Paper 2100-2016

Super boost data transpose puzzle

Ahmed Al-Attar, AnA Data Warehousing Consulting LLC, McLean, VA

ABSTRACT

This paper compares different solutions to a data transpose puzzle presented to the SAS® User Group at the US Census Bureau (CenSAS). The presented solutions ranged from a SAS® 101 multi-step solution to an advanced solution utilizing not widely known techniques yielding 85% run time savings!

INTRODUCTION

While working with the International Data Base (IDB) data at the US Census Bureau, I needed to find a way to transpose a wide horizontal table with 101 numeric columns and two rows per group, into a thinner table with 101 rows per group and new column representing the aggregation of two columns per row.

	scheme	regno	CTY	YR	SEX	MAXAGE	P000	P001	P002	P003	P004	 	 P100
Γ	1	1	AA	1981	2	100	553	559	540	516	493		X
	1	1	AA	1981	3	100	529	536	517	494	472		Χ
	1	1	AA	1982	2	97	549	551	558	539	516		X
	1	1	AA	1982	3	100	561	528	536	517	493		X
	1	1	AA	1983	2	97	569	547	550	559	539		X
	1	1	AA	1983	3	100	582	559	528	536	517		X
ı	1	1	AA	1984	2	98	585	566	547	549	559		X
L	1	1	AA	1984	3	100	600	580	559	527	536		Χ
	1	1	AA	1985	2	99	587	577	562	542	545		X
	1	1	AA	1985	3	100	603	598	578	557	526		X
	1	1	AA	1986	2	100	577	580	571	556	536		X

Figure 1: Original IDB Birth Rate table

Original data characteristics:

- Sorted By: Scheme, regno, cty, yr, sex
- There are 101 age variables (P000 P100)
- Each Combination of Scheme, regno, cty, yr has a row for Male (Sex=2) and a row for Female (Sex=3)
- **240,616** observations

Resulting data table should have

- Male & Female Records transposed
- Both Column is calculated by summing Male & Female numbers
- **popAge** is 0-100
- 12+ Millions observation ((240,616/2) * 101)

scheme	regno	CTY	YR	Popage	male	female	both
1	1	AA	1981	0	553	529	1082
1	1	AA	1981	1	559	536	1095
1	1	AA	1981	2	540	517	1057
1	1	AA	1981	3	516	494	1010
1	1	AA	1981	4	493	472	965
1	1	AA	1981	5	477	457	934
1	1	AA	1981	6	471	450	921
1	1	AA	1981	7	472	452	924
1	1	AA	1981	8	483	463	946
1	1	AA	1981	9	499	476	975
1	1	AA	1981	10	514	490	1004
1	1	AA	1981	11	532	508	1040
1	1	AA	1981	12	556	530	1086
1	1	AA	1981	13	583	558	1141
1	1	AA	1981	14	613	588	1201
1	1	AA	1981	15	644	622	1266
1	1	AA	1981	16	672	652	1324
1	1	AA	1981	17	689	670	1359
1	1	AA	1981	18	694	670	1364
1	1	AA	1981	19	686	657	1343
1	1	AA	1981	20	676	639	1315
1	1	AA	1981	21	664	623	1287
1	1	AA	1981	22	649	610	1259
1	1	AA	1981	23	628	606	1234

Figure 2: Desired Transposed Birth Rate table

It was very important to come up with a solution that has the least amount of data reads and the fastest run time.

Once I developed my solution, I wanted to validate it and see if there could a better solution. That's when I reached out to the SAS® users group at the US Census Bureau (CenSAS), and posted it as a Data Transpose Puzzle. I got two helping solutions with different level of complexity, and approach.

SOLUTION 1

This solution was contributed by a Branch Chief at the Census. It consisted of 3 steps (Data Step, Proc Sort, Data Step).

```
%let g_srcDsName = censas.idb194;
data b (keep = scheme regno cty yr popage pop);
 set &g_srcDsName;
 array popagea(101) 8 p000-p100;
 do i = 1 to 101;
   popage = i - 1;
   if sex = '2' then pop = popagea{i};
   else if sex = '3' then pop = popagea{i};
   output;
 end;
run;
proc sort data=b;
 by scheme regno cty yr popage;
run;
data c (drop = pop);
 set b;
 by scheme regno cty yr popage;
 retain male female;
 if first.popage then male = pop;
 if last.popage then
 do;
   female = pop;
   both = male + female;
   output;
 end;
run;
```

Pros:

- Clear & Simple
- Easy to follow
- Adoptable by levels of skills

Cons:

- Ignored data characteristics (Sorted by)
- Multiple data reads
- Intermediate table
- Typical SAS® 101 approach
- Suitable for teaching but not for Production deployment

