
1

1091-2017

Build Lightning Fast Web Apps with HTML5 and SAS®
Allan Bowe, SAS consultant

ABSTRACT
What do we want? Web applications! When do we want them? Well.. Why not today? This author
argues that the key to delivering web apps ‘lightning fast’ can be boiled down to a few simple factors,
such as:

• Standing on the shoulders (not the toes) of giants. Specifically, learning and leveraging the
power of free / open source toolsets such as Google’s Angular, Facebook’s React.js and Twitter
Bootstrap

• Creating ‘copy paste’ templates for web apps that can be quickly re-used and tweaked for new
purposes

• Using the right tools for the job (and being familiar with them)

By choosing SAS as the back end, your apps will benefit from:

• Full blown analytics platform

• Access to all kinds of company data

• Full SAS metadata security (every server request is metadata validated)

By following the approach taken in this paper, you may well find yourself in possession of an electrifying
capability to deliver great content and professional-looking web apps faster than one can say “Usain Bolt”.

AUDIENCE
This paper is aimed at a rare breed of SAS developer – one with both front end (HTML / Javascript) and
platform administration (EBI) experience. If you can describe the object of object arrays, the object
spawner and the Document Object Model – then this paper is (objectionably?) for you!

INTRODUCTION
You are about to receive a comprehensive overview of building Enterprise Grade web applications with
SAS. Such a framework will enable you to build hitherto unimaginable things.. Such as converting that
stalwart of a SAS/AF application, creation of highly specific drilldown reports, Data Editors, Release
Management systems, crazy graph models, metadata managers, and geolocation based reports.

We start our journey by looking at a recommended folder setup and the generic toolsets needed on our
mid-tier and application server(s). We then launch into a step by step guide to installing a simple web
app in your SAS environment – this serves to illustrate the approach, as well as providing a ‘template
app’.

A full section is dedicated to the open source Boemska Data Adapter (h54s), with an overview of how it
interfaces with the Stored Process Server and the various logging facilities.

We finish with a whirlwind of additional tips to help with development, debugging & deployment of web
apps, as well as advice for how you can optimize your system to ‘run faster’ – both server and client side.

2

SERVER SETUP
Before launching into the app itself, there are a few prerequisites to set up. Recommended file system
locations are provided, but you may of course replace these with your own locations as necessary.

FOLDER STRUCTURE

SAS Mid-Tier
Web files (*.html, *.css, *.js) must be served from the web server (mid-tier), the location of which will vary
depending on system topology and the specific web server in use. For instance, for JBOSS this is:

[jboss root]\jboss-as\server\SASServer1\deploy\jboss-web.deployer\ROOT.war

Any files saved in the root can be referenced directly in the URL, eg as follows:

 http://dev-sasmidtier.yourCompany.int:8080/somefile.html

The number of files here will certainly grow, and so it is important to set up a folder structure to manage
content. A recommended approach is as follows:

 /apps (to contain a subfolder for each distinct app)

 /css (for shared CSS)

 /js (for shared javascripts)

 /img (for shared images)

To make it easier to work with this location, you may wish to ask your admin to set up a network share so
you can save files there directly. If you are unable to get this level of access, it’s possible to develop on a
local machine as described in Bypassing the Same Origin Policy. Another approach is to set up a remote
process that continually pulls from your Version Control System (VCS), which has the added advantage
of enforcing the use of version control.

SAS Metadata Folder (Tree)
To keep all web app STPs together in one place, it is recommended to create a new (top level) folder, eg
/Web. If your app only has one STP then keep it here – if you need multiple STPs (for logic separation, or
fine grained permissions control) then create subfolders as necessary.

Note that users will not be able to view (let alone execute) any STPs for which they do not have
ReadMetadata permission.

INSTALLING RESOURCES
The great thing about web development is the number of great tools out there you can use for free! With
browser caching you may even avoid the download ‘cost’ by referencing a CDN (Content Delivery
Network), but if you do this be sure to use an SRI (Subresource Integrity) hash – this is a checksum the
browser will use to validate that the external resource has not been tampered with.

Our demo app will make use of four tools in particular:

jQuery
jQuery makes it easy to programmatically traverse / modify your web page, as well as adding event
handlers and animations. Furthermore, it handles many of the differences between browsers - avoiding

3

‘if chrome do this, if IE do that’ type logic.

