = 1 to 42;

if time <= tAry[i] then do;
bc = beta * xAry[i];
S = S + exp(bc);
end;

end;

14

loglike = (b - log(S));
end;

model general(loglike);
run;

The first two ARRAY statements allocate two dynamic arrays: the tAry array is used to store all the time values, and
the xAry is used to store all the x values. The two read_array function calls put all time values and x values from
the leuk data set in the tAry and xAry arrays, respectively. These two statements are wrapped by the BEGINCNST
and ENDCNST statements to reduce unnecessary iterationwise function calls. After the execution of these two
statements, the tAry and xAry arrays are each 42 elements long.

Once you have access to the entire vectors of time and x values, the calculation of the log-likelihood function becomes
straightforward. When the event value is equal to 0, the log-likelihood value is 0. Otherwise, you use a DO loop
to compare the current time value with all tAry values. For patients who have longer survival times, you add the
exp(beta * xAry[i]) term to the cumulated denominator symbol S. By the end of the loop, you compute the
Breslow log likelihood.

Cox Models with Frailty

This section extends the Cox model to incorporate frailty. The leukemia data arise from a paired design, and you can
include the ID-specific group effects. Suppose k is the frailty and k is the clustering index. The Breslow likelihood
with frailty has a similar form to what was presented in the section “Cox Models with Frailty”, with the frailty entering
the linear predictor as ˇ0Zj .ti // C k . As in the Cox models, the numerator term is easy to specify and you can
add the random effects that belong to the current observation. The denominator is more complex and requires the
inclusion of random-effects parameters from other patients in the risk set. Here, the likelihood of each observation
depends not only on other observations but also on other random-effects parameters within the same group.

Unfortunately, you cannot use the RANDOM statement to specify a random effect and add the effect to the likelihood
computation. The random effect (in the RANDOM statement) is matched to the current observation, and the only way
to access random-effects parameters from other clusters is through the lag or lead variable specification. But the Cox
frailty model requires that you have an arbitrary index to all other random-effects parameters, which is not achievable
using only the effect in the RANDOM statement.

The solution is to use the PARMS statements to declare random-effects parameters from the ID cluster as parameters
in the model and use the PRIOR statement to specify their prior distributions. Once you declare all random-effects
parameters, you can use any subsets of these parameters to construct the log-likelihood function.

Suppose the random-effects parameters follow a normal distribution:

i � normal.0; var=�2 /

You can use the following statements to specify a Cox regression with frailty in PROC MCMC:

proc mcmc data=leuk outpost=outFrailty nmc=50000 seed=176;
array tAry[1] / nosym;
array xAry[1] / nosym;
array idAry[1] / nosym;
begincnst;
rc = read_array("leuk", tAry, "time");
rc = read_array("leuk", xAry, "x");
rc = read_array("leuk", idAry, "ID");
endcnst;

parms beta 0;
prior beta ~ normal(0, prec=1e-6);
array gamma[21];
parms gamma1-gamma7;
parms gamma8-gamma14;
parms gamma15-gamma21;
parms sig2 .1;
prior gamma:~normal(0, v=sig2);
prior sig2~igamma(1, scale=1);

15

if(event eq 0) then
loglike = 0;

else do;
b = beta * x + gamma[id];
S = 0;
do i = 1 to 42;

if time <= tAry[i] then do;
tID = idAry[i];
bc = beta * xAry[i] + gamma[tID];
S = S + exp(bc);
end;

end;
loglike = (b - log(S));
end;

model general(loglike);
run;

The idAry array stores all the ID values in the leuk data set. This array is used the same way as the covariate xAry
array is used in constructing the denominator of the Breslow likelihood function: the elements of the idAry provide the
right index of the random-effects parameters �j for patients in each of the risk sets. The additional PARMS statements
declare the 21 gamma random-effects parameters and their variance parameter sig2. All 21 gamma parameters are
stored in the gamma array for ease of indexing. In the construction of the likelihood, the gamma random effect for the
current observation is added to the linear predictor beta * x; in the DO loop, and each patient in the risk set has a
corresponding random effect gamma[tID] added to the bc term. The tID variable is the subject ID for that patient.

Figure 8 compares the two posterior densities of the beta parameter, one from the Cox model and one from the frailty
model.

