ABSTRACT
SAS® Visual Analytics can display maps with your location information. However, you might need to display locations that do not match the categories found in the SAS Visual Analytics interface, such as street address locations or non-US postal code locations. You might also wish to display custom locations that are specific to your business or industry, such as the locations of power grid substations or railway mile markers. Alternatively, you might want to validate your address data that you are using with SAS Visual Analytics.

This paper shows how PROC GEOCODE can be used to simplify geocoding by processing your location information before importing data into SAS Visual Analytics.

INTRODUCTION
SAS Visual Analytics can produce geographic maps. However, it might not produce every map that you need. You might have street addresses of customers, postal codes for the United Kingdom, or worldwide city names that SAS Visual Analytics doesn't handle. You can use PROC GEOCODE to get the latitude and longitude coordinates for these address locations to add to your data set. Or you can use PROC GEOCODE to find the administrative level coordinates and the ID information for a country or state. Then you can move the data set to SAS Visual Analytics and display it in a map.

PROC GEOCODE
In order to produce your map, the first thing that you must do is convert your location information into map coordinates. You use PROC GEOCODE to do this. There are three categories of examples below: US street-level geocoding, administrative level (such as country, state, and county) geocoding, and validating your data with geocoding. See RESOURCES for additional information.

The examples discussed in this paper as well as additional examples can be found with the Proceedings. Look up the title of this paper in the Proceedings (http://support.sas.com/resources/papers/proceedings16). Under the title is a link that reads: “Download the data files (ZIP)”.

US STREET-LEVEL GEOCODING
In the first example of US street-level geocoding, PROC GEOCODE will convert each street address (of a school) into X and Y coordinates for the map. These coordinates can be shown as a Bubbles map or as a Coordinates map in SAS Visual Analytics. The METHOD= option value STREET specifies street-level geocoding. DATA= specifies the input data set and OUT= specifies the output data set for the geocoded data. The LOOKUPSTREET= option provides the name of the data set used to look up the street address. The lookup data set, SASHELP.GEOEXM, is a sample data set for Wake County, North Carolina only. The entire country data set, SASHELP.USM, is not installed with SAS. To download it, go to the SAS Maps Online web site. The variable names of Address, City, State, and Zip are the default names used in PROC GEOCODE, so you are not required to specify them.

data schools (label='Wake County, NC public schools');
 infile datalines dlm=',';
 length school $64 address $32 city $24
 state $2 zip 5 type $12 color $10;
 input school address city state zip type enrollment;
 datalines;
Apex Elementary, 700 Tingen Road, Apex, NC, 27502, Elementary, 674
Apex High, 1501 Laura Duncan Road, Apex, NC, 27502, High, 2542
...
This will produce X and Y coordinates along with some other variables:

<table>
<thead>
<tr>
<th>Obs</th>
<th>Y</th>
<th>X</th>
<th>M_ADDR</th>
<th>M_CITY</th>
<th>M_STATE</th>
<th>M_ZIP</th>
<th>M_OBS</th>
<th>MATCHED</th>
<th>STATUS</th>
<th>_SCORE</th>
<th>school</th>
<th>address</th>
<th>city</th>
<th>state</th>
<th>zip</th>
<th>type</th>
<th>enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.7200</td>
<td>-78.8559</td>
<td>700 Tingan Rd</td>
<td>Apex</td>
<td>NC</td>
<td>27502</td>
<td>18031</td>
<td>Street</td>
<td>Found</td>
<td>65</td>
<td>Apex Elementary</td>
<td>700 Tingan Road</td>
<td>Apex</td>
<td>NC</td>
<td>27502</td>
<td>Elementary</td>
<td>674</td>
</tr>
<tr>
<td>2</td>
<td>35.7439</td>
<td>-78.8367</td>
<td>1501 Laura Duncan Rd</td>
<td>Apex</td>
<td>NC</td>
<td>27502</td>
<td>10520</td>
<td>Street</td>
<td>Found</td>
<td>65</td>
<td>Apex High</td>
<td>1501 Laura Duncan Road</td>
<td>Apex</td>
<td>NC</td>
<td>27502</td>
<td>High</td>
<td>2542</td>
</tr>
</tbody>
</table>

To see a map in SAS Visual Analytics, choose the SCHOOL variable and the GEOGRAPHY category. Then choose CUSTOM.

