Increasing Efficiency by Parallel Processing

Shuhua Liang, Fagen Xie
Kaiser Permanente Southern California
ABSTRACT

Data volume is increasing exponentially across industries and working with big data is often time consuming and challenging. The primary goal in programming is to maximize throughputs while minimize the use of execution time and resources. By utilizing the Multiprocessing (MP) Connect method on a Symmetric Multiprocessing (SMP) computer, a programmer can divide a job into independent tasks and execute threads in parallel on multiple processors. This paper demonstrates the development and application of a parallel processing program on large sets of healthcare data in SAS®.

DATA STRUCTURE AND ARCHITECTURE

We will consider splitting, joining and consolidating three sets of data using threads in a parallel structure. The structure of this program is to have a boss thread distribute inputs to worker threads, and then the worker threads work in a peer model structure to perform the same set of tasks in parallel. Within each worker thread will be a pipeline model, where a collection of tasks are executed sequentially. This relationship is illustrated in Figure 1.

ASSUMPTION OF INDEPENDENCY

When a program is implemented using threads in parallel, the following assumptions are made:

- In a perfect world, the degree of speedup is equivalent to the amount of resources added to the process.
- No physical memory or processors are shared among threads.

INTRODUCTION

A single-thread SAS® program is a serial process. When extracting, joining and processing complex datasets, a single-thread process typically requires a long execution time and occupies a large portion of computer resources to complete a job. A manual approach to reduce running time is to divide a large dataset into smaller subsets and execute multiple jobs at the same time. On the other hand, a multi-thread process exploits a multiprocessor machine to perform multiple tasks simultaneously [Shamlin]. When handling different data structures, a program or partial code of the program can be revised into one or a combination of the following parallel processing models:

- Boss/Worker Model
- Peer Model
- Pipeline Model

The Boss/Worker Model is structured to allow the main thread to generate and distribute tasks based on the input for sub-threads to complete, the Peer Model is to create multiple independent threads that can perform various tasks on the same set of input concurrently, and the Pipeline Model performs its tasks stage by stage sequentially. The purpose of this paper is to apply these techniques in developing parallel processing SAS® programs, and utilize them to manage big data in a healthcare research oriented organization to achieve higher performances and retrench resources from various aspects.

ASSUMPTION OF INDEPENDENCY

When a program is implemented using threads in parallel, the following assumptions are made:

- Threads are disjoint units; each thread is an independent task that can be computed without dependency on another [Powers].
- A single thread does not generate additional threads [Powers].
In the actual study, there are three sets of data that we need to join and analyze:

- **Dataset A** contains 26,912,194 observations, and it is the primary dataset (skeleton) that will be divided into \(n \) subsets.

- **Dataset B** contains 683,428 observations, and it will be inner joined with subsets of dataset A to create datasets \(AB_n \).

- **Datasets \(AB_n \)** will be processed and analyzed in data and proc sort steps.

- Each \(AB_n \) will be inner joined with dataset \(C \) (contains 656,773 observations) for additional variables and further analyze; outputs will be datasets \(ABC_n \).

- \(ABC_n \) sets will be merged into one final output, dataset \(D \).

BOSS-WORKER MODEL

As shown in Figure 1, the Boss thread receives the input dataset (dataset A in our scenario), and it divides the input into \(n \) subsets for the \(n \) worker threads to process. One approach in dividing a large set of data is to assign each row of records a sequence number, and then divide the total number of records by \(n \) to get the number of records \(X \) in each subset. For each subset, we will count \(X \) records in sequential order from dataset A.

The following macro is an example of the Boss thread process:

```sas
libname ip '<directory where input datasets are saved>';
libname op '<directory where output datasets should be stored>';
%macro split_by_block(block_num);
data;
%do i = 1 %to &block_num;
   op.A_&i = nobs;
%end;
set ip.<dataset A> nobs=nobs;
SEQ = _N_;%do i = 1 %to &block_num;
%if i = 1 %then %do;
   if SEQ <= int(nobs/&block_num) then output op.A_&i;
%end;
%else %if i = &block_num %then %do;
   else if SEQ > int(nobs/&block_num)*(&block_num-1)
   then output op.A_&block_num;
%end;
%else %do;
   else if int(nobs/&block_num)*(i-1) < SEQ and
   SEQ <= int(nobs/&block_num)*i
   then output op.A_&i;
%end;
%end;
run;
%mend split_by_block;
```
Increasing Efficiency by Parallel Processing
Shuhua Liang, Fagen Xie
Kaiser Permanente Southern California

