SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

#SASGF

Evaluation of PROC IRT Procedure for Item Response Modeling

Yi-Fang Wu

Measurement Research, ACT, Inc.

ABSTRACT

- In the SAS/STAT®13.1, 13.2 and 14.1, the PROC IRT procedure enables item response modeling and latent trait (e.g., ability) estimation for various item response theory (IRT) models
- Under a wide-spectrum of educational and psychological research, IRT gains popularity in literature and in practice
- As a technical improvement, PROC IRT offers a great choice to the growing population of IRT users
- PROC IRT supports several item response models for binary responses like the one-, two-, three-, and four-parameter models and the response models for ordinary responses such as the graded response models with a logistic or probit link (An & Yung, 2014)
- Considering common testing conditions (Anastasi, & Urbina, 1997), this paper intended to evaluate the performance of PROC IRT in terms of <u>item parameter recovery</u>
- IRT models for dichotomous response data were investigated: the one-parameter logistic (1PL) (a.k.a. Rasch model; Rasch, 1960), the two-parameter logistic (2PL) (Birnbaum, 1968), and the three-parameter logistic (3PL) (Birnbaum, 1968; Lord, 1980) models
- The pros and cons of PROC IRT against BILOG-MG 3.0 (Zimowski, Muraki, Mislevy, & Bock, 2003) were presented
- For practitioners of IRT models, the development of the IRT-related analysis in SAS should be inspiring

METHODS

- The 3PL model has the generic form : $P_{ij}(\theta_j | a_i, b_i, c_i) = c_i + (1 c_i)/(1 + \exp[-Da_i(\theta_j b_i)])$, where $P_{ij}(\theta_j | a_i, b_i, c_i)$ is the probability that the examinee j with a θ_j ability answers the item i correctly; a_i , b_i and c_i denote item discrimination, item difficulty, and pseudo-guessing parameters, respectively. D equal to 1.702 is the scaling constant. Letting $c_i = 0$ for all items results in the 2PL model; finally, letting $c_i = 0$ and $a_i = 1$ for all items results in the 1PL model
- The 3PL model allows each item to vary in the item difficulty, discrimination, and pseudo-guessing parameters; the 1PL model is the most constraint and the 2PL model is in-between
- In simulations, factors and levels under investigation were in Table 1; for each condition, 100 replications were done

Table 1. Factors and Levels of Interest

Tale 2. True Parameter Distributions

Factor	Description	Parameter	Distribution	Test Composition			
Model	1PL, 2PL & 3PL		<i>Beta4</i> (5, 5, 0.1, 2)	TC1			
Sample Size	250 (small) & 1000 (large) examinees	Discrimination (a)	Beta4(6, 2, 0.1, 2)	TC2			
Test Length	20 (short) & 40 (medium) items within a test		Beta4(2, 6, 0.1, 2)	TC3			
Underlying Ability Distribution	Normal (Nor), negatively-skewed (Neg) & positively-skewed (Pos)	Difficulty (b)	Beta4(5, 5, −3, 3)	TC1-TC3			
		Pseudo-Guessing (<i>c</i>)	Uniform(0, 0.25)	TC1-TC3			
			N(0, 1)	Nor			
Test Composition	Tests with moderate average item difficulty with moderate average item discrimination (TC1), hard tests with moderate average item discrimination (TC2) & easy test with low average item discrimination (TC3)	Ability	Gamma(10, 1.5) rescaled so that mean = 0 & variance = 1	Pos & Neg* (*mirrored)			

RESULTS AND DISCUSSION

Table 2. Correlations (Aggregated over Replications) between True Item Parameters and Estimates from PROC IRT and BILOG-MG

			Test Length Sample Size		e Size	Ability Distribution		Test Characteristics				
Mode	Parameter	Procedure	Short	Medium	Small	Large	Nor	Neg	Pos	TC1	TC2	TC3
3PL	Discrimination (a)	Proc IRT (P)	.464	.555	.460	.559	.560	.392	.577	.380	.371	.777
		BILOG-MG (B)	.704	.754	.634	.823	.766	.651	.770	.712	.588	.886
		Corr(P, B)*	.794	.790	.849	.735	.785	.792	.799	.778	.681	.917
	Difficulty (b)	Proc IRT	.850	.843	.838	.855	.843	.847	.848	.958	.820	.761
		BILOG-MG	.919	.926	.908	.937	.925	.916	.927	.981	.955	.831
		Corr(P, B)	.886	.882	.876	.891	.884	.887	.880	.959	.791	.901
	Pseudo-Guessing (c)	Proc IRT	.298	.399	.312	.385	.366	.324	.356	.454	.413	.179
		BILOG-MG	.467	.601	.483	.586	.539	.566	.498	.596	.841	.166
		Corr(P, B)	.242	.356	.376	.223	.291	.246	.361	.420	.476	.002
2PL	Discrimination (a)	Proc IRT	.856	.851	.789	.918	.878	.793	.889	.851	.771	.939
		BILOG-MG	.883	.877	.820	.940	.895	.845	.899	.874	.826	.939
		Corr(P, B)	.982	.972	.974	.981	.979	.969	.983	.988	.946	.997
	Difficulty (b)	Proc IRT	.874	.849	.848	.876	.860	.862	.863	.957	.867	.761
		BILOG-MG	.974	.968	.956	.985	.972	.967	.972	.993	.974	.944
		Corr(P, B)	.893	.866	.869	.890	.878	.886	.876	.959	.845	.836
1PL	Difficulty (b)	Proc IRT	.992	.972	.966	.998	.995	.965	.985	.998	.963	.985
		BILOG-MG	.995	.994	.992	.998	.995	.995	.994	.998	.992	.994
		Corr(P, B)	.995	.975	.970	1	1	.968	.986	1	.968	.987