Our app will take jQuery from a CDN (with SRI checking), so no download required.

Bootstrap
Bootstrap (often called ‘Twitter Bootstrap’ as it was built at Twitter) makes it super easy to style your web
app. Your app becomes responsive, with a professional look and feel, by simply adding standard class
attributes to your html tags. No more time spent twiddling CSS!

Our app references both the Bootstrap files (.js and .css) from the CDN with SRI, so no download here
either.

HandsOnTable
One of many javascript libraries available for presenting table-like data, HandsOnTable is particularly
noteworthy for it’s spreadsheet-like interface. Defaults are easy to configure, and advanced functionality
can be implemented via hook scripts.

Our app will reference this as a local tool, so you will need to download the latest files from their github
repo (https://github.com/handsontable/handsontable/tree/master/dist). To get the full distribution (all
features) extract the following two files into the respective locations below:

1. handsontable.full.min.js -> /js folder (midtier web root)
2. handsontable.full.min.css -> /css folder (midtier web root)

The ‘.min’ part means ‘minified’ – ie the code has been generated in such a way as to minimise file size.

Boemska h54s Data Adapter
The HTML5 for SAS adapter is the final piece of the jigsaw. It handles all the ‘back and forth’ between
(Stored Process) server SAS and your client front end, including:

• Super-efficient conversion of Javascript Object Arrays into SAS Datasets and vice versa

• Capture of SAS Logs, with ERROR parsing

• Management of SASLogon redirects

Installation requires two files to be saved in the SAS environment:

• h54s.min.js -> /js folder (midtier web root)

• h54s.sas -> /SASEnvironment/SASCode/Programs (SASApp LevX folder)

• These files can be found on the github repo: https://github.com/Boemska/h54s

In order for the macros in h54s.sas to be available, the following line of code should be placed in the
autoexec_usermods.sas file for the relevant Stored Process server:

/*	 compile	 Boemska	 data	 connector	 macros	 */
%inc	 "/path/to/SASEnvironment/SASCode/Programs/h54s.sas";

The Stored Process server will then need to be restarted in order for the update to be applied.

4

STEP BY STEP GUIDE TO BUILDING A SIMPLE WEB APP
Our web app will have a simple function – to allow a user to select sex (Male / Female) and use this to
filter the ubiquitous sashelp.class dataset. This simplicity allows us to focus on the framework by which
the app is built – as it is here that the true power of this development approach lies.

STEP 1 – CREATING THE STORED PROCESS
The SAS Stored Process will be the ‘calling point’ for our client web app. It is the place where
permissions are configured, and where the SAS code (or a pointer to SAS code) is stored.

Figure 1 – Stored Process Configuration in SAS Management Console shows the properties of the
classdemo Stored Process.

Figure 1 – Stored Process Configuration in SAS Management Console

It is important to set “Result capabilities” to “Stream”. Without this, the special _webout fileref cannot be
used to send data back to the browser.

Note that the Stored Process is saved under a top level folder (/Web) in the BIP metadata folder tree.
Keeping web apps in one place can make administration easier, but is not required. Any root folder can
be used, and can even be configured as a global parameter (metadataRoot) within the h54s adapter.

STEP 2 – WRITING OUR SAS CODE
Figure 2 – classdemo.sas file below shows the code that will execute when calling the /web/classdemo
Stored Process.

5

Figure 2 – classdemo.sas file

Notice that there are no %stbegin or %stpend macros - these are unnecessary, and would actually
prevent data being sent back to the client (via the _webout fileref).

Regarding the rest of the file:

Line 2 executes the h54s macro (compiled in the autoexec) to convert the received data into a SAS dataset.

Lines 5-10 use this received data within the SQL Procedure to filter the sashelp.class dataset.

Lines 13-15 send this new dataset back to the client app (with metadata) in a specific JSON format.

Top Tip: in the %hfsOutDataset() macro, always make your javascript return object uppercase (in this
case, “SASDATA”). This will avoid any contention with the additional metadata created by the
%hfsFooter macro.

