
1

Paper 5720-2016

Arrays and DO Loops: Applications to Health-Care Diagnosis Fields

Ryan Ferland, Blue Cross Blue Shield of Arizona

ABSTRACT

Arrays and Do loops have been used for years by SAS® programmers who work with diagnosis fields in
health-care data, and the opportunity to use these techniques has only grown since the launch of the
Affordable Care Act (ACA) in the United States. Users new to SAS or to the health-care field may find an
overview of existing (as well as new) applications helpful. Risk adjustment software, including the publicly
available Health and Human Services (HHS) risk software that uses SAS and was released as part of the
ACA implementation, is one example of code that is significantly improved by the use of arrays. Similar
projects might include evaluations of diagnostic persistence, comparisons of diagnostic frequency or
intensity between providers, and checks for unusual clusters of diagnosed conditions. This
session reviews examples suitable for intermediate SAS users, including the application of two-
dimensional arrays to diagnosis fields.

INTRODUCTION

Arrays are a useful tool for the SAS programmer and health-care analyst. Like any other programming
tool, one programmer may use arrays extensively, while another may have a long and productive career
with minimal use of arrays. I generally find it helpful to have as many tools as possible near to hand when
working on a project.

This paper looks at arrays with particular application to diagnosis codes; this application has been of
interest to SAS programmers for years, as the papers in the reference section show. We begin without
arrays, introduce arrays, use arrays in a clearly appropriate piece of code, then show a use of arrays that
appears at first unnecessary until the next steps in the analysis are considered.

Reviewing this paper and the references included should enable a SAS programmer new to health-care
data or to arrays begin to modify or construct code related to diagnosis fields.

BASICS ON DIAGNOSIS FIELDS AND ARRAYS

REGARDING DIAGNOSIS FIELDS

Background

Our examples today draw on diagnosis fields in healthcare data. These fields are typically populated with
alphanumeric codes based on underlying research done by the World Health Organization. This being
the modern world, every illness, condition, injury or complaint has an associated code. For this paper we
will use some dummy codes, defined as follows:

 A100 is bronchitis. (A Respiratory diagnosis.)

 A304 is pneumonia. (Respiratory)

 A503 is asthma. (Respiratory)

 B173 is chickenpox. (Infectious Disease)

 R001-R009 are stubbed toes, with each code corresponding to a different toe. (Musculoskeletal)

 R202 is arthritis of the right knee. (Musculoskeletal)

 R205 is instability of the right knee. (Musculoskeletal)

 S101 is an enlarged heart. (Circulatory)

 S102 is a broken heart. (Circulatory)

2

Example of Visits and Diagnoses

When Patient A visits a healthcare provider (doctor, clinic, hospital, etc.) for chickenpox on July 1, the
provider may document that Patient A has a bronchitis, asthma, chickenpox, and an enlarged heart.

When that same Patient A goes to a provider on July 3 for an ultrasound to better evaluate the enlarged
heart, the only recorded diagnosis may be the enlarged heart even though the patient still has asthma
and likely still suffers from the chickenpox.

When Patient A visits still another provider on December 1 for a stubbed right big toe, the provider may
diagnose the toe and the enlarged heart (but not the asthma).

Finally, when Patient A has a physical on February 3 of the following year, the provider may document
asthma, the enlarged heart, and a broken heart following a 5th-grade breakup.

To get a complete picture of a patient’s diagnosed conditions, it may therefore be necessary to look at
every visit over some period of time (rows) and to look at every diagnosis documented for each visit
(columns).

Table 1 shows the diagnosis codes documented on each of Patient A’s visits.

Patient ID ClaimID Date DgCd1 DgCd2 DgCd3 DgCd4

A 111 7-1-15 A100 A503 B173 S101

A 112 7-3-15 S101

A 113 12-1-15 R005 S101

A 114 2-3-16 A503 S101 S102

Table 1. Patient A Claims

Our basic goal is to organize the information for Patient A onto fewer rows and into fewer columns.