Note. Corr(P, B) denotes the correlation between the PROC IRT estimates and the BILOG-MG estimates.

Correlations:

- Overall, the averaged correlations over replications for BILOG-MG tended to be <u>higher</u> than the correlations for PROC IRT
- The agreement between the true and estimated values seemed to be the <u>highest</u> for <u>b</u>-parameters; furthermore, the agreement for <u>b</u> was the <u>highest</u> for **1PL models**
- For 3PL models, the agreement between the true and estimated values was the lowest for c-parameters
- The agreement between the true α -parameters and α -estimates $\underline{decreased}$ whenever c needed to be estimated
- a-parameters could be better estimated when <u>tests were easy and less discriminating</u> (i.e., TC3)
- The impact of test length, sample size and ability distribution on agreement seemed random. Relatively speaking, results from <u>normal and positively-skewed distributions</u> were alike

Evaluation criteria:

<u>Correlation</u> of the true and estimated parameters, <u>bias</u> (BIAS), <u>absolute-bias</u> (ABSB), and <u>root mean square error</u> (RMSE)

Evaluation of PROC IRT Procedure for Item Response Modeling

Yi-Fang Wu

Measurement Research, ACT, Inc.

Figure 1. BIAS and RMSE of *a*- and *b*-estimates for 2PL Models (short tests)

Note. In both figures, black for Nor_250, red for Neg_250, green for Pos_250,

blue for Nor_1000, orange for Neg_1000 and purple for Pos_1000.

BIAS (Selective Results Shown), **ABSB** (Results Not Shown) and **RMSE** (Selective Results Shown):

- For 1PL models, PROC IRT had <u>lower</u> ABSB for <u>b</u>-estimates than <u>BILOG-MG</u> (.816 vs. 1.588); note that no <u>b</u>-priors was used for 1PL calibrations
- For 2PL and 3PL models, **PROC IRT** had <u>higher</u> ABSBs for **a** and **b**-estimates than **BILOG-MG**, but had <u>lower</u> ABSB for **c**-estimates (.057 vs. .076) in 3PL models
- Peculiar values were <u>less likely</u> occur from <u>BILOG-MG</u> due to the use of priorconstraints in estimation; thus, the BIAS and RMSE were <u>smaller</u> for <u>BILOG-MG</u>
- Difference in sample size had <u>minor</u> impact; difference in ability distribution mostly affected <u>a-parameter</u> estimation (and sometimes <u>c-parameter</u> estimation), especially when tests were just moderately discriminating (i.e., TC1 & TC2), <u>negatively-skewed</u> distributions could result in negative bias (i.e., underestimating <u>a</u>)
- BILOG-MG tended to overestimate c-parameter
- <u>Large</u> RMES of <u>c</u>-estimates indicated <u>c</u>-parameter estimation was <u>challenging</u> regardless of the estimation procedure/program

