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ABSTRACT  

How do historical production data relate a story about subsurface oil and gas reservoirs? Business and 
domain experts must perform accurate analysis of reservoir behavior using only rate and pressure data 
as a function of time. This paper introduces innovative data-driven methodologies to forecast oil and gas 
production in unconventional reservoirs that, owing to the nature of the tightness of the rocks, render the 
empirical functions less effective and accurate. You learn how implementations of the SAS® MODEL 
procedure provide functional algorithms that generate data-driven type curves on historical production 
data. Reservoir engineers can now gain more insight to the future performance of the wells across their 
assets. SAS enables a more robust forecast of the hydrocarbons in both an ad hoc individual well 
interaction and in an automated batch mode across the entire portfolio of wells. Examples of the MODEL 
procedure arising in subsurface production data analysis are discussed, including the Duong data model 
and the Stretched-Exponential-Decline Model. In addressing these examples, techniques for pattern 
recognition and for implementing TREE, CLUSTER, and DISTANCE procedures in SAS/STAT® are 
highlighted to emphasize the importance of oil and gas well profiling to characterize the reservoir. The 
MODEL procedure analyzes models in which the relationships among the variables comprise a system of 
one or more nonlinear equations. Primary uses of the MODEL procedure are estimation, simulation, and 
forecasting of nonlinear simultaneous equation models, and generating type curves that fit the historical 
rate production data. You will walk through several advanced analytical methodologies that implement the 
SEMMA process to enable hypotheses testing as well as directed and undirected data mining techniques. 
SAS® Visual Analytics Explorer drives the exploratory data analysis to surface trends and relationships, 
and the data QC workflows ensure a robust input space for the performance forecasting methodologies 
that are visualized in a web-based thin client for interactive interpretation by reservoir engineers. 

INTRODUCTION  

"I have seen the future and it is very much like the present, only longer." 

 

       Kehlog Albran, ñThe Profitò 

Estimating reserves and predicting production in reservoirs has always been a challenge. The complexity 
of data, combined with limited analytical insights, means some upstream companies do not fully 
understand the integrity of wells under management. In addition, it can take weeks or months to establish 
and model alternative scenarios, potentially resulting in missed opportunities to capitalize on market 
conditions. Performing accurate analysis and interpretation of reservoir behavior is fundamental to 
assessing extant reserves and potential forecasts for production. Decline Curve Analysis (DCA) is 
traditionally used to provide deterministic estimates for future performance and remaining reserves. But 
unfortunately, deterministic estimates contain significant uncertainty. As a result, the deterministic 
prediction of future decline is often far from the actual future production trend; making the single 
deterministic value of reserves nowhere close to reality. Probabilistic approaches, on the other hand, 
quantify the uncertainty and improve Estimated Ultimate Recovery (EUR). 

The literature in the early years of the twentieth century immersed itself in the study of percentage decline 
curves or empirical rate-time curves that found credence in expression of production rates across 
successive units of time, framed as percentages of production over the first unit of time. W.W. Cutler 
suggested that a more robust methodology defining a straight-line relationship was achievable when 
using log-log paper. The implication being that decline curves that reflected such characteristics were of a 
hyperbolic geometric type as opposed to an exponential. 
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Engineers determine Estimated Ultimate Recovery (EUR) of reserves in existing reservoirs and forecast 
production trends implementing the equations in Table 1. 

We use the decline curve equations to estimate future asset production (Arps, 1945): 

 Exponential Hyperbolic Harmonic 

 b=0 0<b<1 b=1 

D¹ ln(q¹q²) / t 
 

D¹(q¹/q²)^1/b D¹(q¹/q²) 

q¹ q¹exp(-D¹t) q¹/(1 + btD¹)^1/b q¹/(1 + btD¹) 

Qp q¹ - q²/D¹ q¹/D¹(1 ï b)(1 - q²/q¹)^1-b q¹/D¹ln(1 + D¹t) 

t ln(q¹q²)/D¹ (q¹/q²)^b ï 1/bD¹ q¹ - q²/D¹q² 

 

Table 1: Decline Curve Analysis using Arps empirical algorithms 

¶ D¹ Initial rate of decline 

¶ q¹ Initial rate of production 

¶ q² Rate of production 

¶ Qp Cumulative production 

¶ t Time 

Hyperbolic decline 

q = q (1+ D bt) ī1/b 

Exponential decline 

q = qi exp (īDt)  

In the equations b and D are empirical constants that are determined based on historical production data. 
When b = 1, it is a harmonic model and when b=0, it yields an exponential decline model. 

