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ABSTRACT  

Multicollinearity can be briefly described as the phenomenon in which two or more identified predictor 
variables in a multiple regression model are highly correlated. The presence of this phenomenon can 
have a negative impact on the analysis as a whole and can severely limit the conclusions of the research 
study. This paper reviews and provides examples of the different ways in which multicollinearity can affect 
a research project, and tells how to detect multicollinearity and how to reduce it once it is found. In order 
to demonstrate the effects of multicollinearity and how to combat it, this paper explores the proposed 
techniques by using the Youth Risk Behavior Surveillance System data set. This paper is intended for any 
level of SAS® user. This paper is also written to an audience with a background in behavioral science or 
statistics. 

INTRODUCTION 
Multicollinearity is often described as the statistical phenomenon wherein there exists a perfect or exact 
relationship between predictor variables. From a conventional standpoint, this occurs in regression when 
several predictors are highly correlated. Another way to think of collinearity is “co-dependence” of 
variables.  

Why is this important? Well, when things are related, we say that they are linearly dependent. In other 
words, they fit well into a straight regression line that passes through many data points. In the incidence 
of multicollinearity, it is difficult to come up with reliable estimates of individual coefficients for the 
predictor variables in a model which results in incorrect conclusions about the relationship between 
outcome and predictor variables. Therefore, in the consideration of a multiple regression model in which a 
series of predictor variables were chosen in order to test their impact on the outcome variable, it is 
essential that multicollinearity not be present! 

Another way to look at this issue is by considering a basic multiple linear regression equation: 

y = xβ + ε 

Where y is an nx1 vector of response, x is an nxp matrix of predictor variables, β is a px1 vector of 
unknown constants, and ε is an nx1 vector of random errors with εi ~ NID(0,σ^2). Considering this 
equation, consider the fact that multicollinearity tends to inflate the variances of the parameter estimates, 
which would lead to a lack of statistical significance of the individual predictor variables even though the 
overall model itself remains significant. Therefore, the presence of multicollinearity can end up causing 
serious problems when estimating and interpreting β. 

Why should we care? Consider this example: Your company has just undergone a major overhaul and it 
was decided that each department lead should choose an assistant lead to help with their workload. The 
assistant leads were chosen by each department lead after a series of rigorous interviews and 
discussions with each applicant’s references. It is now time for next year’s budget to be decided. An 
administrative meeting is held during which both department leads and their new assistant leads are 
present. It comes time to vote, by show of hands, on a major budget revision. Both the leads and their 
assistants (of whom they are also supervisors) will be voting. Do you think any of the assistants will vote 
against their leads? Probably not. This will end up resulting in a biased vote as the votes of the assistants 
would be dependent on the votes of their leads. A relationship such as this between two variables in a 
model could lead to an even more biased outcome, thus leading to results that have been affected in a 
detrimental way.  

Collinearity is especially problematic when a model’s purpose is explanation rather than prediction. In the 
case of explanation, it is more difficult for a model containing collinear variables to achieve significance of 
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the different parameters. In the case of prediction, if the estimates end up being statistically significant, 
they are still only as reliable as any other variable in the model, and if they are not significant, then the 
sum of the coefficient is likely to be reliable. In summary if collinearity is found in a model testing 
prediction, then one need only increase the sample size of the model. However, if collinearity is found in a 
model seeking to explain, then more intense measures are needed. The primary concern resulting from 
multicollinearity is that as the degree of collinearity increases, the regression model estimates of the 
coefficients become unstable and the standard errors for the coefficients become wildly inflated.  

DETECTING MULTICOLLINEARITY 
This first section will explain the different diagnostic strategies for detecting multicollinearity in a dataset. 
While reviewing this section, the author would like you to think logically about the model being explored. 
Try identifying possible multicollinearity issues before reviewing the results of the diagnostic tests.  

