Paper 1268-2017

Use SAS® Enterprise Guide® and SAS® Add-In for Microsoft Office to Support Enrollment Forecasting

Andre Watts and Lisa Sklar, University of Central Florida

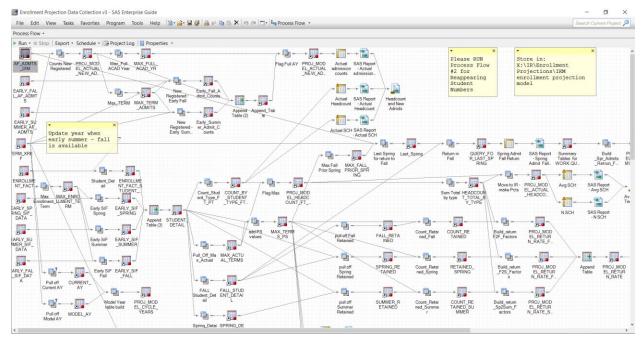
ABSTRACT

This paper will explore the steps taken by a large public research institution to develop a five-year enrollment forecasting model to support the critical enrollment management process at the institution. A key component of the process is providing university stakeholders with a self-service, secure, and flexible tool that enables them to quickly generate different enrollment projections using the most up-to-date information as possible in Microsoft Excel. This paper will show how we integrated both SAS® Enterprise Guide and the SAS® Add-In for Microsoft Office to support this critical process which had very specific stakeholder requirements and expectations.

INTRODUCTION

The Office of Institutional Knowledge Management (IKM) at the University of Central Florida is tasked with supporting the enrollment management process of the institution by providing five-year enrollment forecasting of various enrollment measures. University stakeholders involved in enrollment planning were in need of a streamlined enrollment forecasting model that was more understandable and easier to interface with than what was currently available. The IKM office analyzed the then-current enrollment model along with supporting business processes and developed a new model that was more accurate and flexible than previous.

One of the primary tasks of the project was to integrate the model into an interface where stakeholders could manipulate certain factors during their discussions to see how certain external trends or potential university initiatives would affect future enrollments and credit hour output. The data preparation and integration used within Microsoft Excel will be the main focus, with some discussion on the model, its history, and genesis.


WHY EXCEL?

Microsoft has long been used for data analysis and in more recent years has been increasingly used for interactive and dashboard type applications. While the web provides a more natural environment for interactivity, the development time required for this medium would exceed the time needed for this project. The main reason for the use of Excel in this project was it gave the stakeholders a familiar interface to work with as they manipulated the factors and other parts of the projection model. In addition, The SAS® Add-In for Excel provided an out of the box solution to easily import data from an existing SAS® library without the need for an additional data conversion process such as exporting to a CSV, XLS file, or even another database system for use with a true web solution.

DATA PREPARATION

Preliminary data modeling was performed on some known potential variables that would possibly be included in the final model routine. After this analysis, the variables chosen were retrieved from the internal data warehouse that stores information from the university's student information system (SIS) which is updated every semester. Since the data warehouse maintains a quality standard for all of its contained information, there were no concerns regarding the accuracy of the data. However, having accurate data does not ensure that all the variables needed for the model were identified and retrieved. This is an issue that will be addressed during the discussion of the modeling analysis.

Once all the variables were identified, SAS® Enterprise Guide, our tool of choice, was used to retrieve, calculate, and store the variables in an SAS® library so that it could be updated and retrieved via the SAS® plug-in for Excel as needed. The following graphic shows a screen shot of the SAS® Enterprise Guide project.

SAS® Enterprise Guide provided the easiest method of data retrieval and manipulation of the data. Other methods could accomplish data transformations and retrieval. However, these methods may be more complex and lengthen this part of the process to a large degree.

MODELING

The enrollment model comprises two parts:

- 1. Headcount projections for each semester
- 2. Student Credit Hour projections for each semester

The focus of this paper will be on the headcount portion and specifically the fall headcount projection. The variables used for the fall headcount projections are as follows:

- Previous fall semester headcount
- 2. Current fall-to-fall return rates
- 3. Current spring admits-to-fall return rates
- 4. Estimated spring, summer, and fall new admits

After analyzing the accuracy of the initial model results using the above variables against previous years' data, another subset of students that didn't present themselves in the preliminary analysis surfaced – reappearing students. These are students who re-enrolled after stopping out or had been readmitted, and were not being caught by the logic identifying the returning and newly admitted students. Upon learning this, the previous data preparation process was adjusted to retrieve those students and subsequently add them to the set of inputs. Once these reappearing students were retrieved and input into the model, the accuracy of the projections improved and the final model algorithm was put into Microsoft Excel.

INTEGRATING DATA INTO MICOROSOFT EXCEL

The SAS® add-in for Excel is used to bring in the needed SAS® datasets into different tabs of the worksheet. Flags in the dataset for items such as current year, model year, and most recent term eliminate the need to manually update filter criteria when bringing the data into Excel. This constant filter criterion ensures that the numbers of rows and column in tables do not change and allows the use of adjacent cells.