There are a number of assumptions and restrictions applicable to conventional DCA using these 
equations. Theoretically, DCA is applicable to a stabilized flow in wells producing at constant flowing 
Bottom-Hole Pressure (BHP). Thus data from the transient flow period should be excluded from DCA. In 
addition, use of the equation implies that there are no changes in completion or stimulation, no changes 
in operating conditions, and that the well produces from a constant drainage area. 

The hyperbolic decline exponent, b, has physical meaning in reservoir engineering, falling between 0 and 
1. In general, we think of decline exponent, b, as a constant. But for a gas well, b varies with time. 
Instantaneous b decreases as the reservoir depletes at constant BHP condition and can be larger than 1 
under some conditions. The average b over the depletion stage is indeed less than 1. 

It is also critical to surface the statistical properties of a time-series that are stationary or immutable from a 
temporal perspective: correlations, autocorrelations, levels, trends and seasonal patterns. Then we can 
predict the future from these descriptive properties. 

Thus, the implementation of data-driven models and automated and semi-automated workflows that feed 
into a data mining methodology are crucial in order to determine a probabilistic suite of forecasts and 
estimates for well performance. 

Reliably estimating recoverable reserves from low-permeability shale-gas formations is a problematic 
exercise owing to the nature of the unconventional reservoir and inherent geomechanical and rock 
properties.  Employing the Arpsô hyperbolic model, for example, invariably results in an over-optimistic 
forecast and estimation. Alternative DCA models based on empirical considerations have been 
positioned: 
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¶ The Duong power-law model  

¶ The Stretched-Exponential-Decline Model (SEDM) 

¶ Weibull Growth Curve 

Projecting production-decline curves is ostensibly the most commonplace method to forecast well 
performance in tight gas and shale-gas assets. The potential production and EUR are determined by 
fitting an empirical model of the wellôs production-decline trend and then projecting this trend to the wellôs 
economic limit or an acceptable cut-off time. Forcing Arpsô hyperbolic model to fit production data from 
shale-gas wells has invariably resulted in over-optimistic results of EUR, stemming from physically 
unrealistically high values of the decline exponent to force the fit. There have been a few alternatives 
proposed for the analysis of decline curves in tight gas wells. One preference constrains the tardy decline 
rate to a more realistic value on the basis of analogs. Another methodology determines empirical decline 
curve models that impose physically relevant parameter definitions and finite EUR values on model 
predictions. A key issue associated with the use of multiple models is how to discriminate between them 
with limited production periods, and how to combine the model results to yield an assessment of 
uncertainty in reserves estimates. 

Production decline analysis of tight gas and shale-gas wells with this method typically results in a best-fit 
value of greater than unity for the decline exponent parameter. The result often is physically unrealistic in 
that cumulative production becomes unbounded as time increases. 

The Duong model is based on a long-term flow regime approximating a linear flow. We adopted a 
modified Duong model that implements a switch of 5% followed by an Arps curve where the b factor is set 
to 0.4. 

The SEDM model is a more plausible physical explanation than the assumption of boundary-dominated 
flow that is inordinately long to develop in tight and shale-gas reservoirs. Unlike the hyperbolic model, the 
SEDM yields a finite value for ultimate recovery. The SEDM appears to fit field data from various shale 
plays reasonably well and provides an effective alternative to Arpsô hyperbolic model. 

Because tight gas and shale-gas reservoirs generally are produced after massive hydraulic fracturing, it is 
reasonable to assume that flow toward wells in such systems will exhibit fracture-dominated 
characteristics. For finite-conductivity fractures, the flow will be bilinear, which manifests as a quarter-
slope line on a log-log graph of production rate, q, vs. time, whereas flow in infinite-conductivity fractures 
will be linear and be characterized by a half-slope line on the same graph. Under both conditions, it has 
been shown that a log-log graph of q/Gp vs. time should have a slope of ī1.  

However, analysis of field data from several shale-gas plays has shown that the relationship between 
these variables is described better by an empirical model that also appears to fit field data from various 
shale plays very well, providing an effective alternative to Arpsô hyperbolic model. 