Figure 8 Cox Model versus Frailty Model

You probably have noticed some programming inefficiency in the construction of the denominator piece in the previous
PROC MCMC program: the DO loop compares all 42 patients’ survival time with the current observation, and some of
these comparisons are clearly not needed. To reduce redundancy, you can first sort the input data set according to
descending survival time. The risk set for each patient consists of observations that are above this patient in the sorted
data set plus a few whose survival time is the same. In this way, you can stop the DO loop much earlier for many of
the patients in the data set and increase the efficiency of the program. The following program uses a presorted data
set to fit a Cox regression. The results are the same as the result that uses unsorted input data set.

16

proc sort data=leuk out=a;
by Descending Time;

proc freq data=a;
tables time / out=_freqs;

proc sort data = _freqs;
by descending time;

run;

data LeukByTime;
merge a _freqs(drop=percent);
by descending time;
ind = _n_;
retain StopInd;
if first.time then

StopInd = _n_ + count - 1;
run;

proc mcmc data=LeukByTime outpost=outs nmc=50000 seed=176;
array xA[1] / nosym;
array idA[1] / nosym;
begincnst;
rc = read_array("LeukByTime", xA, "x");
rc = read_array("LeukByTime", idA, "ID");
endcnst;

parms beta 0;
prior beta ~ normal(0, prec=1e-6);

array gamma[21];
parms gamma1-gamma7;
parms gamma8-gamma14;
parms gamma15-gamma21;
parms sig2 .1;
prior gamma:~normal(0, v=sig2);
prior sig2~igamma(1, scale=1);

b = beta * x + gamma[id];
loglike = 0;
if event eq 1 then do;

S = 0;
do i = 1 to StopInd;

gID = idA[i];
bc = beta * xA[i] + gamma[gID];
S = S + exp(bc);
end;

loglike = (b-log(S));
end;

model general(loglike);
run;

Further Applications

This section describes additional applications and features of PROC MCMC in fitting multilevel random-effects models.

Non-nested Models

As demonstrated in this paper, you can use multiple RANDOM statements to specify random effects according to
different clustering. Because PROC MCMC processes each RANDOM statement independently, the clustering effects
are not required to be nested (for example, students nested within classrooms) and the subject variables do not need
to be sorted (PROC MCMC supports unsorted subject variables in both numeric or character format). When you have

17

crossed effects (for example, students taking classes from different teachers), you can specify two separate RANDOM
statements in a program.

Suppose that the variable teacher is the teacher identifier and the variable student is the student identifier. Further,
suppose that these identifiers have unique values for every observation, meaning that each student and each teacher
have their own names. You can use the following statements to fit a non-nested model in PROC MCMC, where the
effects alpha and beta can enter the model in linear or nonlinear form:

random alpha ~ normal(0, var=s2a) subject=teachers;
random beta ~ normal(0, var=s2b) subject=students;

However, with non-nested models, you cannot force a hierarchy among the random effects. For example, when
students and teachers are non-nested, you cannot specify the following model, where the alpha random effect
appears in the hyperparameter of the beta’s prior distribution:

random alpha ~ normal(0, var=s2a) subject=teachers;
random beta ~ normal(alpha, var=s2b) subject=students;

This type of model is not valid because a random-effects parameter from a student cannot have different prior means.

Longitudinal Models

Longitudinal data refer to observations that are collected in studies in which individuals are measured repeatedly over
time. See Chen (2013) for examples of how to fit variance components models with normal or multivariate normal
likelihood. In that paper, it is assumed that, for a given individual, observations over time are independent given the
variance or covariance parameters.

More commonly, individual-level observations over time can be assumed to be dependent (the response at time t
might depend on the response at time t�1), the outcome variables can be continuous or discrete (categorical or count
variables), some responses might be missing, and the responses can have different numbers of repeats (unbalanced).
You can fit these different types of model in PROC MCMC. The blueprint is to arrange all longitudinal data from a
subject in a row and use programming statements to account for and model all subject-level dependencies.

To illustrate, suppose that the following three individuals have repeated measurements over the course of a few weeks:

� Individual 1 has measurements in weeks 1, 2, and 3

� Individual 2 has measurements in weeks 2, 3, 4, 6, and 8

� Individual 3 has measurements in weeks 5, 6, and 7

The data are stored as the following:

ind y week
1 2 1
1 5 2
1 5 3
2 4 2
2 5 3
2 1 4
2 3 6
2 9 8
3 4 5
3 2 6
4 6 7

You first want to transpose the response variable y by ind so that all responses from each individual are in the same
row. Second, you want to make sure that the number of column variables matches the maximum time points in the
data set (eight in this example). Because not every individual has the same number of responses, you will have
missing values (.) in the data set.

