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ABSTRACT  
The most commonly reported model evaluation metric is the accuracy. This metric can be misleading 
when the data are imbalanced. In such cases, other evaluation metrics should be considered in addition 
to the accuracy. This study reviews alternative evaluation metrics for assessing the effectiveness of a 
model in highly imbalanced data. We used credit card clients in Taiwan as a case study. The data set 
contains 30,000 instances (22.12% risky and 77.88% non-risky) assessing the likeliness of a customer 
defaulting on a payment. Three different techniques were used during the model building process. The 
first technique involved down-sampling the majority class in the training subset. The second used the 
original imbalanced data whereas prior probabilities were set to account for oversampling in the third 
technique. The same sets of predictive models were then built for each technique after which the 
evaluation metrics were computed. The results suggest that model evaluation metrics might reveal more 
about distribution of classes than they do about the actual performance of models when the data are 
imbalanced. Moreover, some of the predictive models were identified to be very sensitive to imbalance. 
The final decision in model selection should consider a combination of different measures instead of 
relying on one measure. To minimize imbalance-biased estimates of performance, we recommend 
reporting both the obtained metric values and the degree of imbalance in the data. 

INTRODUCTION 

One of the biggest challenges in data mining is dealing with highly imbalanced data sets. We encounter 
imbalanced data in several real world applications including, credit card fraud detection, churn prediction, 
customer retention, and medical diagnostics among many others. An imbalance occurs when one or 
more classes (minority class) have very low proportions in the data as compared to the other classes 
(majority class). Mostly in these situations, the main interest is in correctly classifying the minority class. 
However, the most commonly used classification algorithms do not work well for such problems. This is 
because the classifiers tend to be biased towards the majority class and hence perform poorly on the 
minority class. Several different techniques have been proposed to solve the problems associated with 
learning from class-imbalanced data. One of such techniques is based on cost sensitive learning. Here, a 
high cost is assigned to misclassification of the minority class while trying to minimize the overall cost. For 
instance, an analyst might have reasons to believe that misclassifying the minority class (false negatives) 
is X times costlier than misclassifying the majority class (false positives). The addition of specific costs 
during model training will bias the model towards the minority class thereby affecting the model 
parameters. This therefore has a potential of improving upon the performance of the model. Another 
technique is to use a sampling technique during model training: either down-sample the majority class or 
over-sample the minority class. Down-sampling is a technique utilized to reduce the number of samples in 
the majority class to obtain roughly equal data points across the classes. Up-sampling on the other hand 
simulates data points to enhance balance across the classes. Even though the use of sampling 
techniques can introduce bias into the model results, these techniques can still be effective during the 
tuning of model parameters. 

Despite the improvements of the above techniques on model performance during parameter tuning, we 
note that the best performing model is not chosen based on the performance measure of the training 
subset but on the testing subset. The distribution of the testing data may differ from that of the training 
data, and the true misclassification costs may be unknown at learning time. In addition, the testing data 
needs to be consistent and reflect the state of nature of the real data in order to produce honest estimates 
of future events. Consequently, sampling techniques cannot be applied to the testing data to fairly 
balance the class distribution. In such situations, it is the duty of the researcher or practitioner to 
determine an appropriate performance measure to use when choosing between different classifiers. 
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EFFECT OF CLASS-IMBALANCE ON PREDICTIVE ACCURACY 

For illustration, consider building a classification model for detecting credit card frauds. Assume the data 
set for building the classifier has 990 genuine events (majority class) and only 10 fraudulent events 
(minority class). The interest here will be to accurately classify the fraudulent events. Naturally, a classifier 
will classify all events as genuine to optimize for accuracy; given an accuracy of 99% (Table 1). 
Unfortunately, this classifier is useless as the events of interest have been misclassified. 

 Classified positive Classified negative 

Actual positive 0 10 

Actual negative 0 990 

Table 1. Confusion matrix for classifier 1 in illustrative example 

Now, consider another classifier that provides the results in Table 2. In this scenario, the accuracy of the 
classifier is 98.6%. Even though the first classifier has a zero predictive power, there is an improvement in 
accuracy for this classifier over the second classifier. The name given to this exact situation is accuracy 
paradox. It is sometimes the case where the accuracy measure shows an excellent model performance 
but the accuracy is only reflecting the underlying class distributions.  