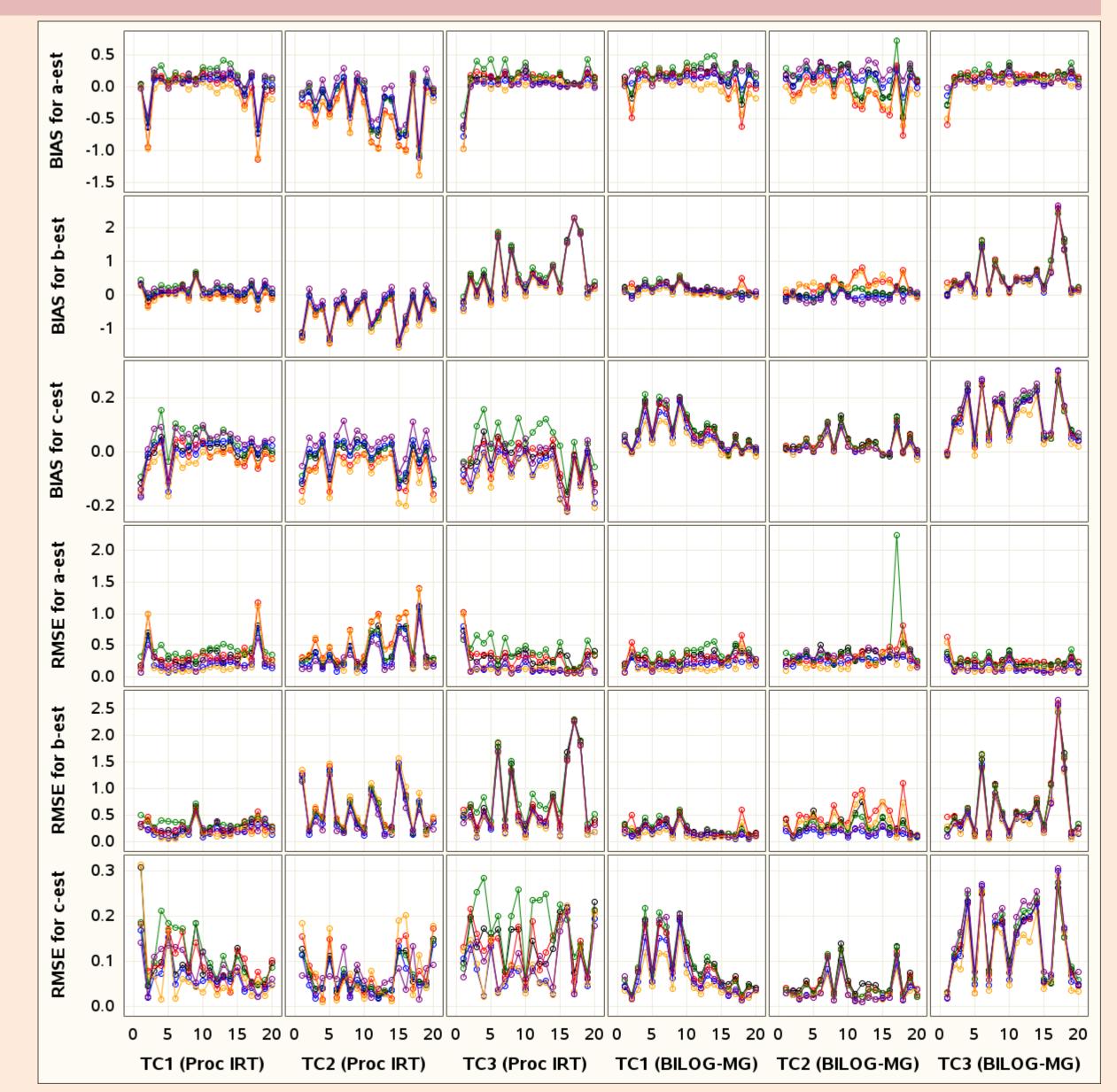


Figure 2. BIAS and RMSE of α -, b- and c-estimates for 3PL Models (short tests)

REFERENCES

- An, X., & Yung, Y.-F. (2014). Item response theory: What it is and how you can use the IRT procedure to apply it. Proceedings of the SAS® Global Forum 2014 Conference, Paper 364. Cary, NC: SAS Institute.
- Anastasi, A., & Urbina, S. (1997). *Psychological testing* (7th ed.). Upper Saddle River, NJ: Prentice-Hall, Inc.
- **Birnbaum, A.** (1968). Estimation of an ability. In F. M. Lord & M. R. Novick (Eds.), *Statistical theories of mental test scores* (pp. 423–479). Reading, MA: Addison-Wesley.
- Rasch, G. (1960). *Probabilistic models for some intelligence and attainment tests*. Copenhagen: Denmarks Paedagogiske Institute.
- Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum Associates.

- **COMPARISON** Procedure **PROCIRT** BILOG-MG **-**eature Both *unidimensional* and Only *unidimensional* IRT **Dimensionality** multidimensional IRT models are models are considered considered (for the latter, the parameter accuracy and practical feasibility needs further investigation) Good for 1PL models Good for 1PL models; **better Item Parameter** for 2PL and 3PL models Recovery **Estimation** Algorithm can be *converged* most More likely to fail for small of time; <u>no solution</u> for response datasets under <u>3PL</u> models Convergence level less than 2 unless *priors* are requested Same as left, in addition that **Estimation** Latent trait score (factor score) *priors* of item parameter estimation is available, including **Options** maximum likelihood, maximum a estimation can be requested to posteriori and expected a posteriori prevent peculiar values **Dichotomous** and **polytomous Response Data** Only dichotomous responses response items can both be estimated are acceptable **Types** Under 3PL models, one dataset of Under the same condition, ten Computing 40-item and 1000-examines can be Feasibility datasets of the same size can be calibrated within 1 minute calibrated within 1 minute Multi-group estimation and Same as left **Others** item and test characteristic curves are available upon request
 - **SAS Institute Inc.** (2014). The IRT procedure (experimental). *SAS/STAT® 13.2 User's Guide*. Cary, NC: (author). Retrieved from
 - http://support.sas.com/documentation/cdl/en/statug/67523/HTML/default/viewer.htm#statug_irt_toc.htm
 - **Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (2003)**. BILOG-MG: Multiple group IRT analysis and test maintenance for binary items (Version 3.0) [Compute program] Lincolnwood, IL: Scientific Software International.

For More Information

Please contact Yi-Fang Wu at Yi-Fang.Wu@act.org

SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

LAS VEGAS | APRIL 18-21 #SASGF