Following is the representation of the response values from the three individuals with all responses stored in each
record:

18

ind Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
1 2 5 5
2 . 4 5 1 . 3 . 9
3 4 2 6 .

It is assumed here that the corresponding covariates (which translate to eight x variables for each covariate in the
data set) are not missing. The covariates are not shown here.

In PROC MCMC, you use the ARRAY statements to read in all response variables from each record:

array y[8] y1-y8;
array t[8] 1-8;
array x[8] x1-x8;

For simplicity, times are assumed to be 1 to 8 here. But you can have t1–t8 in your input data set, where each variable
can represent a time point on a different scale.

Using the array y to store all the responses for a subject means that you can model the longitudinal part of the data
in any way you see fit. For example, you can model lag dependency (for example, y[i] depends on y[i–1]), include
random effects, impute missing responses (assuming that you have nonmissing covariates at these time points), and
so on. You can either use standard distributions in separate MODEL statements to model the likelihood or construct a
nonstandard likelihood function and specify it by using the general function.

In short, with complex longitudinal data that have unbalanced responses from each individual, organizing the input
data set in a wide format gives you the most flexibility in handling different scenarios. You can start with a model that
has only fixed effects and build up the hierarchy one level at a time to incorporate different random effects.

Heteroscedasticity

Heteroscedasticity occurs when data do not exhibit constant variance. One strategy is to model the variance as a
function of other variables. Assume the normal model,

Yi � normal.�i ; �2j /

where �i is the mean and �2j can depend on other data set variables, parameters, or random-effects parameters:

�2j D exp.ˇ0 C ˇ1 � agej C ˇ2 � �j

The following statements adjust heteroscedasticity with the covariate age and random effects nu:

model nu ~ normal(nu0, var=s2_nu) subject=cluster;
s2 = exp(b0 + b1 * age + b2 * nu);
model y ~ normal(mu, var=s2);

Spatial Prior

The RANDOM statement supports a conditional autoregressive Gaussian prior. You can use it to model random
effects that are spatially correlated. The autoregressive normal prior has the following density,

�i j��i � normal

0@ X
j2N.i/

�j =mi ; s
2

1A
where N.i/ is the set of neighbors of area i, mi is the total number of neighbors of area i, and s is the standard
deviation of the normal distribution.

Suppose that you are interested in modeling spatial correlation on the county level and that county is the county
identifier in the data set. You can save the adjacency information in the following way in a SAS data set:

county num ID1 ID2 ID3 ID4 ID5 ID6 ID7
Wake 6 Johnston Franklin Granville Durham Chatham Harnett .

Durham 5 Wake Granville Person Orange Chatham . .
...

19

The county variable indicates the county name. The num variable indicates the number of neighbors that each
county has. The ID variables are the neighboring county names, which must be in the same format as the county
variable. The ID variables share the same prefix and are followed by numbers 1, 2, and so on. In this data set, the
maximum number of neighbors in any county in the data set is 7. A period (.) is used in the ID columns when a county
has fewer than the maximum number of neighbors.

The following statement specifies a spatial prior on the random effects a on the county-level:

random a ~ normalcar(neighbors=ID, num=num, var=s2a) subject=county;

Here county is the subject variable, and the NEIGHBORS= option specifies the prefix to be used for data variables
that contain the neighbor county names. PROC MCMC processes all ID variables and forms a prior that accounts for
the desired spatial correlation among the random-effects parameters. The random effects a can then enter the model
in any way you see fit.

Conclusion

You can use PROC MCMC to fit a variety of Bayesian hierarchical models. The direct usage of MODEL and RANDOM
statements assume conditional independence, which is the most prevalent assumption held in modeling clustered
data. The procedure does not limit the number of random effects that you can include nor does it place a requirement
on their nested hierarchy. Hence, you can fit many types of similar models that share the conditional independence
assumption. If you want to model an autoregressive type of correlation structure, you can use the lag and lead
variables in one-dimensional cases, or you can use the spatial prior to account for two-dimensional correlation between
the random effects. In the most complex case, where you have complex dependence both at the data level and
the random-effects level, you can use the read_array function to store data in arrays and declare random-effects
parameters in the PARMS statement. This approach gives you flexibility in using random indexing to account for these
dependencies in your model.