REGARDING ARRAYS

Arrays allow the SAS user to perform identical operations on multiple fields with relatively few lines of
code. In SAS, array declarations do not allocate memory or resources as in some programming
languages. Arrays simply organize SAS variables to allow more compact programs, which is a powerful
benefit.

If we have four variables already set, we can organize them into an array as follows:

 array AllDiagCodes {4} $ DgCd1 DgCd2 DgCd3 DgCd4;

where:

ARRAY is the statement;

AllDiagCodes is the name of the array;

{4} indicates that the array contains four variables, while {4,2} would indicate 8 variables arranged in two
rows and four columns;

$ indicates that the variables are character strings, and if this were omitted, they would be numbers;

DgCd1 DgCd2 DgCd3 DgCd4 lists the included variables, and could also be written as DgCd1 – DgCd4
since the variable names end with sequential numbers.

3

DIAGNOSIS FIELDS AND ARRAYS

PART ONE: WITH AND WITHOUT AN ARRAY

We can generate an indicator that any of up to 25 diagnosis codes on a claim was related to respiratory
issues. That is, we can check for codes A100, A304, or A503. Doing so without an array might look like
this:

data ExampleA1;

 set TableA;

 RespInd = 0;

 if DgCd1 IN (‘A100’,’A304’,’A503’) then

 RespInd = 1;

 else if DgCd2 IN (‘A100’,’A304’,’A503’) then

 RespInd = 1;

 . . .

 . . .

 else if DgCd25 IN (‘A100’,’A304’,’A503’) then

 RespInd = 1;

run;

Table 2 shows claims for Patients A-C and flags lines with a Respiratory diagnosis.

Patient ID ClaimID ClaimDt DgCd1 DgCd2 DgCd3 DgCd4 DgCd5-25 RespInd

A 111 7-1-15 A100 A503 B173 S101 1

A 112 7-3-15 S101 0

A 113 12-1-15 R005 S101 0

A 114 2-3-16 A503 S101 S102 1

B 115 10-10-14 A100 R007 R008 R009 1

B 116 1-15-16 S102 0

C 117 10-10-14 S101 A304 1

C 118 3-10-15 S101 0

C 119 5-5-16 A100 1

Table 2. Diagnosis Codes and a Respiratory Indicator

The lengthy if-else sequence in the code above requires quite a bit of typing or copying. Using an array
removes the repeated text.

data ExampleA2;

 set TableA;

 array AllDiagCodes {25} $ DgCd1 – DgCd25;

 RespInd = 0;

 do i = 1 to 25;

 if AllDiagCodes{i} IN (‘A100’,’A304’,’A503’)

 then RespInd = 1;

 end;

 drop i;

run;

4

Table 3. This output is identical to the previous output.

Patient ID ClaimID ClaimDt DgCd1 DgCd2 DgCd3 DgCd4 DgCd5-25 RespInd

A 111 7-1-15 A100 A503 B173 S101 1

A 112 7-3-15 S101 0

A 113 12-1-15 R005 S101 0

A 114 2-3-16 A503 S101 S102 1

B 115 10-10-14 A100 R007 R008 R009 1

B 116 1-15-16 S102 0

C 117 10-10-14 S101 A304 1

C 118 3-10-15 S101 0

C 119 5-5-16 A100 1

Table 3. Diagnosis Codes and a Respiratory Indicator

A look at our set of diagnosis codes shows that all the Respiratory codes start with ‘A’. We can use the
SUBSTR function to shorten the code.

So:

 if AllDiagCodes{i} IN (‘A100’,’A304’,’A503’)

 then RespInd = 1;

Becomes:

 format FirstDigitDgCd $1.;

 FirstDigitDgCd = substr(AllDiagCodes{i},1,1);

 if FirstDigitDgCd eq ‘A’ then RespInd = 1;

And appears in the complete code as:

data ExampleA3;

 set TableA;

 array AllDiagCodes {25} $ DiagCd1 – DiagCd25;

 RespiratoryInd = 0;

 format FirstDigitDgCd $1.;

 do i = 1 to 25;

 FirstDigitDgCd = substr(AllDiagCodes{i},1,1);

 if FirstDigitDgCd eq ‘A’ then RespInd = 1;

 end;

 drop i FirstDigitDgCd;

run;

The resulting table would be unchanged from the prior runs.

