SAS® GLOBAL FORUM 2017

April 2 – 5 | Orlando, FL

Modeling Machiavellianism

Predicting Scores with Fewer Factors

USERS PROGRAM

Modeling Machiavellianism: Predicting Scores with Fewer Factors

Patrick Schambach and Michael Frankel

Kennesaw State University Department of Statistics and Analytical Sciences

ABSTRACT

Prince Niccolo Machiavelli said things on the order of, "The promise given was a necessity of the past: the word broken is a necessity of the present." His utilitarian philosophy can be summed up by the phrase, "The ends justify the means." As a personality trait, Machiavellianism is characterized by the drive to pursue one's own goals at the cost of others. In 1970, Richard Christie and Florence L. Geis created the MACH-IV test to assign a MACH score to an individual, using 20 Likert Scaled questions. The purpose of this study was to build a regression model that can be used to predict the MACH score of an individual using fewer factors. Such a model could be useful in screening processes where personality was considered, such as in job-screening, offender profiling, or online dating sites. The research was conducted on a dataset from an online personality test similar to the MACH-IV test. It was hypothesized that a statistically significant model exists that can predict a average MACH scores for individuals with similar factors. It was also hypothesized that an individual could be classified as a MACH personality based on a logistic regression model. These hypotheses were accepted.

METHODS

The dataset used in this study was found on http://personality-testing.info, and is an online version of the MACH-IV test created by Christie and Geis. The original dataset consisted of 24 variables and 13,156 observations. All of the data was self-reported, except for the duration if the test, in seconds. The dataset was analyzed using SAS Studio.

We first cleaned and trimmed the dataset to remove all observations with nonresponses and invalid entries. Only completed surveys were analyzed. We also removed extreme outliers in test duration, so only test durations longer than 20 seconds were considered. All responses with ages under 18 were also removed. Our trimmed dataset consisted of 24 variables and 10,937 observations.

We then needed to identify potential predictors of score. First, we used variable clustering, where variables that are similar to each other are removed. Using proc varclus, we identified four clusters. The variables with the lowest 1-R² values were chosen. They were Q6, Q13, Q14, and test duration. When Score was modeled as a function of these variables, the R² value for the model was 71.19%. We then attempted forward and backward selection to choose predictors. However, both methods simply resulted in all variables being selected, so we utilized stepwise regression and found that when five variables were used, an R² value of 83.68% was obtained, which we deemed sufficient. Thus, we chose these five variables as our predictors. They were Q1, Q6, Q9, Q12, and Q13. We then checked for interactions between our predictors and found that there were two that were significant, Q1*Q9 and Q6*Q12. Including these interactions would have only raised our R² to 83.76%, but the coefficients were considered too small to make much practical contribution and were omitted from the model.

Note that since SAS suppresses all plots with over 5,000 observations, we selected a random sample of 1,000 observations to generate the visuals.

RESULTS

Figure 1: Linear Model with Clustered Predictors

Analysis of Variance							
		Sum of	Mean				
Source	DF	Squares	Square	F Value	Pr > F		
Model	3	1336401	445467	9003.32	<.0001		
Error	10933	540944	49.47806				
Corrected Total	10936	1877345					
D 1750D 0 5110							

Root MSE		7.0340	6 R-Squa	re	0.7119	
Dependent Mear	n	65.4818:	5 Adj R-S	Sq	0.7118	
Coeff Var		10.7420	1			

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation		
Intercept	1	72.38688	0.29410	246.13	<.0001	0		
Q13	1	4.25605	0.05397	78.86	<.0001	1.13289		
Q6	1	-4.46602	0.05636	-79.23	<.0001	1.19705		
Q14	1	-3.51026	0.07406	-47.40	<.0001	1.19202		