 Classified positive Classified negative 

Actual positive 6 10 

Actual negative 4 980 

Table 2. Confusion matrix for classifier 2 in illustrative example 

The question that we are faced with in such situation is “What performance measure(s) do I use in 
choosing between candidate models?” This study analyzed the effect of class-imbalance on the learning 
and evaluation process of a classifier. The results suggest that in the presence of class-imbalance, the 
model evaluation measures may reveal more about distribution of classes than they do about the actual 
performance of models. In addition, we identified some of the classification models (especially the 
gradient boosting model) to be very sensitive to class-imbalance and perform poorly in such cases. 
Consequently, the final decision in model selection should consider a combination of different 
performance measures instead of relying on one. To avoid or minimize imbalance-biased performance 
estimates, we recommend reporting both the obtained measure values and the degree of imbalance in 
the data. 

MODEL PERFORMANCE MEASURES 

In classification analysis, we usually evaluate a classifier by a confusion matrix (Table 3). In Table 3, the 
columns represent the classifier’s predictions and the rows are the actual classes. TP (True Positive) is 
the number of positive cases correctly classified as such. FN (False Negative) is the number of positive 
cases incorrectly classified as negatives. FP (False Positive) is the number of negative cases that are 
incorrectly identified as positive cases and TN (True Negative) is the number of negative cases correctly 
classified as such.  

 Classified positive Classified negative 

Actual positive TP FN 

Actual negative FP TN 

Table 3. Confusion matrix for two classes’ classification 

By convention, we consider the minority class in imbalanced data modeling as the positive class whilst 
the majority class is considered as the negative class. We derive most of the performance measures 
utilized in classification problems based on the confusion matrix. Some of these performance measures 
are summarized in Table 4.  
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Measure Formula 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Misclassification rate (1 – Accuracy) 
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity (or Recall) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision (or Positive Predictive Value)  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Table 4. Some common performance measure based on confusion matrix analysis 

The most commonly reported measure of a classifier is the accuracy. This measure evaluates the overall 
efficiency of an algorithm. However, as illustrated earlier, predictive accuracy can be a misleading 
evaluation measure when the data is imbalanced. This is because in such cases, more weights are 
placed on the majority class than on the minority class making it more difficult for a classifier to perform 
well on the minority class. Sensitivity, another performance measure, measures the accuracy of positive 
cases whereas specificity measures the accuracy of negative cases. Sensitivity assesses the 
effectiveness of the classifier on the positive/minority class while specificity assesses the classifier’s 
effectiveness on the negative/majority class. For any given analysis, there is usually a trade-off between 
the sensitivity and the specificity. Precision on the other hand is a measure of a model’s exactness. A 
higher precision value for a classifier is an indication of a good classifier.  

COMBINED PERFORMANCE MEASURES 

Generally, analysts would want to balance between both false positive and false negative rates. 
Previously discussed measures do not provide a good evaluating measure in such cases. Performance 
measures that try to balance between the false positives and the false negatives are discussed herein.  

Geometric Mean 

The Geometric Mean (G-Mean) is a metric that measures the balance between classification 
performances on both the majority and minority classes. A low G-Mean is an indication of a poor 
performance in the classification of the positive cases even if the negative cases are correctly classified 
as such. This measure is important in the avoidance of overfitting the negative class and under fitting the 
positive class.  