ADMINISTRATIVE-LEVEL GEOCODING

The administrative-level geocoding example will use the same data that SAS Visual Analytics uses to find the location. SAS Visual Analytics uses two data sets to match up administrative-level names and locations: ATTRLOOKUP and CENTLOOKUP. These data sets will map to the region or the point data to the centroid of the country or state. To access the location data, assign the libref VAlookup to the location of the ATTRLOOKUP and CENTLOOKUP data sets.

This example has two parts: a macro that calls PROC GEOCODE and does the work, and a program that sets up the data and calls the macro. The macro first sets a default value for the startattr parameter if the data set is not specified. Next the STARTATTR data set is sorted and has an X variable and a Y variable added because PROC GEOCODE requires them. The macro calls PROC GEOCODE twice with a METHOD= value of CUSTOM. The first PROC GEOCODE finds the ID value that matches the ATTRLOOKUP data set. Here is the first part of the macro:

```
libname VAlookup '<point to where ATTRLOOKUP and CENTLOOKUP are>,'

%macro geocode(outdata, indata, lookupvar, addrvar, startattr);
/*startattr is optional, so set default if not specified */
%if (&startattr = ) %then %let startattr=VAlookup.
/* Make sure the data is properly sorted for the search */
proc sort data=&startattr out=attrlookup; by &lookupvar; run;
/* Add x and y because Geocode expects them */
data attrlookup; set attrlookup; x=0; y=0; run;
/* First, look in the ATTRIBUTE file with the names of the area*/
/* and find the ID variable for that name */
```
proc geocode
 method=custom
 data= &indata
 lookup=attrlookup
 out=work.attr
 lookupvar= &lookupvar
 addressvar= &addrvar
 attribute_var= (ID)
 run;

The second time PROC GEOCODE is run to find the X and Y values that match the ID value in the CENTLOOKUP data set:

 /* Then use the ID value to find the x,y CENTroid and the MAPNAME */
 proc geocode
 method=custom
 data=work.attr
 lookup=VAlookup.centlookup
 out=&outdata
 lookupvar= ID
 addressvar=ID
 attribute_var=(mapname)
 run;
%mend;

The second part of the program prepares the data that you want to locate on a map, subsets the ATTRLOOKUP data set, and then calls the GEOCODE macro. The DATA step code subsets the ATTRLOOKUP data set; MYATTR will contain data for states (level=1) in the United States.

data addr; /* replace this with your data */
 length InputAddr $199;
 InputAddr="North Carolina"; output;
 InputAddr="Virginia"; output;
 InputAddr="California"; output;
run;
/*subset out US states only */
data myattr;
 set VAlookup.attrlookup;
 if (isoname="UNITED STATES" and level=1 /*states*/) then output;
run;
/* output data, input data, lookup var, address var, startattr */
%geocode(usstatename,addr,IDNAME,InputAddr,myattr);

Here is a PROC PRINT of the results:

<table>
<thead>
<tr>
<th>Obs</th>
<th>y</th>
<th>x</th>
<th>mapname</th>
<th>M_OBS</th>
<th>MATCHED</th>
<th>ID</th>
<th>InputAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.2142</td>
<td>-79.493</td>
<td>MAPSGFK.NAMERICA1</td>
<td>0</td>
<td>ID</td>
<td>US-37</td>
<td>North Carolina</td>
</tr>
<tr>
<td>2</td>
<td>38.0034</td>
<td>-78.455</td>
<td>MAPSGFK.NAMERICA1</td>
<td>0</td>
<td>ID</td>
<td>US-51</td>
<td>Virginia</td>
</tr>
<tr>
<td>3</td>
<td>37.2719</td>
<td>-119.995</td>
<td>MAPSGFK.NAMERICA1</td>
<td>0</td>
<td>ID</td>
<td>US-05</td>
<td>California</td>
</tr>
</tbody>
</table>
To see a map in SAS Visual Analytics, choose the ID variable and the GEOGRAPHY category. Then choose **Subdivision SAS Map ID Values**.