STEP 3 – CREATING YOUR HTML FILE
We are going to save our file as index.html under /apps/classdemo in the midtier web root location.
The advantage of this approach is that we won’t need to reference the filename directly in our URL – if
you point at a web directory with a browser it will always look for (and open) the index.html file if it
exists1. So our URL will look like this:

 http://dev-sasmidtier.yourCompany.int:8080/apps/classdemo

Figure 3 shows the entire index.html file - which can also found at
github.com/rawsas/apps/tree/master/WebRoot/apps/classdemo.

1 If you're working with Angular or React, index.html is always served with complete minified JS which is responsible for page

6

Figure 3 – index.html file

Key points about this markup:

- All of the class attributes relate to Bootstrap. This library will make your app look good, instantly!
Observe that we don’t write a single line of CSS in this demo.

- The js / css files loaded from external sources (jQuery & Bootstrap) are checked with a subresource
‘integrity’ (SRI) hash. This guarantees that the code hasn’t been tampered with. Where we don’t
have SRI, the files are hosted internally (HandsOnTable & h54s libraries)

- The areas that our App will interface with (selectbox / submit button / HandsOnTable container) all
contain id attributes (selFilter / btnRunFilter / hotContainer). This makes them easy to reference.

STEP 4 – ADDING SOME INTERACTIVITY
Ok, this is where things start to get interesting! The next step is to create our app-specific javascript file,
which we will place in the same midtier location – eg: /apps/classdemo/classdemo.js. We could
have saved it elsewhere but this approach keeps our app-specific files nicely grouped together.

Figure 4 shows the entire file, also available at
github.com/rawsas/apps/tree/master/WebRoot/apps/classdemo.

7

Figure 4 – classdemo.js file

Some explanation:

Line 1 declares the “use strict” directive, which is kind of analogous to “option explicit” in VBA – it helps prevent
sloppy programming, such as declaring variables in the global namespace.

Line 2 uses jQuery .ready() to ensure the inner function only executes once all the components of the page are
loaded into the DOM (Document Object Model) and are ready to manipulate.

Lines 3-5 are testing to see if our files are being served locally – if so, then we need to provide the location of the
SAS web server. This is explained in the section “Bypassing the Same Origin Policy”.

Line 6 instantiates a new instance of the HTML5 for SAS adapter, passing through the SAS midtier location if
relevant.

Line 7 implements some interactivity – the click event on our “run filter” button. An anonymous callback function is
set to run once the button is clicked.

Line 8 empties the hotContainer div element (in case it already contained a previous table)

Line 9 instantiates a javascript single column / row “dataset” as an object array, containing the value selected in the
‘selFilter’ dropdown

Line 10 instantiates the h54s Tables object, adding our dataset (it could contain several datasets).

Line 11 begins the call to SAS – specifically, to the classdemo Stored Process saved under /Web in the BIP folder
tree. The dataset is sent, and the anonymous function receive two objects in return – err (containing any error
details) and res (containing the data being sent back from SAS).

Line 12 has some basic error handling

Lines 13-15 create an array containing the column names from the returned SASDATA dataset

Lines 16-27 configure Handsontable by passing in the target location, the data itself, the array of column names, a
number of configuration options, and a hook script to mark cells as read only.

8

STEP 5 – TESTING THE RESULT
We are finally ready to check out our new app! Enter the below into a browser (substituting your site’s relevant
midtier server name and port)

http://dev-sasmidtier.yourCompany.int:8080/apps/classdemo

Figure 5 - our classdemo web application. shows our finished application after selecting “Male” and hitting
submit. The data has been returned, and displayed in a nicely formatted table. Developer tools is also
open to verify that no javascript errors have been thrown.

Figure 5 - our classdemo web application.

Note that it’s always worth testing your new app on a range of browsers - not just to identify functional
issues, but also because they often give different feedback on the validity of your HTML.

BOEMSKA H54S DATA ADAPTER
The h54s (HTML5 for SAS) adapter makes it super easy to connect to SAS! It provides a generic and
transparent communication mechanism for both sending / receiving datasets as well as log handling and
SASLogon redirects.