Many mathematical algorithms have been implemented to describe population growth (or decline) 
effectively under an expansive range of conditions. The Weibull growth curve is a generalization of the 
widely used Weibull distribution for modeling time to failure in applied-engineering problems. A three-
parameter Weibull model can be reduced to two unknowns if the q/Gp ratio is taken as the dependent 
variable. Nonlinear-regression analysis can estimate the observed ratio against time. 
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      Figure 1: Process diagram implementing key components 

The three important composite engines, as depicted in Figure 1, are data mining, cluster analysis and 
bootstrapping: 

1. The bootstrapping module will help engineers to build reliable confidence intervals for production 
rate forecast and reserves and lifetime estimates. 

2. The clustering module will help engineers to deal with large numbers of wells, by providing a 
means for grouping wells and finding similar wells. 

3. The data mining module enables the development of advanced analytical workflows. Via 
Exploratory Data Analysis it is feasible to identify hidden patterns and correlations that facilitate 
the evolution of the data-driven predictive models. 

BOOTSTRAPPING MODULE 

The purpose of the bootstrapping module is to automate the temporal data selection process to build 
reliable confidence intervals for rate-time and rate-cumulative models prediction. It is done by means of 
multiple scenarios optimization and Monte-Carlo simulation for block residuals resampling. Historical 
production data invariably possess significant amounts of noise. Thus, the empirical postulates that 
underpin the traditional DCA workflow introduce much uncertainty as regards the reserves estimates and 
performance forecasts. Probabilistic approaches regularly provide three confidence levels (P10, P50 and 
P90) with an analogous 80% confidence interval. How reliable is the 80% confidence interval? To put it 
another way: does the estimate of reserves fall within the interval 80% of the time? Investigative studies 
have shown that it is not uncommon for true values of reserves to be located outside the 80% confidence 
interval much more than 20% of the time when implementing the traditional methodology. Uncertainty is 
thus significantly underestimated.  

The majority of engineers are ingrained with the philosophy that quantifying uncertainty of estimates is 
primarily a subjective task. This perspective has taken the oil and gas industry along the perpetual road 
that bypasses effective probabilistic workflows to assess reserves estimation and quantify uncertainty of 
those estimates. It seems that prior distributions of drainage area, net pay, porosity, formation volume 
factor, recovery factor and saturation are pre-requisites to perform Monte Carlo simulations. And 
invariably we impose several distribution types such as log-normal, triangular or uniform from an 

Bootstrapping 
Module

ωConfidence Intervals

ωMonte Carlo Simulation

ωStatistical methodology

Clustering 
Module

ωClassify wells across

ωSimilarity

ωDissimilarity

ωField segmentation

Data Mining 
Workflow

ωKey production    
indicators 

ωStatistical factors

ωGood/Bad Well 
performance profiles



5 

experienced or subjective position. To preclude any assumptions derived from adopting prior distributions 
of parameters, let us investigate the value inherent in the bootstrap methodology. 

The first adventure into application of the bootstrap method for DCA adopted ordinary bootstrap to 
resample the original production data. This enabled the generation of multiple pseudo data sets 
appropriate for probabilistic analysis. However, there are inherent assumptions that are deemed improper 
for temporal data such as production data, since the ordinary bootstrap method takes for granted the 
original production time-series data as independent and identically distributed. And there are often 
correlations between data points in a time-series data structure.  

To avoid assuming prior distributions of parameters, the bootstrap method has been used to directly 
construct probabilistic estimates with specified confidence intervals from real data sets. It is a statistical 
approach and is able to assess uncertainty of estimates objectively. To the best of our knowledge, 
Jochen and Spivey first applied the bootstrap method to decline curve analysis for reserves estimation. 
They used ordinary bootstrap to resample the original production data set so as to generate multiple 
pseudo data sets for probabilistic analysis. The ordinary bootstrap method assumes that the original 
production data are independent and identically distributed, so the data will be independent of time.  

However, this assumption is usually improper for time-series data, such as production data, because the 
time-series data structure often contains correlation between data points. 

The purpose of the bootstrapping module is to automate the time-series selection process to build reliable 
confidence intervals for rate-time and rate-cumulative predictive models. It is done by means of multiple 
scenarios optimization and Monte-Carlo simulation for block residuals resampling. 