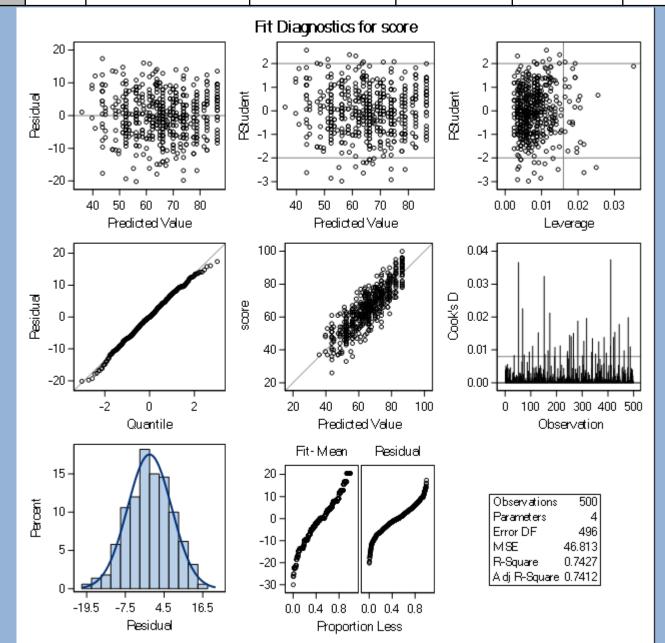
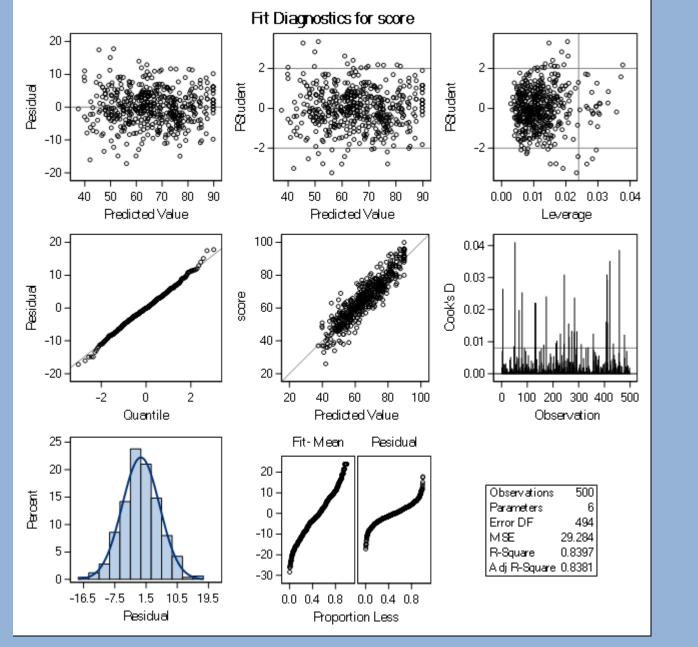



Figure 2: Linear Model with Stepwise Selection

Analysis of Variance								
Sum of Mean								
Source	DF	Squares	Square	F Value	Pr > F			
Model	5	1571004	314201	11211.5	<.0001			
Error	10931	306341	28.02496					
Corrected Total	10936	1877345						

Root MSE	5.29386	R-Square	0.8368
Dependent Mean	65.48185	Adj R-Sq	0.8367
Coeff Var	8.08447		

Parameter Estimates								
		Parameter	Standard					
ariable	DF	Estimate	Error	t Value	Pr > t			
itercept	1	60.37110	0.31947	188.97	<.0001			
1	1	2.36684	0.04841	48.89	<.0001			
<u>)</u> 6	1	-2.92041	0.04656	-62.73	<.0001			
9	1	-2.98785	0.04957	-60.28	<.0001			
12	1	2.35958	0.04662	50.61	<.0001			
13	1	2.34897	0.04560	51.51	<.0001			

Modeling Machiavellianism: Predicting Scores with Fewer Factors

Patrick Schambach and Michael Frankel

Kennesaw State University Department of Statistics and Analytical Sciences

METHODS CONTINUED

We then further attempted to model Machiavellianism using a logistic regression and a binary variable that would identify an individual as being Machiavellian or not. A new variable called isMach was created where an individual scoring above the 75th percentile was classified as a 1, or an event, and those below were classified as a 0, or non event. We then attempted to identify predictors of isMAch. Before fitting our model, we randomly split the dataset into two smaller sets. We selected 65% of the data for fitting the model and the remaining 35% for validating it. In the two subsets, the distribution of isMAch was retained. To find our predictors, we first attempted backward and forward selections, but all variables except age, gender, and test duration were selected. We then used the clustered variables from earlier and, once again, retained Q6, Q12, and Q16. Test duration was not a significant predictor of isMach. Our model with clustered variables yielded a c-statistic of 0.917. We then compared this to a model with only three variables chosen by stepwise selection. The procedure yielded the predictors Q9, Q13, and Q10. Our new model also had a higher c-statistic of 0.935. Thus, the model using stepwise selection for variable selection had a higher number of concordant pairs than the one using variable clustering, so we opted to use the former.

A table of potential probabilities of a Machiavellian personality was generated and analyzed. We chose a probability of 0.200 for a Machiavellian because if we lower the probability, the false positives increase 10%. Conversely, if we raise the probability, the sensitivity and percent correct decrease.

A Machiavellian being misclassified as a non-Machiavellian, would result in a type-I error. In this case, someone who should be screened would not be screened. A non-Machiavellian being classified as a Machiavellian would result in a type-II error. In this case, someone would be unnecessarily screened who should not have been. The more detrimental case would depend on the whether or not a Machiavellian personality is considered desirable. If a Machiavellian personality would be detrimental, a type-I error should be minimized.