HTTP REQUEST / RESPONSE

Adapter Request
It is possible to examine exactly what is sent to the SAS Mid-tier by the adapter in our demo web app. To
do this in chrome, first open Browser Developer tools (F12), then make the request (hit ‘run filter’ in the
app). You can find the request in the Network tab as per Figure 6 – examining payload

9

Figure 6 – examining payload

The “Request Payload” appears as follows:

Lines 1, 5, 9, 13, 17 and 21 denote boundaries to data, which is essentially FORM data (submitted via POST
request).

Lines 2-4 show how the _program parameter was passed (telling SAS which STP to execute)

Lines 6-8 contain the value for the _debug parameter (determines whether SAS will send back additional info with the
response)

Lines 10-12 set the _service parameter. This has been configured to prevent JVM errors in some setups.

Lines 14-16 and 18-20 are used to pass our actual dataset. The adapter has examined the content, and determined
the type and length of each variable. This metadata is passed first, and then the data, in what will become just two
SAS macro variables2.

SAS Response
The Request Payload (form data) is received by the Stored Process SAS session as macro variables,
and can be viewed as such in the SAS log. The pertinent ones for us are:

H54STABLE0=2

H54STABLE1=[{"colName":"FILTER","colType":"string","colLength":1}]

H54STABLE2=[{"FILTER":"M"}]

H54STABLE_COUNT=2

The above is converted into a SAS dataset (work.SASTable) by the following macro:

%hfsGetDataset(H54sTable, SASTable);

The response is sent with a couple of ‘wrapper’ functions that set up the JSON and add some additional
metadata. Under the hood, this uses put statements against the _webout fileref.

%hfsHeader;

%hfsOutDataset(SASDATA,work, sendmeback);

%hfsFooter;

The SPWA streams the data back to the browser, which recognizes it as JSON:

2 Boemska R&D are examining an even more efficient approach for passing datasets, using the file upload mechanism. Watch this
(github) space!

10

The data can finally be used by your client javascript in the response (callback) object:

ADAPTER LOG HANDLING
There are a number of ‘log handling’ mechanisms available within the adapter, as follows:

SAS Errors
Whenever there is a SAS program error, the Stored Process server will return the SAS logs by default.
The adapter is able to parse these and return not just the error but the time at which the error occurred
and the SAS “_program” the error occurred within. This can be surfaced within javascript as follows:

Adding a syntax error on the SAS side (classdemo.sas) now returns the following:

Failed Requests
If more context is required, one can query the failed requests array – but only if the global debug option is
set to false (which it is, by default)

The setup:

11

The response (to my deliberate error):

……

Debug Data
By setting debug to true in the adapter, it is possible to receive logs for every request. This is achieved at
the back end by setting the SAS _debug parameter to 131 (equivalent to the value LOG,TIME,FIELDS).
The adapter will not only store all these logs, it will even store the corresponding request parameters!

The setup:

The response is below – note that the request parameters are returned in object format.

12

Log Strings
The adapter has some SAS side logic to identify obvious issues
- such as the return dataset not being created - and will return
helpful messages directly via the JSON response
(res.logmessage):

CHARGING UP SAS SERVER PERFORMANCE
If we are aiming for an ‘immediate’ response time of 0.1 to 0.2 seconds3, a few configuration tweaks may
be necessary. Ignoring hardware, there are a several things that can make SAS more responsive:

REDUCE LOGGING
If you don’t need to keep the SAS logs for every stored process that executes, you should generally keep
server logging switched off. This is mainly an issue with the StoredProcessServer logs. Details of the
config file can be found under Logging.

REDUCE STARTUP CODE
There are usually several SAS programs that are executed before your STP even begins. These should
be kept as empty as possible, especially the initialization file, which is guaranteed to execute for every
single request.

Autoexec files
The full list of autoexec files can be found in the sasv9.cfg file (check sasv9_usermods.cfg also). Long
running code is only really a problem here though if you are not using pooled sessions.

Initialisation program
An initialisation program can be configured (via SAS Management Console) to execute for every single
Stored Process request received.
This can be useful (eg for dealing
with the Locale Gotcha), but as
this affects EVERY request, any
code here should really be
written such that it can execute in
0.01 seconds or less.