INTRODUCTION TO THE FIRST DATSET 
The Youth Risk Behavior Surveillance System (YRBSS) was developed as a tool to help monitor priority 
risk behaviors that contribute substantially to death, disability, and social issues among American youth 
and young adults today. The YRBSS has been conducted biennially since 1991 and contains survey data 
from national, state, and local levels. The national Youth Risk Behavior Survey (YRBS) provides the 
public with data representative of the United States high school students. On the other hand, the state 
and local surveys provide data representative of high school students in states and school districts who 
also receive funding from the CDC through specified cooperative agreements. The YRBSS serves a 
number of different purposes. The system was originally designed to measure the prevalence of health-
risk behaviors among high school students. It was also designed to assess whether these behaviors 
would increase, decrease, or stay the same over time. An additional purpose for the YRBSS is to have it 
examine the co-occurrence of different health-risk behaviors.  

The particular study used in this paper examines the co-occurrence of suicidal ideation as an indicator of 
psychological unrest with other health-risk behaviors. The purpose of this study is to serve as an exercise 
in examining multicollinearity in a sensitive population through the examination of several health-risk 
behaviors and their link to suicidal ideation. The outcome variable of interest in this study was suicidal 
ideation and the predictor variables of interest were lifetime substance abuse participation, age of 
participant, gender of participant, race of participant, identification of depression within last year, recent 
substance abuse participation, being a victim of violence, and being an active participant in violence. 

As a first step in the examination of the question being asked – do target health-risk behaviors contribute 
to thoughts of suicide in America’s youth – we must first identify which datasets will be used in the 
analysis, what differences arise between the datasets, and how to address those differences. In short, we 
must clean the data for our analysis. Most of you know this already, but it is a worthy note to make 
considering the type of analysis we are about to conduct. The exact method to cleaning the data will not 
be covered in this section, for the sake of space and time, but the author would like to note that YRBS 
years 1991 – 2015 were cleaned and prepped for the purposes of this analysis, with years 1999 – 2015 
ending up in the final cut due to the variety of target variables available during these years. These years 
were then concatenated into one dataset and the contents procedure run to verify its contents: 

/* Note: Years 1991, 1993, 1995, 1997 excluded due to lack of 
Depression Variable */ 
proc contents data=YRBS_Total; 
run; 

Next, frequency procedures were performed in order to explore the descriptive and univariate statistics of 
our target predictor variables within the dataset: 

/* Building of Table 1: Descriptive and Univariate Statistics */ 
proc freq data=YRBS_Total; 
tables SubAbuseBin_Cat * SI_Cat; 
run;  
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proc freq data=YRBS_Total; 
tables (SubAbuse_Cat Age_Cat Sex_Cat Race_Cat Depression_Cat 
RecSubAbuse_Cat VictimViol_Cat ActiveViol_Cat) * SI_Cat / chisq; 
run; 
 
data newYRBS_Total (keep =  SubAbuse SubAbuse_Cat Age Age_Cat Sex 
Sex_Cat Race Race_Cat Depression Depression_Cat RecSubAbuse 
RecSubAbuse_Cat VictimViol VictimViol_Cat ActiveViol ActiveViol_Cat SI 
SI_Cat SubAbuseBin_Cat); 
set YRBS_Total (where=  (  (SubAbuse in (0,1,2,3)) and (Age 
in(12,13,14,15,16,17,18)) and (Sex in (1,2)) and (Race in 
(1,2,3,4,5,6)) and (Depression in (0,1)) and (RecSubAbuse in (0,1)) and 
(VictimViol in (0,1,2)) and (ActiveViol in (0,1,2)) and (SI in (0,1)) 
and (SubAbuseBin in (0,1)) )); 
run; 
  
proc freq data=newYRBS_Total;  
tables ( Age_Cat Sex_Cat Race_Cat Depression_Cat RecSubAbuse_Cat 
VictimViol_Cat ActiveViol_Cat ) * SubAbuse_Cat / chisq; 
run; 