Definition of terms and variables:

&_Block_Num = total number of subsets wanted
&_i = indication of iteration for the number of subsets
_A&_i = subset output of corresponding iteration

Since each subset of _A, _A&_i, is _n times smaller than _A, directly joining datasets _A and _B, theoretically, would take _n times longer than joining each _A&_i with _B in parallel. Note: _i = \{1, ..., _n\}. In other words, an advantage of the Boss-Worker Model is its capability to reduce elapse time by _n times, but the tradeoff is the need for more complicated code.

PEER MODEL

The Peer Model is also known as the Peer-to-Peer system which all threads send and receive data, and each thread contributes processing power. It allows us to decentralize the data to minimize inefficiencies, bottlenecks, and waste of resources [Fenech, Vella]. In our study, all _n worker threads work in parallel and perform the four tasks listed in the overview of our data structure. Throughput of this structure scales with the _n threads we implemented.

Elapsed time (T) in parallel processing segments is equivalent to the time used by the slowest thread. However, if these tasks were applied to the original dataset _A instead of the subsets _A&_i simultaneously, total elapsed time would be comparable to the sum of times used by each thread (_t_i), T = \sum_{i=1}^{n} _t_i.

PIPELINE MODEL

The Pipeline Model demonstrates parallelism by processing inputs sequentially. It is comparable to an assembly line in a factory, where partially assembled products are passed down from one stage to the next for embellishment. This model is used when dependency on the processor’s output is high, and it prevents the use of other parallel processing models. In our program, the Pipeline Model is within each worker thread, where each _A_B&_i subset depends on its corresponding input data _A&_i, and each _A_B_C&_i set is derived from the corresponding _A_B&_i output. Any analysis in a worker thread is dependent on the previous joined output. An advantage of this model is that it allows us to eliminate intermediate writing to the disk and, therefore, reduces disk space requirements [Kumbhakarna].

Below is the macro that performs the peer and pipeline tasks:

```sas
%macro parallel_join_analyses(block_num);
options symbolgen mprint fullstimer autosignon=yes sascmd="sas -nonews -threads";
libname ip '<directory where input datasets are saved>';
libname op '<directory where output datasets should be stored>';
%do k = 1 %to &block_num;
  %put k = &k;
  signon task&k. wait=yes;
  %syslput k = &k;
  rsubmit process=task&k. wait=no syusrputsync=yes;
  options symbolgen mprint fullstimer autosignon=yes sascmd="sas -nonews -threads";
  libname ip '<directory where input datasets are saved>';
  libname op '<directory where output datasets should be stored>'; /*Join each subset _A_i with dataset _B to create subsets _A_B_i*/
  proc sql _method; create table mem.AB_&k. as select <variables needed> from op.A_&k. A, ip.<dataset B> B where <conditions>;
  quit;
/*Other analyses*/
  data op.bene_dates_&k.;
    set op.AB_&k. ;
    <analytical statements>;
  run;
/*Join each subset _A_B_i with dataset _C to create subsets _A_B_C_i*/
  proc sql;
    create table op.ABC_sub_&k. as select <variables needed> from op.A_B_&k. A, ip.<dataset C> B where <conditions>;
    quit;
%mend parallel_join_analyses;
```
Increasing Efficiency by Parallel Processing
Shuhua Liang, Fagen Xie
Kaiser Permanente Southern California

To test and compare performances, dataset A is divided into n subsets, $n = \{1, 3, 5, 10, 15, 17, 20\}$, and then analyzed using the corresponding number of processors, respectively. Overall execution times of these trials are shown in Table 1 and Figure 4, and the percentages of improvement in real time compared to a serial operation are shown in Table 2.

When no subsetting and parallel processing are applied to the dataset ($n = 1$), the program runs in a sequential manner without scalability, and, therefore, execution time is considerably high. However, execution time reduces significantly when the number of processors increases to three and five, where calculated improvement reaches 73%. A plateau occurs as the number of subsets exceeds ten, and total execution time starts to increase when the number of subsets reaches twenty.