Bootstrapping statistically reflects a method for assigning measurements or metrics of accuracy to sample 
estimates. Conventional bootstrap algorithms assume independent points of reference that are identically 
distributed. The modified bootstrap method essentially generates a plethora of independent bootstrap 
realizations or synthetic data sets from the original production data; each pseudo data set being of equal 
dimension as the original data set. A nonlinear regression model is fit to each synthetic data set to 
ascertain decline equation parameters and subsequently extrapolated to estimate future production and 
ultimate recovery. The complete suite of synthetic data sets is used to determine objectively the 
distribution of the reserves.  

To bypass the assumptions that production data contain points that are independent and identically 
distributed, the modified bootstrap methodology adopts a more rigorous algorithm to preserve time series 
data structure: 

1. It implements the hyperbolic and exponential equations to fit the production data for a given time 
period and determines residuals from the fitted models and observations.  

2. The workflow generates multiple synthetic data realizations using block resampling with modified 
model-based bootstrap, and to determine the size of the blocks the autocorrelation plot of 
residuals is used to surface any randomness or potential correlations within the residual data. 

3. Further we implement a backward analysis methodology using a more recent sample of 
production data to address issues of forecasting owing to periods of transient flow and variable 
operational conditions. 

4. Calculate Confidence Intervals for production and reserves. 

Iterations of steps 1 through 4 provide a scheme to determine automatically the ñBest Forecastò based on 
analysis of recent historical data during specific time periods. 

Thus, the purpose of the bootstrapping module is to automate the intervals selection process to build 
reliable confidence intervals for rate-time and rate-cumulative models prediction. It is done by means of 
multiple scenarios optimization and Monte-Carlo simulation for block residuals resampling. 

Reservoir engineers are faced with an expanding portfolio of wells to analyze in order to establish EUR 
and identify candidates for stimulation and/or shut-in. Owing to the data volumes collated from each well, 
solutions invariably limit the number of wells that may be included in the analysis, thus requiring a 
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deterministic sampling process that increases the uncertainty of forecasts. Data errors and outliers also 
have to be flagged manually, which is a time intensive task for engineers.  

It is ideal to work with a targeted web-based solution that helps an oil and gas company to: 

¶ Aggregate, analyze, and forecast production from wells and reservoirs 

¶ Automatically detect and cleanse bad data 

¶ Publish and share results of analysis throughout the company 

The bootstrapping code implements an estimate for well performance rate against both time and 
cumulative production, generating multiple models or simulations of the input monthly production time-
series data. The intent is to identify the optimum temporal window that will fit the most reliable type curve 
to generate accurate and robust forecasts constrained by acceptable confidence intervals. The sigma 
values are calculated for estimations and are used for confidence interval generation. The following code 
is replicated for each model expressed by both Rate-Time and Rate-Cumulative perspectives: 

 

/*****RATE - TIME EXPONENTIAL *****/  

 function rt_exp_T(cutoff, qi, a);  

  if a <= 0 then  

   return( . );  

  return(( 1 / a) * log(qi / cutoff));  

 endsub;  

 

 function rt_exp_T_sigma(cutoff, qi, a, var_qi, var_a, cov_qi_a);  

  if a <= 0 then  

   return( . );  

  der1 = 1 / (a * qi);  

  der2 = -  ( 1 / (a ** 2)) * log(qi / cutoff);  

  return(calc_sigma(der1, der2, var_qi, var_a, cov_qi_a));  

 endsub;  

 

 function rt_exp_rate(time, qi, a);  

  if a <= 0 then  

   return( . );  

  return(qi * exp( - a * time));  

 endsub;  

 

 function rt_exp_sigma(time, qi, a, var_qi, var_a, cov_qi_a);  

  if a <= 0 then  

   return( . );  

  der1 = exp( - a * time);  

  der2 = qi * ( - time) * exp( - a * time);  

  return(calc_sigma(der1, der2, var_qi, var_a, cov_qi_a));  

 endsub;  

 

The models are coded so as to accommodate varying implementations of the Arps equations and any 
innovative models developed to address the unique geological and geophysical environments typical of 
the unconventional reservoirs. 
 