After we have reviewed these results and obtained a good grasp on the relationships between each of the 
variables, we can then run the descriptive and univariate statistics on the predictor variables and the 
target outcome variable: 

/* Building of Table 2: Descriptive and Univariate Statistics */ 
proc freq data=newYRBS_Total;  
tables (SubAbuse_Cat Age_Cat Sex_Cat Race_Cat Depression_Cat 
RecSubAbuse_Cat VictimViol_Cat ActiveViol_Cat) * SI_Cat / chisq; 
run; 

After another thorough review of these results, we can then run a preliminary multivariable logistic 
regression analysis to examine the multiplicative interaction of the chosen variables. An initial 
examination of the interactions can be made at this time through the results of the analysis: 

proc logistic data = newYRBS_Total; 
class SI_Cat (ref='No')  SubAbuse_Cat (ref='1 None')    / param=ref;   
model SI_Cat = SubAbuse_Cat / lackfit rsq; 
title 'Suicidal Ideation by Lifetime Substance Abuse Severity, 
Unadjusted'; 
run; 
  
proc logistic data = newYRBS_Total; 
class   SI_Cat(ref='No')  SubAbuse_Cat (ref='1 None') Age_Cat (ref='12 
or younger') Sex_Cat (ref='Female') Race_Cat (ref='White') 
Depression_Cat (ref='No') RecSubAbuse_Cat (ref='No') VictimViol_Cat 
(ref='None') ActiveViol_Cat (ref='None') / param=ref;   
model SI_Cat = SubAbuse_Cat Age_Cat Sex_Cat Race_Cat Depression_Cat 
RecSubAbuse_Cat VictimViol_Cat ActiveViol_Cat / lackfit rsq; 
title 'Suicidal Ideation by Lifetime Substance Abuse Severity, Adjusted 
- Multivariable Logistic Regression'; 
run; 

MULTICOLLINEARITY INVESTIGATION 
Finally! We can begin to explore whether or not our chosen model is suffering the effects of 
multicollinearity! Given the analyses we conducted above, could you identify any possible variable 
interactions that could be ending in multicollinearity? Here’s a hint: could being a victim of violence lead to 
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depression? Could recent substance abuse be highly correlated with lifetime substance abuse? These 
are questions we will be able to answer through our multicollinearity analysis. 

Our first step is to explore the correlation matrix. We can do this through implementation of the corr 
procedure: 

/* Examination of the Correlation Matrix */ 
proc corr data=newYRBS_Total; 
var SI SubAbuse Age Sex Race Depression RecSubAbuse VictimViol 
ActiveViol; 
title 'Suicidal Ideation Predictors - Examination of Correlation 
Matrix'; 
run; 

Pretty easy right? Now let’s look at the results: 

 
Keep in mind, while reviewing these results we want to check to see if any of the variables included have 
a high correlation – about 0.8 or higher – with any other variable. As we can see, upon review of this 
correlation matrix, there does not appear to be any variables with a particularly high correlation. We are 
not done yet, though. Next we will examine multicollinearity through the Variance Inflation Factor and 
Tolerance. This can be done by specifying the “vif”, “tol”, and “collin” options after the model statement: 

/* Multicollinearity Investigation of VIF and Tolerance */ 
proc reg data=newYRBS_Total; 
model SI = SubAbuse Age Sex Race Depression RecSubAbuse VictimViol 
ActiveViol / vif tol collin; 
title 'Suicidal Ideation Predictors - Multicollinearity Investigation 
of VIF and Tol'; 
run; 
quit; 

First we will review the parameter estimates, tolerance, and variance inflation.  
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In reviewing tolerance, we want to make sure that no values fall below 0.1. In the above results, we can 
see that the lowest tolerance value is 0.51212, so there is no threat of multicollinearity indicated through 
our tolerance analysis. As for variance inflation, the magic number to look out for is anything above the 
value of 10. As we can see from the values indicated in this column, our highest value sits at 1.95266, 
indicating a lack of multicollinarity, according to these results. However, we are not done yet, we will not 
look at the collinearity diagnostics for an eigensystem analysis of covariance comparison: 

 
In review of these results, our focus is going to be on the relationship of the eigenvalue column to the 
condition index column. If one or more of the eigenvalues are small (close to zero) and the corresponding 
condition number large, then we have an indication of multicollinearity. As we can see from the above 
results, none of our eigenvalues and condition index associations match this description.  