SOLUTION 2

This solution was contributed by a SAS® on-site Technical Advisor at the Census Bureau. It consisted of 2 steps (Proc Transpose, Proc SQL).

```
%let g_srcDsName = censas.idb194;

Proc transpose data=&g_srcDsName( drop=maxage sex)
  out=WORK.alattartest2( rename= (sex_1=Male
  sex_2=Female))
  name=Popagetem
  prefix=sex_;
  by scheme regno CTY YR;
run;

Proc sql;
  create table final as
  select scheme ,regno ,CTY ,YR
    ,substr(Popagetem,2,4) as Popage
  ,Male ,Female ,sum(Male+Female) as both
  from alattartest2;
quit;
```

Pros:

- Utilized data characteristics (Sorted by)
- Easy to follow
- Mixing Procs & SQL

Cons:

- Multiple data reads
- Proc Transpose performs multiple internal data reads
- Intermediate table

SOLUTION 3

This is the solution I had developed prior to ask for input from the SAS® users group. It consisted of a single step (Data Step).

```
%let g_srcDsName = censas.idb194;
DATA WORK.idb194_transposed (KEEP=scheme regno cty yr Popage male female both );
 ARRAY p P000-P100;
 ARRAY MP MP000-MP100;
 ARRAY FP FP000-FP100;
 LENGTH pFirstPos $20 init_rb8_str $808;
 RETAIN MP: FP: init_rb8_str;
 if (_n_=1) then
 do;
   pFirstPos = ADDRLONG(p000);
   init_rb8_str = PEEKCLONG(ADDRLONG(p000));
 end;
 SET &g_srcDsName;
 BY scheme regno cty yr;
 LENGTH Popage 4 male female both 8;
 LABEL PopAge = 'Population at Age'
         male = 'Male Population'
         female = 'Female Population'
         both = 'Both sexes Population';
 /* Find the destination address */
 if (sex=2) then call POKELONG(PEEKCLONG(ADDRLONG(p000)),ADDRLONG(mp000),808);
 else call POKELONG(PEEKCLONG(ADDRLONG(p000)),ADDRLONG(fp000),808);
 IF (last.yr) THEN
 DO i=1 to dim(p);
   popAge = i-1;
   male = mp[i];
   female = fp[i];
   both = Sum(male,female);
   OUTPUT;
 END;
RUN:
```

Pros:

- Utilized data characteristics (Sorted by)
- Single data read
- Single Output No Intermediate table(s)

Cons:

- Uses unfamiliar yet very powerful functions
- Requires advanced skills level

RUN TIMES COMPARISON

In order to have a fair and comprehensive comparison, I used the same two data sets with all three solutions on the same SAS® platform. The table below illustrates the differences in their run times.

Table Sizes	Solution 1 3 Steps mm:ss.ss	2 St	tion 2 teps ss.ss	Solution 3 1 Step mm:ss.ss			
	run-time	run-time	% of S1	run-time	% of S1	% of S2	
Sample Data (2,310 records)	00:00.36	00:00.26	27.78%	00:00:08	77.78%	69.23%	
Full Data (240,616 records)	00:28.71	00:23.80	17.10%	00:03.42	88.08%	85.63%	

Table 1: Solutions run times and percent of improvement

CONCLUSION

Some of the unwieldy known features of the SAS® programming language can offer more elegant and efficient solutions to data manipulation problems.

Whether you are a SAS® programmer with many years of experience or a novice user who is responsible for maintaining legacy programs, implementing updated approaches can allow you to streamline your SAS® applications, expedite the development and debugging process, and minimize future maintenance of the code.

Investigating and researching alternative approaches and solutions is a worthwhile investment for any SAS® programmer, regardless of their level of experience.

REFERENCES

Paul M. Dorfman, and Lessia S. Shajenko 2011. "From Obscurity to Utility: ADDR, PEEK, POKE as DATA Step Programming Tools". Proceedings of the SouthEast SAS Users Group 2011, http://analytics.ncsu.edu/sesug/2011/BB07.Dorfman.pdf

Paul M. Dorfman, and William W. Viergever 2012. "Straight from Memory: ADDR, PEEK, POKE as SAS® Programming Tools". Proceedings of SAS Global Forum 2012, http://support.sas.com/resources/papers/proceedings12/223-2012.pdf

Ed Heaton 2009, "Resetting Variables to Zero". Proceedings of the SouthEast SAS Users Group 2009, http://analytics.ncsu.edu/sesug/2009/SC011.Heaton.pdf

Carol A. Martell 2013. "PEEKing at Roadway Segments". Proceedings of the SouthEast SAS Users Group 2013, http://analytics.ncsu.edu/sesug/2013/BtB-07.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ahmed Al-Attar
AnA Data Warehousing Consulting, LLC.
McLean, VA 22101
Cell Phone: 703-477-7972
E-mail: ahmed.al-attar@anadwc.com

Web: www.anadwc.com

TRADEMARKS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.