* Fit the actual DCA Models */  

 proc  model  

  data =WORK.TMP0TempTableInput  

  outparms =work.hypparms;  

  /* Arps Hyp erbolic Algorithm: q=qi/  (1+bait)  **  (1/b) */  

  measure = q0 / (( 1 -  D*b*t)  **  ( 1/b));  

  restrict  b>0;  
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  fit  measure start =(q0=& Lin_Hyp_crate. , D=& Lin_Hyp_Di. , 

b=&Lin_Hyp_n. );  

 run ;  

 Data  hypparms;  

  set  hypparms;  

  model = "hyp" ;  

  if  missing(Q0) then  q0=&Lin_Hyp_crate. ;  

  if  missing(D) then   D=&Lin_Hyp_Di. ;  

  if  missing(b) then   b=&Lin_Hyp_n. ;  

 run ;  

 

proc  model  

  data =work.forecast_input  

  outparms =work.duongparms;  

 

  measure = q0*t**  ( - b)*exp((D/( 1- b))*(t**  ( 1- b) - 1));  

  restrict  b>0;  

  fit  measure start =(q0=& NLin_Hyp_crate. , D=& NLin_Hyp_Di. , 

b=&NLin_Hyp_n. );  

 run ;  

 

 Data  duongparms;  

  set  duongparms;  

  Model  = "duong" ;  

  if  missing(Q0) then  q0=&NLin_Hyp_crate. ;  

  if  missing(D) then   D=&NLin_Hyp_Di. ;  

  if  missing(b) then   b=&NLin_Hyp_n. ;  

The reservoir engineer inputs the well production history and constructs confidence intervals for 
production rate prediction. The following steps are implemented:  

¶ The user selects wells and properties for bootstrapping and runs the bootstrapping code 

ü The input data are the rate and cumulative production 

¶ The user examines the bootstrapping results 

ü The output parameters include bias information, multiple backward scenarios that trend as 
either linear, exponential, harmonic or hyperbolic.  

ü We can also investigate a combined production rate confidence set of intervals based on 
percentile bootstrap methods: P10, P50 and P90. 

CLUSTERING MODULE 

The purpose of the clustering module, Figure 2, is to develop a methodology that enables engineers to 
easily classify wells into groups (called clusters) so that the wells in the same cluster are more similar 
(based on selected properties) to each other than to those in other clusters. 

Cluster analysis can improve engineering convenience in analyzing wells by separating them into groups 
based on decline curve shapes (patterns) and other properties.  

Clustering is an undirected data-mining tool for categorizing and analyzing groups of data dimensions 
having similar attribute characteristics or properties. For analyzing well profiles this methodology consists 
of classifying wells by dividing the field into areas.  
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Figure 2: Clustering the wells by profiling characteristics for each well type 

This method determines the most similar wells and generates a first set of clusters; then it compares the 
average of the clusters to the remaining wells to form a second set of clusters, and so on. There are 
several ways to aggregate wells but the hierarchical method is more stable than the K-means procedure 
and provides more detailed results. Moreover, a displayed dendrogram, see Figure 3, is useful for results 
interpretation or to select the number of clusters appropriate for a subsequent directed data-mining 
technique such as a neural network. 

 

Figure 3: Dendrogram enables a visual discrimination of the cluster methodology 

The following properties for wells could be used as parameters for clustering: 

Å Cumulative liquid production 

Å Cumulative oil or gas production 

Å Water cut (Percentage determined by water production/liquid production) 
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Å B exponent (Decline type curve) 

Å Initial rate of decline 

Å Initial rate of production 

Å Average liquid production 

Leveraging nonlinear multivariate regressions, interpolation and smoothing procedures, principal 
component analysis, cluster analysis and discrimination analysis, it is feasible to divide a field into 
discrete regions for field re-engineering tactics and strategies. The methodology classifies the wells 
according to the production indicators, and divides the field into areas.  

Figure 3 also depicts the importance of visualization by quickly identifying the evolutionary changes of 
profiling the important properties for the producing wells. 

The statistical results can be mapped to identify the production mechanisms; e.g., best producers, 
depletion, and pressure maintenance, ultimately to identify and locate poorly-drained zones potentially 
containing remaining reserves. Field re-engineering can also be optimized by identifying those wells 
where the productivity can be improved. 