𝐺 − 𝑀𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

Discriminant Power 

The discriminant power (DP) is another measure that summarizes sensitivity and specificity. The formula 
is given by: 

𝐷𝑃 =
√3

𝜋
(log 𝑋 + log 𝑌) 

where X = sensitivity/(1-sensitivity) and Y = specificity/(1-specificity). The discriminant power assesses 
how well a classifier distinguishes between the positive and negative cases. The classifier is considered a 
poor classifier if DP < 1, limited if DP < 2, fair if DP < 3 and good in other cases. 
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F-Measure and Adjusted F-Measure 

The F-Measure conveys the balance between the precision and sensitivity. The measure is 0 when either 
the precision or the sensitivity is 0. The formula for this measure is given by: 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

This measure however performs well when the data is fairly balanced. The Adjusted F-Measure (AGF) is 
an improvement over the F-Measure especially when the data is imbalance. The AGF is computed by first 
computing: 

𝐹2 = 5 ×
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(4 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

After, the class labels of each case are switched such that positive cases become negative and vice 
versa. A new confusion matrix with respect to the original labels is created and the quantity: 

𝐼𝑛𝑣 𝐹0.5 =
5

4
×

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(0.52 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

The AGF is finally computed by taking the geometric mean of 𝐹2 and 𝐼𝑛𝑣 𝐹0.5 as 

𝐴𝐺𝐹 = √𝐹2 × 𝐼𝑛𝑣 𝐹0.5 

This measure accounts for all elements of the original confusion matrix and provides more weight to 
patterns correctly classified in the minority class. A high F- or adjusted F-measure indicates a good 
performing classifier on the minority class. 

Balanced Accuracy 

The balanced accuracy is the average between the sensitivity and the specificity, which measures the 
average accuracy obtained from both the minority and majority classes. This quantity reduces to the 
traditional accuracy if a classifier performs equally well on either classes. Conversely, if the high value of 
the traditional accuracy is due to the classifier taking advantage of the distribution of the majority class, 
then the balanced accuracy will decrease compared to the accuracy.  

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 

Matthew’s Correlation Coefficient 

The Matthews correlation coefficient (MCC) is least influenced by imbalanced data. It is a correlation 
coefficient between the observed and predicted classifications. The value ranges from -1 to +1 with a 
value of +1 representing a perfect prediction, 0 as no better than random prediction and -1 the worst 
possible prediction.  

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Cohen’s Kappa (or Kappa) 

Kappa takes into account the accuracy that would be generated purely by chance. The form of the 
measure is: 

𝑘𝑎𝑝𝑝𝑎 =
𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 

where 

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

and 
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𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑃)(𝐹𝑃 + 𝑇𝑃)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
 

In a similar fashion to the MCC, kappa takes on values from -1 to +1, with a value of 0 meaning there is 
no agreement between the actual and classified classes. A value of 1 indicates perfect concordance of 

the model prediction and the actual classes and a value of −1 indicates total disagreement between 
prediction and the actual. 

Youden’s Index 

Youden’s index evaluates the ability of a classifier to avoid misclassifications. This index puts equal 
weights on a classifier’s performance on both the positive and negative cases. Thus: 

𝑌𝑜𝑢𝑑𝑒𝑛′𝑠 𝑖𝑛𝑑𝑒𝑥 (𝛾) = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 − (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 

A higher value of 𝛾 is an indication of a good performing classifier. 

Likelihoods 

The positive and negative likelihood ratios are two other good measures for evaluating a classifier’s 
performance. The positive likelihood ratio (LR(+)) is the ratio between the probability of predicting a truly 
positive case as positive and the probability of predicting a truly negative case as positive. The negative 
likelihood ratio (LR(-)) is the ratio between the probability of predicting a truly negative case as positive 
and the probability of predicting a truly negative case as negative. Thus: 

𝐿𝑅(+) =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 ,                               𝐿𝑅(−) =

1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 

Based on the definitions, a higher positive likelihood ratio and a lower negative likelihood ratio is an 
indication of a good performance on positive and negative classes respectively. 

RANK PERFORMANCE MEASURES 

Receiver Operating Characteristic (ROC) Charts/ Area under the curve (AUC) 

The ROC curve calculates the sensitivity and specificity across a continuum of cutoffs. An appropriate 
balance can be determined between sensitivity and specificity using the curve. AUC is simply the area 
under the ROC curve. An area of 1 represents a perfect model and an area of 0.5 represents a worthless 
model.  