So what is our conclusion from this example? This example was covered in order to show you that 
multicollinearity can not be deduced from simply thinking about the data in a logical manner. Knowing 
your data and thinking about possible confounding interactions is certainly a best practices guideline, but 
multicollinearity analyses should still be conducted to test your theory before taking measures to combat 
something that is not there. 

COMBATING MULTICOLLINEARITY 
Do you feel betrayed? Don’t feel that way! Next we will cover a dataset that is flush with multicollinearity in 
order to appropriately show you how to combat it. This second section will explain the different strategies 
for combating multicollinearity in a dataset. While reviewing this section, the author would like you to, 
again, think logically about the model being explored. Try identifying possible multicollinearity issues 
before reviewing the results of the diagnostic tests, and then think critically about the different strategies 
used to combat the collinearity issue.  
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INTRODUCTION TO THE SECOND DATSET 
This second dataset is easily accessible by anyone with access to SAS®. It is a sample dataset titled 
“lipids”. The background to this sample dataset states that it is from a study to investigate the 
relationships between various factors and heart disease. In order to explore this relationship, blood lipid 
screenings were conducted on a group of patients. Three months after the initial screening, follow-up data 
was collected from a second screening that included additional information such as gender, age, weight, 
total cholesterol, and history of heart disease. The outcome variable of interest in this analysis is the 
reduction of cholesterol level between the initial and 3-month lipid panel or “cholesterolloss”. The 
predictor variables of interest are age (age of participant), weight (weight at first screening), cholesterol 
(total cholesterol at first screening), triglycerides (triglycerides level at first screening), HDL (HDL level at 
first screening), LDL (LDL level at first screening), height (height of participant), skinfold (skinfold 
measurement), systolicbp (systolic blood pressure) diastolicbp (diastolic blood pressure), exercise 
(exercise level), and coffee (coffee consumption in cups per day). 

To begin our analysis, we will first explore the dataset, just as we did in the earlier example: 

/* Example of Multicollinearity Findings */ 
libname health 
"C:\ProgramFiles\SASHome\SASEnterpriseGuide\7.1\Sample\Data"; 
 
data health; 
set health.lipid; 
run; 
 
proc contents data=health; 
title 'Health Dataset with High Multicollinearity'; 
run; 
 

For the sake of time, we will skip the thorough investigation of the relationships between the different 
variables in the dataset. Instead, we want to concentrate on the impending incidence of multicollinearity 
and how to combat it. Therefore, we will then test for multicollinearity using the procedures outlined earlier 
and review the results: 

/* Assess Pairwise Correlations of Continuous Variables */ 
proc corr data=health; 
var age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp exercise coffee cholesterolloss; 
title 'Health Predictors - Examination of Correlation Matrix'; 
run; 
 
proc reg data=health; 
model cholesterolloss = age weight cholesterol triglycerides hdl ldl 
height skinfold systolicbp diastolicbp exercise coffee / vif tol 
collin; 
title 'Health Predictors - Multicollinearity Investigation of VIF and 
Tol'; 
run; 

 
Below you will find a clip of the correlation procedure results: 
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Upon inspection of these results, one is quickly drawn to the correlation coefficient of LDL and 
Cholesterol which values at a whopping 0.96170. We definitely have a case for further collinearity 
investigation here. This is further supported in our review of the parameter estimates results for VIF and 
Tol: 

 
In review of the Tolerance results, we can see several variables – namely cholesterol, triglycerides, HDL, 
and LDL – having values well below our 0.1 cutoff value. This finding is echoed in review of the Variance 
Inflation results, where these same variables reveal values far larger than our 10 cutoff for this column. 
For the sake of completeness, we will also review the collinearity diagnostics: 
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In review of the eigenvalue and condition index association, we can see a large deviation in the final three 
factors, with the eigenvalue resulting very close to zero and the condition index resulting quite large in 
comparison.  