5

PART TWO: SETTING MULTIPLE INDICATORS WITH AND WITHOUT ARRAYS

We can go further. If we want to set four different indicators – RespInd, MuscInd, InfectInd, and CircInd –
we can write each one within the DO loop:

data ExampleA4;

 set TableA;

 array AllDiagCodes {25} $ DiagCd1 – DiagCd25;

 RespInd = 0;

 InfectInd = 0;

 MuscInd = 0;

 CircInd = 0;

 do i = 1 to 25;

 format FirstDigitDgCd $1.;

 FirstDigitDgCd = substr(AllDiagCodes{i},1,1);

 if FirstDigitDgCd eq ‘A’ then RespInd = 1;

 else if FirstDigitDgCd) eq ‘B’ then InfectInd = 1;

 else if FirstDigitDgCd eq ‘R’ then MuscInd = 1;

 else if FirstDigitDgCd eq ‘S’ then CircInd = 1;

 end;

 drop i FirstDigitDgCd;

run;

This code works well enough and is fairly compact.

Table 4 shows diagnosis history and four indicators.

Patient
ID

Clai
m ID

ClaimDt DgCd1 DgCd2 DgCd3 DgCd4 DgCd5
-25

Resp
Ind

Infect
Ind

Musc
Ind

Circ
Ind

A 111 7-1-15 A100 A503 B173 S101 1 1 0 1

A 112 7-3-15 S101 0 0 0 1

A 113 12-1-15 R005 S101 0 0 1 1

A 114 2-3-16 A503 S101 S102 1 0 0 1

B 115 10-10-14 A100 R007 R008 R009 1 0 1 0

B 116 1-15-16 S102 0 0 0 1

C 117 10-10-14 S101 A304 1 0 0 1

C 118 3-10-15 S101 0 0 0 1

C 119 5-5-16 A100 1 0 0 0

Table 4. Now Four Indicators are Populated

Let us further suppose that we have 80 different indicators that we are working to populate rather than 4.
That would be 80 variables we would need to initialize to 0 and 80 lines of code anytime we wanted to
perform any task on those indicators in any DATA step.

Placing the indicators in an array would then be helpful and permit us to use data steps in do loops.

First, though, we must set up macro variables that can be accessed from within the do loop. This will take
4 rows (or 80, if we had 80 indicators) but will then permit us to use do loops in subsequent steps:

%let RespCodes = ‘A’;

%let InfectCodes = ‘B’;

%let MuscCodes = ‘R’;

%let CircCodes = ‘S’;

6

data ExampleA5;

 set TableA;

 array AllDiagRanges {4} $ &RespCodes &InfectCodes

&MuscCodes &CircCodes;

array AllDiagIndicators {4} RespInd InfectInd

 MuscInd CircInd;

 array AllDiagCodes {25} $ DgCd1 – DgCd25;

 do i = to 4;

 AllDiagIndicators{i} = 0;

 end;

 format FirstDigitDgCd $1.;

 do i = 1 to 25;

 do j = 1 to 4;

 FirstDigitDgCd = substr(AllDiagCodes{i},1,1);

 if FirstDigitDgCd eq AllDiagRanges{j}

 then AllDiagIndicators{j} = 1;

 end;

 end;

 drop i j FirstDigitDgCd;

run;

The output does not change from the previous table. While there is more setup required to use arrays,
the heart of the data step requires much less code.

Experience in other programming languages with arrays may be a distraction with SAS arrays. Note that
we have not yet generated a two-dimensional matrix despite the nested do loops on i and j.

PART THREE: SUMMARIZING

We can now collapse our data set to a single row per Patient. This can be done via a variety of methods
in SAS. We will use PROC SORT and PROC MEANS.

proc sort data = ExampleA5;

 by PatientID;

run;

proc means noprint data = ExampleA5;

 by PatientID;

 output out = SummaryA5

 (drop = _TYPE_ _FREQ_)

 max(RespInd) = RespInd

 max(CircInd) = CircInd

 max(InfectInd) = InfectInd

 max(MuscInd) = MuscInd;

run;

7

Table 5 has one row per patient.