Lift Charts 

Lift charts are a visualization tool that helps in assessing the ability of a classifier in detecting the events 
of interest in a data. Assume we want to score N sample events using a classifier. We would expect a 
good classifier to classify the events of interest such that the scores associated to these events are 
ranked higher than the nonevents. This is exactly what lift charts do. In a perfect classifier, the N highest-
ranked samples would contain all N events of interest. Lift measures the effectiveness of a classifier by 
calculating the ratio between the outcomes attained with and without the classifier/predictive model. 

DATA DESCRIPTION & PREPARATION 

We utilized data on credit card clients in Taiwan available within the University of California Irvine (UCI) 
machine learning repository website as a case study. The data set contains 30,000 instances (22.12% 
risky and 77.88% non-risky) assessing the likeliness of a customer defaulting on a payment. There are 24 
attributes per instance; including the target variable which classifies an instance as default payment (Yes 
= 1, No = 0). The predictor variables utilized are: 

 Limit_bal: Given credit amount (NT dollar). This includes both the individual consumer credit and 
his/her family (supplementary) credit 

 Sex: 1 = male; 2 = female 
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 Education: 1 = graduate school; 2 = university; 3 = high school; 4 = others 

 Marital status: 1 = married; 2 = single; 3 = others 

 Age (year) 

 Pay_0 – Pay_6: History of past payment. Past monthly payment records were tracked from April 
to September 2005 as follows: Pay_0 = repayment status in September, 2005; Pay_2 = 
repayment status in August, 2005; …; Pay_6 = repayment status in April, 2005. The repayment 
status are measured on a scale of -1 to 9 where: -1 = pay duly; 1 = payment delay for one month; 
2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay 
for nine months and above.  

 Bill_Amt1 – Bill_Amt6: Bill statement amount (NT dollar). These amounts are recorded as: 
Bill_Amt1 = September, 2005 bill statement amount; Bill_Amt2 = August, 2005 bill statement 
amount; …; Bill_Amt6 = April, 2005 bill statement amount 

 Pay_Amt1 – Pay_Amt6: Previous payment amount (NT dollar). These are recorded as: 
Pay_Amt1 = amount paid in September, 2005; Pay_Amt2 = amount paid in August, 2005; …; 
Pay_Amt6 = amount paid in April, 2005 

Initial exploratory analysis identified the continuous variables to have high skewness and kurtosis values. 
We applied log transformation on these variables to reduce the departures from normality. We also 
analyzed the categorical variables to check for anomalies in the scale of measurement.  

METHODOLOGY 

We followed the Cross Industry Standard Process for Data Mining (CRISP-DM) modeling approach. The 
five phases in this process include understanding the business problem, understanding the data, data 
preparation, modeling, evaluation and deployment. To ensure honest assessment of the models built, we 
partitioned the data into training (70%) and validation (30%) subsets. In order to analyze the effect of 
imbalance on modeling and performance measures three different techniques were utilized during model 
training. The first technique involved down-sampling the majority class in the training subset so that data 
points from the majority class is roughly the same size as the minority class. Models were then built and 
compared using this new dataset. The second involved building the model on the original training subsets 
of the imbalanced data whiles the last technique involved adjusting the prior probabilities to account for 
class-imbalance in the training subset. We built and evaluated the same predictive models in each of the 
three techniques. 

All analyses were carried out in SAS
® 

Enterprise Miner™ 13.1 and SAS/GRAPH
®
 9.4 software. Variable 

selection techniques were implemented prior to model building to select the most significant input 
variables. Several different predictive models including decision trees with variation in splitting rule target 
criteria (default, entropy, Gini, number of branches), logistic regression with variation in variable selection 
criteria (default, stepwise, backward, decision tree), neural and auto neural networks, gradient boosting, 
random forest and support vector machine (SVM) with variation in kernel function (linear, sigmoid, 
polynomial) were considered. Model performances were evaluated based on the measures described 
above using the validation subset. 

RESULTS & DISCUSSION 

A number of evaluations measures were executed to review the impact of class-imbalance on 
performance measures. This section reviews and discusses the results of the three different techniques 
employed. 