So, we have found a prime case for multicollinearity. Now that we have identified it, what can we do about 
it? 

COMBATING MULTICOLLINEARITY 
Is there an easy way to combat multicollinearity? Yes! All you need to do is drop one of your problem 
variables, rerun your analysis to test for further multicollinearity, and if none exist, then you are good to 
go! Can we always do this? Of course not. There are just some variables, no matter how highly correlated 
they are, that we need to keep in the model for the sake of scientific advancement and model 
completeness. If you run into a case where dropping a variable is not an option, you are in luck! There are 
at least two alternative methods of estimation that can be employed. The main two that will be discussed 
in this paper are ridge regression and principal component regression. 

Ridge Regression 
Ridge regression is a variant to least squares regression and is oftentimes used when a multicollinearity 
case is identified. The traditional ordinary least squares (OLS) regression produces unbiased estimates 
for the regression coefficients, however, if you introduce the confounding issue of highly correlated 
explanatory variables, your resulting OLS parameter estimates end up with large variance. Therefore, it 
could be beneficial to utilize a technique such as ridge regression in order to ensure a smaller variance in 
resulting parameter estimates. Unfortunately, the trade-off of this is that a method such as ridge 
regression results in biased estimates. A more thorough review into the assumptions and specifications of 
ridge regression would be appropriate if this is a route you would like to take, but for now, we will run 
through the example as though we have decided that this is the best course of action: 

/* Ridge Regression Example */ 
proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)  
outest=rrhealth ridge=0 to 0.10 by .002; 
model cholesterolloss = age weight cholesterol triglycerides hdl ldl 
height skinfold systolicbp diastolicbp exercise coffee; 
plot / ridgeplot nomodel nostat; 
title 'Health - Ridge Regression Calculation'; 
run; 
 
proc print data=rrhealth; 
title 'Health - Ridge Regression Results'; 
run; 

A clip of the results produced by this procedure are outlined below: 
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From these results we want to derive the appropriate ridge parameter or “k” to include in the analysis. The 
ridge parameter column is labeled _RIDGE_ and the associated values under each variable column are 
the new parameter estimates. There are several schools of thought concerning how to choose the best 
value of “k”. I recommend reading Dorugade and Kashid’s 2010 paper for more information on this 
matter. For the sake of time and brevity, the current paper will simply look at the least increase in 
_RMSE_ and a decrease in ridge variable inflation factors for each variable. In order to achieve this, we 
need not look far, as the ridge parameter of .002 increases the _RMSE_ only slightly from 27.1752 to 
27.6894 and drops the VIF for each of our problem variables to below our 10 cutoff. Therefore, this study 
will choose the ridge parameter of .002 for the resulting parameter adjustments which are completed in 
the following code: 

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)  
outest=rrhealth_final ridge=.002; 
model cholesterolloss = age weight cholesterol triglycerides hdl ldl 
height skinfold systolicbp diastolicbp exercise coffee; 
plot / ridgeplot nomodel nostat; 
title 'Health - Ridge Regression Calculation'; 
run; 
 
proc print data=rrhealth_final; 
title 'Health - Ridge Regression Results'; 
run; 

The results of which are the final adjusted model with the multicollinearity issue controlled! 

Principal Components Regression 
Another way to combat multicollineairty is through Principal Components Regression. 