RESULTS

Figure 3: Logistic Model with Stepwise Selection

Analysis of Maximum Likelihood Estimates								
			Standard	Wald				
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq			
Intercept	1	0.9846	0.1774	30.8206	<.0001			
Q9	1	-0.9698	0.0372	681.1474	<.0001			
Q13	1	0.9932	0.0383	671.3771	<.0001			
Q10	1	-0.8876	0.0405	479.2625	<.0001			

Association of Predicted Probabilities and						
Observed Responses						
Percent Concordant	93.2	Somers' D	0.870			
Percent Discordant	6.2	Gamma	0.875			
Percent Tied	0.6	Tau-a	0.341			
Pairs	9902309	c	0.935			

Odds Ratio Estimates and Wald Confidence Intervals							
Effect	Unit	Estimate	95% Confidence Limits				
Q9	1.0000	0.379	0.353	0.408			
Q13	1.0000	2.700	2.504	2.911			
Q10	1.0000	0.412	0.380	0.446			

Figure 4: Table of Probability levels

Classification Table										
	Cor	rect	Inco	rrect		Per	centage	ages		
Prob		Non-		Non-		Sensi-	Speci-	False	False	
Level	Event	Event	Event		Correct	tivity	ficity	POS	NEG	
0.000	1901	0	5209	0	26.7	100.0	0.0	73.3		
0.100	1801	3768	1441	100	78.3	94.7	72.3	44.4	2.6	
0.200	1680	4360	849	221	85.0	88.4	83.7	33.6	4.8	
0.300	1673	4360	849	228	84.9	88.0	83.7	33.7	5.0	
0.400	1466	4805	404	435	88.2	77.1	92.2	21.6	8.3	
0.500	1466	4805	404	435	88.2	77.1	92.2	21.6	8.3	
0.600	1135	5033	176	766	86.8	59.7	96.6	13.4	13.2	
0.700	1096	5043	166	805	86.3	57.7	96.8	13.2	13.8	
0.800	744	5156	53	1157	83.0	39.1	99.0	6.6	18.3	
0.900	606	5179	30	1295	81.4	31.9	99.4	4.7	20.0	
1.000	0	5209	0	1901	73.3	0.0	100.0		26.7	

Predicted Mach Type

Table of isMach by preds						
isMach		preds				
Frequency						
Percent	0	1	Tota			
0	2352	452	2804			
	61.46	11.81	73.27			
1	122	901	1023			
	3.19	23.54	26.73			
Total	2474	1353	3827			
	64.65	35.35	100.00			

CONCLUSIONS

MACH Score can be predicted somewhat reliably using only a quarter of the questions required by the MACH-IV test. In fact, 83.68% of the variation in score can be explained by only five questions. A MACH personality can also be reliably predicted using only three questions. These questions are as follows:

Q1: "Never tell anyone the real reason you did something unless it is useful to do so."

Q6: "Honesty is the best policy in all cases."

Q9: "All in all, it is better to be humble and honest than to be important and dishonest."

Q10: "When you ask someone to do something for you, it is best to give the real reasons for wanting it rather than giving reasons which carry more weight."

Q12: "Anyone who completely trusts anyone else is asking for trouble."

Q13:The biggest difference between most criminals and other people is that the criminals are stupid enough to get caught.

Our fitted linear model equation became:

$$\widehat{Score} = 60.37 + 2.37(Q1) - 2.92(Q6) - 2.99(Q9) + 2.36(Q12) + 2.35(Q13)$$

Our fitted logistic equation became:

$$Logit(P(Y=1)) = 0.9846 - 0.9698(Q9) + 0.9932(Q13) - 0.8876(Q10)$$

Modeling Machiavellianism: Predicting Scores with Fewer Factors

Patrick Schambach and Michael Frankel

Kennesaw State University Department of Statistics and Analytical Sciences

APPENDIX: SAS CODE

```
*set dataset and predictors;
data machtrim3;
set _temp0.machtrim3;
%let inputs = age seconds_elapsed gender Q1 Q2 Q3 Q4 Q5
         Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
         Q17 Q18 Q19 Q20;
*variable clustering;
proc varclus data = &d1 outtree = tree;
var &inputs;
run;
*LINEAR MODELING;
*linear model from clusters;
proc reg data = &d1;
model score = q13 q6 q14 / vif;
run;
*linear model from stepwise selection;
proc reg data = &d1;
model score = &inputs /
selection=stepwise vif rsquare sle=.015 sls=0.05;
run;
```

```
*LOGISTIC MODELING;
*create binary variable;
data machtrim4;
set machtrim3;
if score >=74 then isMach = 1;
else isMach = 0;
run;
proc sort data = machtrim4;
by isMach;
run;
*seperate dataset for logistic validation;
proc surveyselect data = machtrim4 samprate = 0.35
out = moddevfile seed = 1234567 outall;
strata ismach;
run;
*now split into two datasets;
data train valid;
set moddevfile;
if selected then output train;
else output valid;
run;
```

```
*logistic model with stepwise selection;
proc logistic data = train desc outest= betas outmodel=scoringdata;
model isMach = q9 q13 q10 / selection = stepwise
ctable pprob=(0.1 \text{ to } 0.3 \text{ by } 0.02)
LACKFIT RISKLIMITS;
output out = output p = predicted;
score data = valid out=score;
run;
* set cutoff point at 0.200;
data test;
set score;
if p_1 ge 0.20 then preds = 1;
else preds = 0;
run;
*grnerate table;
proc freq data = test;
tables ismach*preds / norow nocol;
run;
```


SAS® GLOBAL FORUM 2017

April 2 – 5 | Orlando, FL