3 Miller, 1968: http://theixdlibrary.com/pdf/Miller1968.pdf

13

MULTIBRIDGE CONNECTIONS
A connection maps a server process to a port. By default, the stored process server comes with one
Bridge connection, and three Multibridge connections. All stored process client requests are made
initially to the Bridge connection. They are picked up by the object spawner, which determines which
server process has the least load, and then redirects the client to the appropriate Multibridge connection.

Whilst each Multibridge connection can process up to five requests (configurable), you may quickly find
that - with more than a few users, and any long running Stored Processes - this becomes a serious
bottleneck!

It is recommended4 to add up to 5 Multibridge connections per CPU core.

DEDICATED STP SERVER
In some environments you may find that you cannot avoid startup code as it is there for legacy reasons.
You may also find that the permissions on the default STP OS account (sassrv) are too restrictive for
your needs.

In this case you might consider setting up a Stored Process Server (eg SASApp_Web) which is dedicated
to web apps! You can give it a special OS account (eg sassrv_web) via the SAS General Servers
group. You can demonstrate to IT Security that this is safe, due to the rigorous controls you place on the
Stored Processes and code that it executes. You can then minimize the startup code, maximize the
multibridges, and configure logging as appropriate.

DEVELOPMENT TIPS

BYPASSING THE SAME ORIGIN POLICY
The Same Origin Policy is a security setting enabled in all browsers that prevents a javascript loaded
from Server A interfacing with Server B. If this was possible, then a renegade www.dodgysite.com site
could easily manipulate your concurrent www.myimportantbank.com session!

If you are modifying files directly in the root of the mid-tier, then this section does not apply to you (as you
are serving from the same origin). As a developer though, it is quite possible that you will want to spin up
a local web server for building your app. In this way you can make & test front end changes in isolation,
without affecting other users. In some corporate environments, this may also be necessary if you are not
granted direct write access to the SAS web root.

You know you are affected if you see the following in your console:

XMLHttpRequest cannot load http://SASMIDTIER:8080/SASStoredProcess/do.
No 'Access-Control-Allow-Origin' header is present on the requested resource.
Origin 'http://localhost:54048' is therefore not allowed access.

One way around this in Chrome is to launch the browser from the command line with this feature
disabled:

"C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" --user-data-
dir="C:/Chrome dev session" --disable-web-security

Another option is to download the “Web Server for Chrome” extension, which gives you a checkbox for
this very feature (“Set CORS Headers” checkbox under “Advanced Settings”).

4 http://support.sas.com/resources/papers/proceedings12/378-2012.pdf

14

Whichever way the same origin policy is bypassed, our app will need to know where to go to speak to
SAS – as it can no longer derive it from the hostname. The following javascript logic detects if we are
working locally, and configures the h54s adapter to react accordingly:

	 	 if	 (location.hostname	 ===	 'localhost'	 ||	 location.hostname	 ===	 '127.0.0.1')	 {	

	 	 	 	 var	 strHostURL	 =	 'http://dev-‐sasmidtier-‐machine.yourcompany.com:8080/';	

	 	 }	 else	 {	 strHostURL	 =	 null;	 }

	 	 	 var	 adapter	 =	 new	 h54s({hostUrl:	 strHostURL});

A more permanent option (say, if you do need to serve your production files from a server other than
SAS) is to actually enable CORS on the server itself – this can be achieved via SAS Management
Console (Application Management -> Configuration Manager -> SAS Application Infrastructure) as
described in the 9.4 mid-tier admin guide5

BROWSER DEVELOPER TOOLS
All modern browsers come pre-installed with a nifty interface to show you what exactly is going on ‘under
the hood’. Simply press F12 to fire it up (and F5 to refresh, so you can start logging events).

Figure 7 – Developer Tools

The most useful parts are:

Network
This will show you every http request that is sent from the browser, and the corresponding response. If
there are any errors in your SAS process, this is a good place to look, as the SAS log is usually returned
here by default.

Console
This window is kind of a like a ‘command line’ for running javascript snippets, as well as a log for events
in your main scripts - eg console.log(someValue). Different browsers will also give you different
feedback in this window regarding the validity of your HTML – another reason to test your code in
different browsers!

DOM Explorer
This has different names depending on your browser, eg “HTML” (IE), “Elements” (Chrome) or “Inspector”
(Firefox). The great thing about this is that you can see all parts of your page, as they are rendered, with
all their corresponding attributes. So if you are wondering what your javascript is actually doing to the
page, you can check it out here (and modify it directly if you wish).