DATA MINING MODULE 

These workflows are based on a SEMMA process, see Figure 4, that systematically and logically walks 
through a suite of analytical nodes that Sample the data to capture a population applicable to the 
objective function and thus enables Exploration to uncover trends and surface hidden patterns. 
Subsequent nodes initiate a Modify workflow on the selected data to ensure a robust and cleansed 
version that has been transformed and imputed to preclude the adage ñGarbage in, garbage outò,  
followed by Modeling from a predictive perspective implementing soft computing workflows based on 
regression, neural networks, decision trees, genetic algorithms and fuzzy logic. Finally, an Assessment 
node focuses on the relative merits of the implemented models, resulting in the statistically sound 
analysis that identifies the optimized model or range of probabilistically valid models given a range of 
acceptable confidence intervals. The SEMMA workflows are constrained by prior knowledge provided by 
subject matter or domain experts to ensure valid interpretations throughout the process. A robust data 
input space with reduced dimensionality is also paramount to ensure valid results. The data analyst 
evolves the analytic solution that is underpinned by the SEMMA process for delivery of a solution that can 
be operationalized against real-time data feeds from sensors in intelligent wells. 

Turning increasing amounts of raw data into useful information remains a challenge for most oil 
companies because the relationships and answers that identify key opportunities often lie buried in 
mountains of data. The SEMMA process streamlines the data mining methodology to create highly 
accurate predictive and descriptive models based on analysis of vast amounts of upstream data gathered 
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from across an enterprise.

 

Figure 4: SEMMA process underpins the data mining analytical workflows to build models 

RESERVOIR PRODUCTION MANAGEMENT 

RESERVOIR LIFE-CYCLE 

A reservoir's life begins with exploration, leading to discovery; reservoir delineation and field 
development; production by primary, secondary and tertiary means; and inexorably the final phase of 
abandonment. 

Sound reservoir management necessitates constant monitoring and surveillance of the reservoir 
performance from a holistic perspective as depicted in Figure 5. Is the reservoir performance conforming 
to management expectations? The important areas that add value across the E&P value chain as regards 
monitoring and surveillance involve data acquisition and management from the following geoscientific 
silos: 

¶ Oil, Water and Gas Rates and Cumulative production 

¶ Gas and Water injection 

¶ Static and flowing bottom-hole pressures 

¶ Production and injection well tests 

¶ Well injection and production profiles 

¶ Fluid analyses 

¶ 4D Seismic surveys 

¶ Determine a suite of reservoir performance and field planning workflows:  

o Reservoir surveillance 

¶ Well management  

¶ Well reliability and optimization 

¶ Field management 

¶ Reservoir modeling 

o Reservoir Performance 
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¶ Injection Production Ratio (IPR) monitoring  

¶ Pressure Maintenance 

¶ Sweep Efficiency 

¶ Water and Gas entry detection and diagnostics 

 

Figure 5: The E&P value chain from Exploration through to Abandonment 

Exploratory Data Analysis 

After the bootstrapping workflow has been performed to identify the best temporal windows for type curve 
fitting, the output of the model building that applies decline curve analysis is then collated and visualized 
in an Exploratory Data Analysis (EDA) tool. The EDA suite of workflows surfaces hidden patterns and 
identifies trends and relationships in the input space so as to improve the rigor inherent in the data mining 
workflows that align with the SEMMA process. 

Figure 6 displays some insightful interpretations of the data space output from the bootstrapping and 
forecasting methodologies. We can see the summary page for the decline curve fitting process. It shows 
in the top half the breakout of those models selected for the wells, and the average initial production and 
decline. It is interactive, so if you only want to see wells using the Duong model, you just click the pie 
chart, and it filters the others. Figure 7 is similar in that it highlights any trends in initial production or 
decline rates for the set of wells selected. 
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Figure 6: Visualizations surface hidden patterns 

 

Figure 7: Insightful visualizations of the unconventional resources across the assets under study 
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Reporting 

It is essential in the Oil and Gas industry to generate reports of the analyses as the data-driven models 
developed must evolve with first principles constraining the interpretation. Figure 8 illustrates some 
analytical charting of the decline rates of wells based on the year they started producing, and separated 
by the type of well. All the reporting is done in Visual Analytics Explorer (VAE). This is the aggregated 
production forecast enabling drill-down on the different levels in the hierarchy such as Field, Reservoir 
and Well. 