Using the same GEOCODE macro with another program, you can also display countries around the world. The example below creates a data set with selected countries and uses the GEOCODE macro to process them:

```sas
data addr; /* replace this with your data */
  length InputAddr $199;
  InputAddr="United States"; output;
  InputAddr="Canada"; output;
  InputAddr="Mexico"; output;
  InputAddr="Peru"; output;
  InputAddr="Korea, Republic of"; output;
run;
%geocode(countryname,addr,key,InputAddr);
```

Here are the results with PROC PRINT:

<table>
<thead>
<tr>
<th>Obs</th>
<th>y</th>
<th>x</th>
<th>mapname</th>
<th>M_OBS</th>
<th>MATCHED</th>
<th>ID</th>
<th>InputAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.1681</td>
<td>-99.565</td>
<td>MAPSGFK.NAMERICA</td>
<td>0</td>
<td>ID</td>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>2</td>
<td>56.3545</td>
<td>-110.865</td>
<td>MAPSGFK.NAMERICA</td>
<td>0</td>
<td>ID</td>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>3</td>
<td>23.6244</td>
<td>-102.259</td>
<td>MAPSGFK.NAMERICA</td>
<td>0</td>
<td>ID</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>4</td>
<td>-9.1955</td>
<td>-75.746</td>
<td>MAPSGFK.SAMERICA</td>
<td>0</td>
<td>ID</td>
<td>PE</td>
<td>Peru</td>
</tr>
<tr>
<td>5</td>
<td>36.4547</td>
<td>128.000</td>
<td>MAPSGFK.ASIA</td>
<td>0</td>
<td>ID</td>
<td>KR</td>
<td>Korea, Republic of</td>
</tr>
</tbody>
</table>

In SAS Visual Analytics, choose the following ID variable and the GEOGRAPHY category. Then choose **Country SAS Map ID Values**.

VALIDATING YOUR DATA WITH GEOCODING

You can also use PROC GEOCODE to validate that your data will work with SAS Visual Analytics. If the administrative level (country or state) does not match the spelling in SAS Visual Analytics, you can be alerted to which variables need checking. The following validation uses the same GEOCODE macro as the administrative-level geocoding in the previous example, but some extra checking is needed. When _MATCHED_=None, there was not a match between your data and the SAS Visual Analytics data.

```sas
data addr; /* replace this with your data */
  length Country $200;
  input Country $1-20 population;
datalines;
United States  317466000
Canada         35295770
Mexico         118395054
Peru           30475144
```

4
Korea, Republic of 50219669
Bolivia 10027254
;
run;

/* Subset the lookup data to just the country data*/
data myattr;
 set VALOOKUP.attrlookup(where= (level=0)); /* country level */
run;

/* notice the last parm overrides the default lookup data*/
%geocode(CKcountry,addr,IDNAME,Country,myattr);

data CkBadMatch;
 set CKcountry (where= (_MATCHED_ = "None"));
 if _N_=1 then put "WARNING: Country Name values that do not match:";
 put Country=;
run;

This produces the following statement in the SAS Log:

WARNING: Country Name values that do not match:
Country=Bolivia

This indicates that “Bolivia” is not the correct name; the correct name is “Bolivia, Plurinational State of”.

SAS VISUAL ANALYTICS MAPS

Now that you have the data from PROC GEOCODE and SAS, you can use it with SAS Visual Analytics. A way to load the data is shown in screen shots below. First, click on Select a Data Source:
Now under **Import Data** and **Local**, select **SAS Data Set**:

Then select your data and select **Open**:
Next select **OK**:

![Screenshot of SAS Open Data Source window](image)

Next click **school** ...
And then right-click and select **Geography**. Then select **Custom**.

The following dialog box comes up. Use the drop-down menu to select **Geocoded Latitude (DEGREES)** and **Geocoded Longitude (DEGREES)**:
Click the map icon at the top. Then drag **school** to the map. Once the map appears, you can change the **Map style**.
For the other types of maps, you use **ID** instead of **school**.
For USSTATENAME, you would select Geography and then Subdivision (State, Province) SAS Map ID Values:
You would have three map styles to choose from: **Coordinates, Bubbles, and Regions.**
Here are two of the map styles: **Regions** and **Bubbles**.
If you have a country, such as the data set CountryName, then you can select **Country or Region SAS Map ID Values**.
Here are two map styles: Coordinates and Regions.
CONCLUSION

As seen above, PROC GEOCODE can be used to obtain the latitude and longitude coordinates from the location information to display a SAS Visual Analytics geographic map. PROC GEOCODE can also obtain the ID information for the administrative areas used by SAS Visual Analytics. Validation of the data, including matching the variable names of your data with expected variable names in SAS Visual Analytics, can also be done with PROC GEOCODE.

RESOURCES

SAS Maps Online web site: http://support.sas.com/mapsonline

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

 Darrell Massengill
 SAS Institute Inc.
 SAS Campus Drive
 Cary, NC 27513
 Darrell.Massengill@sas.com
 http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.