Patient ID Resp Ind Infect Ind Musc Ind Circ Ind

A 1 1 1 1

B 1 0 1 1

C 1 0 0 1

Table 5. One Row Per Patient

We could also include the number of claims with the respective type of diagnosis.

proc sort data = ExampleA5;

 by PatientID;

run;

proc means noprint data = ExampleA5;

 by PatientID;

 output out = SummaryA5

 (drop = _TYPE_ _FREQ_)

 max(RespInd) = RespInd

 max(InfectInd) = InfectInd

 max(MuscInd) = MuscInd

 max(CircInd) = CircInd

 sum(RespInd) = RespCount

 sum(InfectInd) = InfectCount

 sum(MuscInd) = MuscCount

 sum(CircInd) = CircCount;

run;

Table 6.

Patient ID Resp
Ind

Infect
Ind

Musc
Ind

Circ
Ind

Resp
Count

Infect
Count

Musc
Count

Circ
Count

A 1 1 1 1 2 1 1 4

B 1 0 1 1 1 0 1 1

C 1 0 0 1 2 0 0 2

Table 6. Indicators and Counts by Patient

PART FOUR: USING A TWO-DIMENSIONAL ARRAY

So far, we’ve done some reasonable work. Let us suppose, though, that we want to take further steps.
We may want to track these indicators by patient and by year, and two-dimensional arrays will be useful.

Keep in mind that the array simply organizes the variables to assist the programmer in writing code. The
array does not create any physical two-dimensional data structure. The variables all remain within the
same row of the SAS table, as usual, and the program continues through the program data vector one
row at a time as is customary.

To group the data by year and patient:

%let RespCodes = ‘A’;

%let InfectCodes = ‘B’;

%let MuscCodes = ‘R’;

%let CircCodes = ‘S’;

8

data ExampleA6;

 set TableA;

 array AllDiagRanges {4} $ &RespCodes &InfectCodes

&MuscCodes &CircCodes;

array AllDiagIndicators {3, 4}

RespIndYr1 – RespIndYr3

InfectIndYr1 – InfectIndYr3

MuscIndYr1 – MuscIndYr3

CircIndYr1 – CircIndYr3

;

 array AllDiagCodes {25} $ DgCd1 – DgCd25;

 do i = 1 to 3;

 do j = 1 to 4;

 AllDiagIndicators{i,j} = 0;

 end;

 end;

 ClaimYr = year(ClaimDt);

 format FirstDigitDgCd $1.;

 if ClaimYr eq 2014 then k = 1;

 else if ClaimYr eq 2015 then k = 2;

 else if ClaimYr eq 2016 then k = 3;

 do i = 1 to 25;

 do j = 1 to 4;

 FirstDigitDgCd = substr(AllDiagCodes{i},1,1);

 if FirstDigitDgCd eq AllDiagRanges{j}

 then AllDiagIndicators{k,j} = 1; *Populated the 2D array;

 end;

 end;

 drop i j k FirstDigitDgCd ClaimYr;

run;

Table 7 shows diagnosis history and four indicators, now split by year.

Patient
ID

Claim ID ClaimDt DgCd 1-
25

Resp
IndYr1

Resp

IndYr2

Resp
IndYr3

Other
Indicators

A 111 7-1-15 0 1 0

A 112 7-3-15 0 0 0

A 113 12-1-15 0 0 0

A 114 2-3-16 0 0 1

B 115 10-10-14 1 0 0

B 116 1-15-16 0 0 0

C 117 10-10-14 1 0 0

C 118 3-10-15 0 0 0

C 119 5-5-16 0 0 1

Table 7. Indicators Split By Year

PART FIVE: SUMMARIZING TWO DIMENSIONS IN ONE ROW

9

And we can summarize by year, as well as patient:

proc sort data = ExampleA6;

 by PatientID;

run;

proc means noprint data = ExampleA6;

 by PatientID;

 output out = SummaryA6

 (drop = _TYPE_ _FREQ_)

 max(RespIndYr1) = RespIndYr1

 max(RespIndYr2) = RespIndYr2

 max(RespIndYr3) = RespIndYr3

 max(InfectIndYr1) = InfectIndYr1

 max(InfectIndYr2) = InfectIndYr2

 max(InfectIndYr3) = InfectIndYr3

 max(MuscIndYr1) = MuscIndYr1

 max(MuscIndYr2) = MuscIndYr2

 max(MuscIndYr3) = MuscIndYr3;

 max(CircIndYr1) = CircIndYr1

 max(CircIndYr2) = CircIndYr2

 max(CircIndYr3) = CircIndYr3

run;

Table 8.

Patient
ID

Resp
IndYr1

Resp

IndYr2

Resp
IndYr3

Infect
IndYr1

Infect
IndYr2

Infect
IndYr3

Other
Indicators

A 0 1 1 0 1 0

B 1 0 0 0 0 0

C 1 0 1 0 0 0

Table 8. Patient Indicators by Year

The task of grouping diagnosis indicators by year could also have been accomplished by summarizing on
PatientID and on ClaimYr, yielding three rows for each PatientID. That would have actually taken less
code. The advantage to the approach taken here is that it is now easy to perform operations that
compare the years for the same patient. If the years were each on their own row, you might need to use
LAG, RETAIN, TRANSPOSE or other SAS concepts in order to compare them.

PART SIX: ON YOUR OWN

If we had summarized across 36 months rather than across three years, we could then use arrays to
perform operations across the 36 variables for each indicator. I leave it to you to consider the potential
uses of this and similar manipulations.

ANOTHER IMPLEMENTATION

An alternative approach that also uses arrays and is generally more advanced (and robust) than can be
reviewed in a single paper can be found in the Risk Adjustment Model Algorithm Software developed and
released by Health and Human Services back in 2014.

10

CONCLUSION

I hope that you have found this interesting, and that you now go forth to clad all your programs in just the
right amount of arrays.

This paper moves from simple to moderately complicated code rather quickly. If you find arrays
potentially useful then you may want to review this paper, the associated conference presentation, and
the references cited below. Most of them at least touch upon diagnosis codes as an example of
implementation.

REFERENCES

Center for Consumer Information and Insurance Oversight. “2014 Benefit Year Risk Adjustment HHS-
Developed Risk Adjustment Model Algorithm Software.” Regulations and Guidance. Accessed March 7,
2016. Available at https://www.cms.gov/CCIIO/Resources/Regulations-and-Guidance/index.html.

Cody, Ron. 1999. “Transforming SAS Data Sets Using Arrays.” SAS Institute Inc. 1999. Proceedings of
the Twenty-Fourth Annual SAS® Users Group International Conference. Cary, NC: SAS Institute Inc.
Available at http://www2.sas.com/proceedings/sugi24/Advtutor/p48-24.pdf.

Pillay, Rahul G. 2015. “Doing More with SAS Arrays.” Western Users of SAS Software. WUSS 2015
Proceedings, San Diego, CA. http://wuss.org/Proceedings15/85_Final_Paper_PDF.pdf.

Scerbo, Marge. 2004. “Array Tutorial (2) $ beginning intermediate.” SAS Institute Inc. 2004. Proceedings
of the Twenty-Ninth Annual SAS® Users Group International Conference. Cary, NC: SAS Institute Inc.
Available at http://www2.sas.com/proceedings/sugi29/259-29.pdf.

Waller, Jennifer L. 2006. “Many to One Using a SAS DATA Step and PROC MEANS.” SESUG 2006: The
Proceedings of the SouthEast SAS Users Group, Atlanta, GA, 2006. Available at
http://analytics.ncsu.edu/sesug/2006/ET05_06.PDF.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ryan Ferland
Blue Cross Blue Shield of Arizona
ryan.ferland@azblue.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