 

Figure 8: Visual Analytics Explorer depicting aggregated well forecasts across the assets 

Individual Well Forecasting 

Figure 9 shows a typical well, where multiple decline curves have been fit to the historical production 
data. Typically, an engineer does this well by well, and chooses the curve that bests represents the well.  
We have automated this process across multiple wells so as to scale, choosing the best fit for each well 
by querying the RMSE of the model. But we still have the flexibility to use this interface and modify the 
data, exclude periods, and refit the curves. There is a rich array of type curve functionality and data 
management including outlier removal and optimum temporal data selection. Statistical indicators enable 
easy identification of best model fit. For more refined studies we also have water flood algorithms and p/z 
analysis for gas wells. We can apply reservoir rock properties as model constraints and perform What-If 
forecasts manually. 
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Figure 9: SAS Oilfield Production Forecasting enables individual well analysis and data management 

What-IF Simulations 

The process of supply forecasting can be addressed in batch mode if the number of wells under study are 
greater than several thousand. Having identified in VAE those wells that necessitate further independent 
study we can list such problematic wells and analyze the historical production data in the SAS Oilfield 
Production Forecasting web-based Decline Curve Analysis product. This enables reservoir engineers to 
study individual wells that may be outliers from the general type curve fit performed in batch mode. Once 
the forecasted dataset is updated by integrating individual analysis, we can implement the simulations 
that investigate what-if scenarios from a macro perspective. 

The Forecast Studio application allows the engineer to integrate appraisal and economic datasets 
influenced by the current price of hydrocarbons and general sentiment in the Oil and Gas industry. The 
global economy as well as major events that invariably impact the price of a barrel of oil such as political 
unrest and wars can also be included in a simulation that generates varying forecasts. What if we brought 
more wells online or invoked a re-engineering field strategy of a water-drive project to increase oil and 
gas production? Such questions can be answered by adjusting those parameters that are deemed 
influential in Forecast Studio as depicted in Figure 10. 
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Figure 10: Forecast Studio enables What-If scenarios to be studied 

Data-Driven Models 

Data-driven models are the result of adopting data mining techniques. Data mining is a way of learning 
from the past in order to make better decisions in the future. We strive to avoid: 

¶ Learning things that are not true 

¶ Learning things that are true but not useful 

What are the burning issues to be addressed across E&P and downstream? Mining data to transform 
them into actionable information is key to successfully making business sense of the data. Data comes 
from multiple sources in many formats: real-time and in batch mode as well as structured and 
unstructured in nature.  

Soft computing concepts incorporate heuristic information. What does that mean? We can adopt hybrid 
analytical workflows to address some of the most challenging upstream problems. Couple expert 
knowledge that is readily retiring from the petroleum industry with data-driven models that explore and 
predict events resulting in negative impacts on CAPEX and OPEX. The age of the Digital Oilfield littered 
with intelligent wells generate a plethora of data that when mined surface hidden patterns to enhance the 
conventional studies. Marrying first principles with data-driven modeling is becoming more popular among 
the earth scientists and engineers. 

Clustering is one data-mining tool for categorizing and analyzing groups of data dimensions having 
similar attribute characteristics or properties. For analyzing well profiles this methodology consists of 
classifying wells by dividing the field into areas. We adopted the clustering approach to study the results 
of applying the different DCA models across the various reservoirs and wells, identifying the most 
common models across the hierarchy of wells. 
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Figure 11: Cluster analysis to determine economics impacting NPV in completions 

We studied the hierarchy detailed in Figure 11 from geologic formation in each field by reservoir. 
Adopting cluster identifiers and using optimization processes, we optimized well completions that 
reflected maximum Net Present Value (NPV) over time, aggregating to the envelope (solid line), for a 
given price trajectory. We introduced economic factors such as global supply/demand and commodity 
prices across exchanges and futures that could be integrated into a simulation. This methodology helps 
appraisal decisions for new exploration or re-engineering strategies for mature assets. This study is one 
perspective focused on completions strategies; an example of a business problem that can be addressed 
by a comprehensive Reservoir Production Management solution. 

 

Figure 12: Cluster membership of DCA results and completion strategies 

When analyzing parameters formation by formation and guided by cluster membership, see Figure 12, 
we can apply appropriate type curves to generate decline expectations. The simulation analyses the DCA 
results for the well portfolio by well type: horizontal, vertical or multilateral with additional completion 
strategies such as SAGD or fracpac tactics. This can be viewed from a well, reservoir or field level. 