ANALYSIS OF RESULTS FOR TECHNIQUE ONE  

The results from the first technique are summarized in Table 5 and Figures 1, 2a and 2b. Based on the 
traditional predictive accuracy one can conclude that the best model is Model 1D (Gradient boosting) with 
the highest predictive accuracy of 78.11% followed by Model 1B (Neural Network) with predictive 
accuracy of 77.88%. Model 1F (Random Forest) turned out as the weakest model having the lowest 
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predictive accuracy of 73.57%. However, diving a little deeper into the results and considering other 
evaluation measures that balance between false positives and false negatives, one can observe that 
though Model 1A has the second lowest predictive accuracy, this model is practically the best. The G 
mean, lift, balanced accuracy and adjusted F-measure all allocate the best value to Model 1A but with 
slight difference across the other results except for the lift which has a difference of about 0.7 between 
the lowest and highest models. The ROC and lift curves provides further evidence to the choice of Model 
1A and even Model 1C over Model 1D (Figures 2a and 2b).  

 

Figure 1. Some model performance metrics for Technique 1 

Model 1A: Decision Tree 
Model 1B: Neural Network 

Model 1C: Logistic Regression 
Model 1D: Gradient Boosting 

Model 1E: Support Vector Machine 
Model 1F: Random Forest  

 

Measure Model 1A Model 1B Model 1C Model 1D Model 1E Model 1F 

Kappa 0.36 0.385 0.383 0.373 0.369 0.333 

Youden's index 0.404 0.402 0.404 0.377 0.398 0.382 

G Mean 0.696 0.687 0.69 0.668 0.689 0.687 

MCC 0.367 0.386 0.385 0.373 0.372 0.342 

Balanced Accuracy 0.702 0.701 0.702 0.689 0.699 0.691 

Adjusted F-Measure 0.701 0.689 0.692 0.669 0.692 0.693 

F-Measure 0.522 0.529 0.53 0.514 0.523 0.506 

ROC/AUC 0.756 0.757 0.759 0.719 0.711 0.744 

Lift 3.010 2.751 2.812 2.283 2.463 2.830 

Table 5. Model performance measures using Technique 1 
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Figure 2a. ROC curves for Technique 1 
 

Figure 2b. Lift charts for Technique 1

ANALYSIS OF RESULTS FOR TECHNIQUE TWO 

Similarly, the results of the second technique are summarized in Table 6 and Figures 3, 4a and 4b. Unlike 
the first technique, patterns of best performance metrics are not consistent across the models. Model 2F 
(Random Forest) shows the highest predictive accuracy of 82.11% but this measure differs slightly across 
the other models. Furthermore, Model 2E (SVM) has the highest precision and lift (68.99% and 3.104 
respectively) whiles Model 2A (Decision Tree) has the highest Youden’s index, G mean, balanced 
accuracy, F- and adjusted F-measures as shown in Table 6. Again, the measures provide evidence of 
choosing the decision tree model (Model 2A) over the other models despite the fact that the random 
forest model had the highest predictive accuracy. 

 

Figure 3. Some model performance metrics for Technique 2 

Model 2A: Decision Tree 
Model 2B: Neural Network 

Model 2C: Logistic Regression 
Model 2D: Gradient Boosting 

Model 2E: Support Vector Machine 
Model 2F: Random Forest 

Baseline Model 

Model 1D Model 1A 

Model 1D 

Model 1A 
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Of particular interest is the performance of Model 2D (Gradient Boosting). This model is virtually 
predicting every observation as not going to default on payment. However, the model has a somehow 
good predictive accuracy. This is a real depiction of the accuracy paradox discussed earlier. This shows 
that gradient boosting models are very sensitive to class-imbalance. If a practitioner or researcher is only 
considering the predictive accuracy and/or ROC/AUC for model evaluation, he/she may be unable to 
capture the poor performance of this model. In the presence of class-imbalance, we recommend the 
practitioner or researcher to utilize gradient boosting models with caution. 