After the datasets are updated, all of the SAS® data in Excel can be refreshed using a macro, which then updates the model with the most current available data. When the datasets are updated for a new model year, the refresh in Excel automatically rolls the model forward.

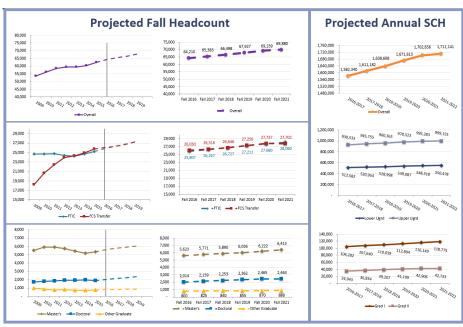
Several background worksheets are used to perform the calculations required by the model to create the projections, primarily using lookup, math, and logic functions. Because refreshing the SAS® data does not change the layout in Excel, formulas to concatenate fields for lookup helper columns do not need to be adjusted or monitored. Initially, array formulas were considered instead of lookup functions but were ultimately determined to be impractical given the propensity of array formulas to dramatically decrease performance speed.

Two tabs on the Excel workbook are visible to the stakeholders. One shows the summary of the projections and allows users to manipulate factors. Users input the estimated number of incoming students for each term and student type for the years being projected or the growth factor expected. Growth factors entered are applied to the previous year's projection.

THIS TABLE REQUIRES MANUAL INPUTS														
	Actual Ente	ring Heads	Estimated	Future Ente	ering Studen	ts								
	2014-15 2015-16		2015-2016		2016-	2016-2017		2017-2018		2018-2019		2020	2020-2021	
	Max Full Yr	Current Yr	Heads	Growth Factor	Heads	Growth Factor	Heads	Growth Factor	Heads	Growth Factor	Heads	Growth Factor	Heads	Growth Factor
1- FTIC														
Summer	2,767	2,902	2,768		2,810	1.015	2,852	1.015	2,909	1.02	2,967	1.02	3,011	1.015
Fall	3,745	2,713	3,745		3,782	1.01	3,820	1.01	3,878	1.015	3,955	1.02	4,014	1.015
Spring	412	-	413		419	1.015	425	1.015	434	1.02	443	1.02	449	1.015
2- FCS Transfer														
Summer	1,093	1,108	1,093		1,104	1.01	1,126	1.02	1,143	1.015	1,160	1.015	1,172	1.01
Fall	5,789	2,633	5,789		5,847	1.01	5,935	1.015	6,024	1.015	6,114	1.015	6,175	1.01
Spring	3.193		3,193		3,225	1.01	3,289	1.02	3.339	1.015	3,389	1.015	3,423	1.01
3- Other Transfer	,		,											
Summer	84	97	73		74	1.01	75	1.02	77	1.02	78	1.015	79	1.01
Fall	510	341	475		480	1.01	487	1.015	497	1.02	504	1.015	509	1.01
Spring	206	_	160		162	1.01	165	1.02	168	1.02	171	1.015	172	1.01
4- 2nd Deg Undergrad														
Summer	163	161	125		125	1	126	1.01	128	1.015	130	1.015	131	1.01
Fall	325	188	250		250	1	253	1.01	256	1.015	260	1.015	263	1.01
Spring	218	_	150		150	1	152	1.01	154	1.015	156	1.015	158	1.01
5- Unclassified														
Summer	9	4	9		9	1	9	1	9	1	9	1	9	1
Fall	21	24	21		21	1	21	1	21	1	21	1	21	1
Spring	1		1		1	1	1	1	1	1	1	1	1	1
6- Master's														
Summer	325	311	312		309	0.99	309	1	312	1.01	318	1.02	328	1.03
Fall	1,642	968	1,576		1,561	0.99	1,561	1	1,576	1.01	1,608	1.02	1,656	1.03
Spring	598	-	577		571	0.99	571	1	577	1.01	588		606	1.03
7- Doctoral														
Summer	43	49	44		46	1.03	47	1.04	49	1.03	51	1.04	52	1.03
Fall	390	135	402		414	1.03	430	1.04	443	1.03	461		475	1.03
Spring	58	-	60		62	1.03	64	1.04	66	1.03	69		71	1.03
8- Other Graduate	50		00		02	1.00	04	2.04	00	1.05	03	2.04	,,	2.00
Summer	253	271	253		257	1.015	261	1.015	265	1.015	269	1.015	273	1.015
Fall	587	213	547		555	1.015	564	1.015	572	1.015	581		589	1.015
Spring	462	213	400		406	1.015	412	1.015	418	1.015	425		431	1.015

This ability to plan to this degree of specificity was one of the key requests made by the stakeholders. When the model is being rolled over to the next model year, a macro is used to shift all of the data so that the stakeholders do not lose the estimates that they had previously made for each given year.