Since its first release in SAS/STAT 9.2, the MCMC procedure has expanded considerably in its ability to fit complex
and multilevel random-effects models. This paper summaries some of these features. Development of PROC MCMC
is an ongoing effort, and future development aims to further improve its performance and enhance its functionality.

REFERENCES

Berry, S. M., and Berry, D. A. (2004). “Accounting for Multiplicities in Assessing Drug Safety: A Three-Level Hierarchical
Mixture Model.” Biometrics 60:418–426.

Chen, F. (2009). “Bayesian Modeling Using the MCMC Procedure.” In Proceedings of the SAS Global Forum 2009 Con-
ference. Cary, NC: SAS Institute Inc. http://support.sas.com/resources/papers/proceedings09/
257-2009.pdf.

Chen, F. (2011). “The RANDOM Statement and More: Moving On with PROC MCMC.” In Proceedings of the
SAS Global Forum 2011 Conference. Cary, NC: SAS Institute Inc. http://support.sas.com/resources/
papers/proceedings11/334-2011.pdf.

Chen, F. (2013). “Missing No More: Using the MCMC Procedure to Model Missing Data.” In Proceedings of the
SAS Global Forum 2013 Conference. Cary, NC: SAS Institute Inc. https://support.sas.com/resources/
papers/proceedings13/436-2013.pdf.

Chen, F., Brown, G., and Stokes, M. (2016). “Fitting Your Favorite Mixed Models with PROC MCMC.” In Proceedings
of the SAS Global Forum 2016 Conference. Cary, NC: SAS Institute Inc. https://support.sas.com/
resources/papers/proceedings16/SAS5601-2016.pdf.

Clayton, D. G. (1991). “A Monte Carlo Method for Bayesian Inference in Frailty Models.” Biometrics 47:467–485.

Congdon, P. (2003). Applied Bayesian Modeling. New York: John Wiley & Sons.

Congdon, P. (2010). Applied Bayesian Hierarchical Methods. Boca Raton, FL: Chapman & Hall/CRC.

Freireich, E. J., Gehan, E., Frei, E., III, Schroeder, L. R., Wolman, I. J., Anbari, R., Burgert, E. O., Mills, S. D., Pinkel,
D., Selawry, O. S., Moon, J. H., Gendel, B. R., Spurr, C. L., Storrs, R., Haurani, F., B., H., and Lee, S. (1963).

20

http://support.sas.com/resources/papers/proceedings09/257-2009.pdf
http://support.sas.com/resources/papers/proceedings09/257-2009.pdf
http://support.sas.com/resources/papers/proceedings11/334-2011.pdf
http://support.sas.com/resources/papers/proceedings11/334-2011.pdf
https://support.sas.com/resources/papers/proceedings13/436-2013.pdf
https://support.sas.com/resources/papers/proceedings13/436-2013.pdf
https://support.sas.com/resources/papers/proceedings16/SAS5601-2016.pdf
https://support.sas.com/resources/papers/proceedings16/SAS5601-2016.pdf

“The Effect of 6-Mercaptopurine on the Duration of Steroid-Induced Remissions in Acute Leukemia: A Model for
Evaluation of Other Potentially Useful Therapy.” Blood Journal 21:699–716.

Gelman, A., and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge:
Cambridge University Press.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models, and the Kalman Filter. Cambridge: Cambridge
University Press.

Mehrotra, D. V., and Heyse, J. F. (2004). “Use of the False Discovery Rate for Evaluating Clinical Safety Data.”
Statistical Methods in Medical Research 13:227–238.

Spiegelhalter, D. J., Thomas, A., Best, N. G., and Gilks, W. R. (1996). “BUGS Examples, Volume 1.” Version 0.5
(version ii).

RECOMMENDED READING

Complete documentation for the MCMC procedure, in both PDF and HTML format, can be found on the web at
http://support.sas.com/documentation/onlinedoc/stat/indexproc.html.

You can find additional coding examples at http://support.sas.com/rnd/app/examples/index.html.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Fang Chen
SAS Institute Inc.
SAS Campus Drive, Cary, NC 27513
E-mail: fangk.chen@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

21

http://support.sas.com/documentation/onlinedoc/stat/indexproc.html
http://support.sas.com/rnd/app/examples/index.html