5 Page 299 (Whitelist of Websites and Methods Allowed to Link to SAS Web Applications) of SAS® 9.4 Intelligence Platform:
Middle-Tier Administration Guide, Fourth Edition

15

CODING STANDARDS
Everybody has different styles for writing code (hey, we’re artists right?!) but there are a couple of things
worth mentioning:

Line length
Within reason, keep your lines of code to 80 characters or less. Not only does this keep it readable, but it
also makes it much easier / quicker to identify differences in your preferred diff tool.

Indentation
Code should always be consistently indented! At risk of Holy War6, I recommend that your editor (eg the
Program Editor in Enterprise Guide, or your text editor) be configured to place 2 spaces when pressing
the TAB key.

LOGGING
There are a number of “touch points” at which logging can be enabled. Be sure to switch this off
afterwards as logging can be seriously detrimental for performance.

Log Type Configuration Info
Object
Spawner

/Lev1/server-
context/server-
name/logconfig.xml

Useful for troubleshooting failed connections /
permissions issues.

Stored Process
Server

/Lev1/SASApp
/StoredProcessServer
/logconfig.xml

Whilst active, will write logs for ALL stored
processes.

stpinit program Custom SAS code (proc
printto)

With a little conditional logic, one could write a
switch to write individual logs for a particular user
(&_metaperson) or stored process (&_program)

Stored process
program

Custom SAS code (proc
printto)

The failsafe – put your proc printto in the stored
process itself.

Adapter
logging

Adapter setting
(debug:true)

The adapter can be configured to display logs
directly via the client application itself!

STORING SAS CODE
Unless you need to do so for security or deployment reasons, I recommend that your actual SAS code is
stored in a .sas file rather than within the Stored Process metadata. The main benefit of this is that you
can track code changes in your VCS – but it also makes subsequent promotions easier (just a file copy),
and your code is then accessible to third party text searching tools (like Agent Ransack).

6 http://wiki.c2.com/?TabsVersusSpaces

16

LOCALE GOTCHA
It’s important to be aware that the locale of your Stored Process session can switch according to the
context of the client7. This can cause issues with dates, eg if your process uses the ANYDTDTE.
informat.

To circumvent any problems, you can explicitly set your desire locale (so, in my case, en_gb) in the
initialization program:

options locale=en_gb;

VERSION CONTROL SYSTEM (VCS)
Not taking sides here – it really doesn’t matter which VCS you use, so long as you do actually use a VCS!
Popular choices are GIT, SVN and TFS – it is best to be consistent with what your organization already
uses.

A VCS is way more than a complete revision history for your codebase – it can save a ton of time for
those who need to maintain / debug / extend your applications, and provides auditability and security for
your code. Don’t leave index.html without it.

RELEASE MANAGEMENT
Every company has it’s own approach to Release Management, and it’s worth discussing here as it can
often take longer to get an application into a Production environment than it does to develop it in the first
place.

If you are serious about delivering Lightning Fast Web Applications, then it’s important to dedicate
resource to the automation of testing and deployment – moving towards a continuous delivery model.

As far as web apps are concerned, automated deployments are entirely possible! I’d say it is mostly
true with BI / DI deployments too, with a few tricky exceptions. If you are looking to build a one-stop SAS
deployment process, a good starting point is SAS® Release Management and Version Control (John
Heaton , 20138)

CONCLUSION
For non trivial SAS web applications, code can quickly become complex and unmaintainable. This risk /
complexity can be significantly reduced by following a standardized approach to app development
(naming conventions, file locations, separation of HTML / CSS / javascript / SAS, leveraging the right
external tools).

This paper has outlined an Enterprise-grade framework for app development that will not only help you
develop fast web apps, fast – but to do so in a supportable and scalable fashion.

RECOMMENDED READING
• https://github.com/boemska/h54s

• SAS® 9.4 Stored Processes: Developers Guide

7 http://rawsas.blogspot.co.uk/2016/12/look-out-locale-gotcha.html
8 http://support.sas.com/resources/papers/proceedings13/467-2013.pdf