When the model was first demonstrated for the stakeholders, they requested the ability to adjust return rates for each term, year, and student type. A table displays the most recent return rates and allows for manual inputs. If no inputs are entered, the return rate defaults to the most recent actual rate. These


inputs are also rolled over for the newest model year. When these manual inputs are adjusted, the summary tables update dynamically to project the long-term effect on headcount and credit hour production.

THIS TABLE REQUIRES MANUAL INPUTS									
	Most	Estimated	Return Rate						
	Recent	Enter a value to override the most recent actual return rate							
	Actual	2015-2016	2016-2017	2017-2018	2018-2019	2019-2020	2020-2021		
1- FTIC									
Summer	0.5282								
Fall	0.6859	0.7300	0.7400	0.7400	0.7400	0.7400	0.7400		
Spring	0.9132	0.9100	0.9200	0.9200	0.9200	0.9200	0.9200		
2- FCS Transfer									
Summer	0.5445								
Fall	0.5091	0.5700	0.5900	0.5900	0.5900	0.6000	0.6000		
Spring	0.8211	0.8195	0.8250	0.8300	0.8300	0.8300	0.8300		
3- Other Transfer									
Summer	0.5807								
Fall	0.5772		0.6000	0.6050	0.6100	0.6150	0.6200		
Spring	0.8474		0.8500	0.8550	0.8550	0.8600	0.8600		
4- 2nd Deg Undergrad									
Summer	0.5725								
Fall	0.3913								
Spring	0.7293								
5- Unclassified									
Summer	0.22								
Fall	0.1927								
Spring	0.4982								
6- Master's									
Summer	0.5724		0.5700	0.5750	0.5800	0.5850	0.5850		
Fall	0.4457		0.5080	0.5100	0.5100	0.5150	0.5200		
Spring	0.8175		0.8200	0.8250	0.8250	0.8300	0.8300		
7- Doctoral									
Summer	0.7141		0.7400	0.7000	0.7400	0.7400	0.7400		
Fall	0.2897		0.7650	0.7700	0.7700	0.7700	0.7700		
Spring	0.9188		0.9200	0.9200	0.9200	0.9200	0.9200		
8- Other Graduate									
Summer	0.2597								
Fall	0.2143								
Spring	0.5014								

Projected Fall Headcount								
	Fall 2016	Fall 2017	Fall 2018	Fall 2019	Fall 2020	Fall 2021		
1- FTIC	25,807	26,267	26,727	27,211	27,680	28,060		
2- FCS Transfer	26,030	26,316	26,646	27,256	27,737	27,702		
3- Other Transfer	2,082	2,089	2,118	2,158	2,201	2,290		
4- 2nd Deg Undergrad	1,071	1,000	976	973	977	980		
5- Unclassified	303	494	568	596	607	611		
6- Master's	5,623	5,771	5,890	6,036	6,222	6,413		
7- Doctoral	2,014	2,139	2,253	2,362	2,465	2,463		
8- Other Graduate	800	825	840	855	870	880		
Medical	480	480	480	480	480	480		
Grand Total	64,210	65,383	66,498	67,927	69,239	69,880		

Projected Annual SCH										
	2016-2017	2017-2018	2018-2019	2019-2020	2020-2021	2021-2022				
Lower Ugrd	512,582	520,954	528,998	539,087	548,318	550,478				
Upper Ugrd	930,533	945,755	960,365	978,523	995,283	999,155				
Grad I	104,282	107,640	110,039	112,894	116,149	118,775				
Grad II	34,943	36,834	39,207	41,109	42,906	42,733				
Total	1,582,340	1,611,182	1,638,608	1,671,613	1,702,656	1,711,141				

The other tab available to the user contains graphs of historical and projected headcounts and credit hours, which also dynamically update with stakeholder inputs.

CONCLUSIONS

Our process is one of many ways that an enrollment forecasting activity could be managed and displayed to stakeholders. The use of SAS® Enterprise Guide, the SAS® Add-In for Excel, and Excel streamlined the process eliminating complex data retrieval and manipulation, copying and pasting data into Excel, and most importantly, maintaining a complex web application environment.

The only part of the process outside the scope of the above tasks was the actual modeling exercise performed with an outside statistical application such as SAS® Enterprise Miner or R. The results from the statistical analysis have to be translated into Excel with the necessary data elements correctly mapped from the data brought in by the SAS® add-in. However, this task is not normally performed every time the projection is run and only executed after a long period of time or when the model is showing signs of abnormal decay.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Andre Watts
University of Central Florida
Office of Institutional Research
Orlando, Florida 32826
407-823-2307
andre.watts@ucf.edu
http://ikm.ucf.edu

Lisa Sklar University of Central Florida Office of Institutional Research Orlando, Florida 32826 407-823-1352 lisa.sklar@ucf.edu http://ikm.ucf.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.