Efficiency is not solely dependent on the total number of processors but also other factors like input (read) and output (write) responses, memory, and other concurring jobs. In our example, the tasks in each processor are required to join with dataset B, and system input responses can reach a speed limit as an increasing number of processors attempt to access dataset B. When the threshold is reached, efficiency will no longer improve; in contrast, it could slow down the process and weaken performances.

Figure 3 illustrates elapsed time in scalable and non-scalable parts of the program:

```
/*Other analyses*/
data op.ABC_&k.;
set op. ABC_sub_&k.;
    <analytical statements>
run;
proc sort data= op.ABC_&k.;
    <by statement>
run;
endsubmit;
%end;
waitfor _all_ %do k = 1 %to (&block_num); task&k %end;
    %do k = 1 %to (&block_num); rget task&k; %end;
    %do k = 1 %to (&block_num); signoff task&k; %end;
/*Merge all ABC_i subsets to final dataset D*/
data op.<dataset D>;
    set %do i = 1 %to (&block_num);
        op.ABC_&_i;
    %end;
    <additional statements>
run;
%mend parallel_join_analyses;
```

EVALUATION

While utilizing multiple processors for the above jobs, elapsed execution time is reduced correspondingly, and SAS® was able to leverage additional resources. By increasing the number of CPUs on a SMP machine, processing subsets of the dataset in parallel becomes scalable.

Figure 3 illustrates elapsed time in scalable and non-scalable parts of the program:
Increasing Efficiency by Parallel Processing

Shuhua Liang, Fagen Xie
Kaiser Permanente Southern California

Table 1. Overall Process Time

<table>
<thead>
<tr>
<th>Number of Subsets</th>
<th>Real Time</th>
<th>User CPU Time</th>
<th>System CPU Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58:22.99</td>
<td>45:32.85</td>
<td>17:08.15</td>
</tr>
<tr>
<td>3</td>
<td>21:48.42</td>
<td>2:37.19</td>
<td>1:41.59</td>
</tr>
<tr>
<td>5</td>
<td>15:44.99</td>
<td>2:39.61</td>
<td>1:37.52</td>
</tr>
<tr>
<td>10</td>
<td>14:22.76</td>
<td>2:45.46</td>
<td>1:38.14</td>
</tr>
<tr>
<td>15</td>
<td>14:27.27</td>
<td>2:59.11</td>
<td>1:44.07</td>
</tr>
<tr>
<td>17</td>
<td>14:16.37</td>
<td>2:57.17</td>
<td>1:38.11</td>
</tr>
<tr>
<td>20</td>
<td>15:39.25</td>
<td>3:05.80</td>
<td>1:39.84</td>
</tr>
</tbody>
</table>

Table 2. Percentage Improvements in Parallel Processing Versus Single Processing

<table>
<thead>
<tr>
<th>Number of Subsets</th>
<th>% Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reference Baseline</td>
</tr>
<tr>
<td>3</td>
<td>63%</td>
</tr>
<tr>
<td>5</td>
<td>73%</td>
</tr>
<tr>
<td>10</td>
<td>75%</td>
</tr>
<tr>
<td>15</td>
<td>75%</td>
</tr>
<tr>
<td>17</td>
<td>76%</td>
</tr>
<tr>
<td>20</td>
<td>73%</td>
</tr>
</tbody>
</table>

Figure 4. Real Time Comparison

CONCLUSIONS

In conclusion, parallel processing is a powerful technique to increase efficiency by increasing throughput, reducing execution time, and taking advantage of SMP resources. However, the amount of memory required can be greater due to the increasing amount of data and replicated processes. Despite increase in efficiency, it is important to monitor overhead cost associated with parallelism setups. Performance can be weaken for small jobs because developing complicated code can comprise a significant portion of execution time.

LIMITATIONS

Various internal and external limitations prevent our program from performing at its full capacity. As a dataset is divided into more subsets, the improvement in efficiency plateaus and the time used increases. The most common limitation is shared resources such as disk space. As more users share the limited resources within a system, the jobs that each user submits would slow down correspondingly.

REFERENCES

SAS® GLOBAL FORUM 2016
IMAGINE. CREATE. INNOVATE.

LAS VEGAS | APRIL 18-21
#SASGF