/* Principal Component Regression Example */ 
proc princomp data=health 
out=pchealth prefix=z outstat=PCRhealth; 
var age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp exercise coffee; 
title 'Health - Principal Component Regression Calculation'; 
run; 

 

The results from this procedure are as follows: 
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The main points we want to pull from these analyses are from the eigenvalues of the correlation matrix 
and a general review of the scree plot. Through these reviews we want to decide on the number of factors 
to keep for our final model. There are several schools of thought on how to choose this number, one 
school of thought being that any factor with an eigenvalue higher than 1.000 can remain in the model as it 
explains at least 1 variable’s worth of information. If we were to go by this school of thought, our resulting 
model would include 5 factors and would be written like this: 

/* With Eigenvalue Cutoff of 1.0000 */ 
proc reg data=pchealth; 
model cholesterolloss = z1 z2 z3 z4 z5 / VIF; 
title 'Health - Principal Component Regression Adjustment'; 
run; 

However, there is another school of thought which utilizes a parallel analysis criterion in order to 
determine the appropriate number of factors to use in a model. The theory behind this school of thought 
explains that the eigenvalue obtained for the Nth factor should be larger than the associated eigenvalue 
computed analyzing a set of random data. The program associated with this school of thought is easy to 
obtain and available for public use via the site: https://people.ok.ubc.ca/brioconn/nfactors/parallel.sas. A 
sample of the user specifications indicated for this example are outlined below, though the program itself 
covers many more lines of code: 

 

/****************** Parallel Analysis Program ************************/ 
options nocenter nodate nonumber linesize=90;   title; 
proc iml; 
reset noname;  
 
/* enter your specifications here */ 
Ncases   = 95; 
Nvars    = 12; 
Ndatsets = 100; 
percent  = 95; 
 
/* Specify the desired kind of parellel analysis, where: 
   1 = principal components analysis 
   2 = principal axis/common factor analysis */ 
kind = 1 ; 
 
/* When seed = 0, the clock is used as the seed for the random 
   number generations. This produces different random numbers 
   on different runs of the program. To use the same random  
   numbers on different runs of the program, set seed to a value 

https://people.ok.ubc.ca/brioconn/nfactors/parallel.sas
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   other than 0 */ 
seed = 0; 
 
/************* End of user specifications ***********************/ 

The results of this analysis are available below and a copy of my previous analysis results are located to 
the right for comparison: 

  

In comparing these analyses, we want to look at the Prcntyle column of the Parallel Analysis Criterion 
results and the Eigenvalue Column of the target model results. In comparison of these results, we see 
that the eigenvalues for factor numbers 1-3 are all greater than the Prcntyle specified by the Parallel 
Analysis Criterion, however, all factors after those first three fall short. Therefore, according to this school 
of thought, we should only keep 3 factors in our final model. This makes the final multicollinearity-adjusted 
model look like this: 

/* After Parallel Analysis */ 
proc reg data=pchealth; 
model cholesterolloss = z1 z2 z3 / VIF; 
title 'Health - Principal Component Regression Adjustment'; 
run; 

Either way you decide, you have combated multicollinearity in your final model! 

CONCLUSION 
Multicollinearity, if left untouched, can have a detrimental impact on the generalizability and accuracy of 
your model. If multicollinearity exists the traditional ordinary least squares estimators are imprecisely 
estimated, which leads to this inaccuracy in your judgment as to how each predictor variable impacts your 
target outcome variable. Given this information it is essential to detect and solve the issue of 
multicollinearity before estimating the parameters based on a fitted regression model.  
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Detecting multicollinearity is a fairly simple procedure involving the employment of VIF, Tol, and Collin 
model options. The CORR procedure is also useful in multicollinearity detection. After discovering the 
existence of multicollinearity, you can take one of three easily conducted roads: (1) drop a variable, (2) 
employ ridge regression, or (3) employ principal components regression. Through the steps outlined in 
this paper, one should be able to not only detect any issue of multicollinearity, but also resolve it in only a 
few short steps! 
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