Measure Model 2A Model 2B Model 2C Model 2D Model 2E Model 2F 

Kappa 0.383 0.385 0.37 0 0.361 0.383 

Youden's index 0.328 0.326 0.308 0 0.295 0.322 

G Mean 0.603 0.6 0.583 0 0.569 0.596 

MCC 0.402 0.408 0.396 – 0.394 0.407 

Balanced Accuracy 0.664 0.663 0.654 0.5 0.648 0.661 

Adjusted F-Measure 0.602 0.599 0.582 – 0.568 0.595 

F-Measure 0.485 0.484 0.467 – 0.454 0.481 

ROC/AUC 0.749 0.754 0.755 0.720 0.648 0.753 

Lift 2.921 2.892 2.895 2.283 3.104 2.756 

Table 6. Model performance measures using Technique 2 

 

Figure 4a. ROC curves for Technique 2 
 

Figure 4b. Lift charts for Technique 2

ANALYSIS OF RESULTS FOR TECHNIQUE THREE 

Finally, the results of the last technique are summarized in Table 7 and Figures 5, 6a and 6b. The SVM 
model (Model 3E) shows the highest predictive accuracy for this technique. Similar to the other 
techniques, the difference in the predictive measure across the other models is not drastic. Based on the 
common performance measures (Figure 5), one might conclude that the SVM model is the best model. 
However, considering the other performance measures, we observe that the neural network model rather 
balances well between the false positives and the false negatives as seen in the values of Table 7. Since 
we do not observe a particular model performing well in almost all the cases, making decision for this 
technique appears complex. One needs to rely on the cost associated with each of the possible 
misclassifications in making a final decision. 

Baseline Model 

Model 2A 

Models 2C, B & F  

Model 2D 

Model 2A 

Model 2B 

Model 2F 
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Figure 5. Some model performance metrics for Technique 3 

Model 3A: Decision Tree 
Model 3B: Neural Network 

Model 3C: Logistic Regression 
Model 3D: Gradient Boosting 

Model 3E: Support Vector Machine 
Model 3F: Random Forest

Measure Model 3A Model 3B Model 3C Model 3D Model 3E Model 3F 

Kappa 0.396 0.401 0.407 0.373 0.361 0.406 

Youden's index 0.368 0.390 0.379 0.377 0.295 0.386 

G Mean 0.648 0.670 0.655 0.668 0.569 0.663 

MCC 0.400 0.401 0.411 0.373 0.393 0.408 

Balanced Accuracy 0.684 0.695 0.689 0.689 0.647 0.693 

Adjusted F-Measure 0.647 0.669 0.654 0.669 0.568 0.662 

F-Measure 0.515 0.528 0.524 0.514 0.454 0.528 

ROC/AUC 0.749 0.754 0.755 0.755 0.648 0.753 

Lift 2.921 2.892 2.895 2.895 3.104 2.756 

Table 7. Model performance measures using Technique 3 

The results reported for all the three techniques indicate that higher predictive accuracy does not 
necessarily guarantee a better performance of the classifier in general.  This does not however applies to 
only the predictive accuracy; it applies to all the performance measures considered. Relying on only one 
performance measure to choose between candidate models can be misleading. Additionally, we identified 
that the degree of class-imbalance in the training data can have an impact on the best performing 
classifier. This is evident as not the same classifier was selected as the best performing classifier in all 
the three techniques. 
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Figure 6a. ROC curves for Technique 3 

 

Figure 6b. Lift charts for Technique 3

CONCLUSION 

One key factor to the success of any data mining method is in the model assessment technique. 
However, within the class-imbalanced data context, this subject is more complex since most of the 
frequently used performance measures could be misleading. Several real-world classification tasks, such 
as medical diagnosis, customer retention, credit card fraud detection, churn prediction among many 
others suffer from class-imbalance. This study analyzed the impact class-imbalance have on performance 
measures by looking at a considerable number of model performance measures. We established that 
class-imbalance results in a classifier’s suboptimal performance. Model evaluation measures may reveal 
more about distribution of classes than they do about the actual performance of models when the data is 
imbalanced. We also identified some of the classification models to be very sensitive to class-imbalance 
and perform poorly in such cases. When dealing with class-imbalance data, the final decision in model 
selection should consider a combination of different measures instead of relying on only one measure. As 
a final remark, we recommend reporting both the obtained performance measure values and the degree 
of class-imbalance in the data to minimize imbalanced-biased performance estimates. 
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