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ABSTRACT

Competing risks arise in studies in which individuals are subject to a number of potential failure events and the
occurrence of one event might impede the occurrence of other events. For example, after a bone marrow transplant,
a patient might experience a relapse or might die while in remission. You can use one of the standard methods
of survival analysis, such as the log-rank test or Cox regression, to analyze competing-risks data, whereas other
methods, such as the product-limit estimator, might yield biased results. An increasingly common practice of assessing
the probability of a failure in competing-risks analysis is to estimate the cumulative incidence function, which is the
probability subdistribution function of failure from a specific cause. This paper discusses two commonly used
regression approaches for evaluating the relationship of the covariates to the cause-specific failure in competing-risks
data. One approach models the cause-specific hazard, and the other models the cumulative incidence. The paper
shows how to use the PHREG procedure in SAS/STAT® software to fit these models.

INTRODUCTION

In a classical time-to-event situation, an individual can experience the event of interest or be censored. A competing-
risks situation arises when an individual can experience more than one type of event, the occurrence of one event
might hinder the occurrence of other types of events, and only the time to failure for the earliest of these events is
observed. Examples of competing risks are found in many fields, but they are especially prevalent in clinical studies.
For example, competing risks are encountered when cancer patients are followed, and their first event can be local
recurrences, distant recurrences, distant metastases, onset of secondary cancer, or death, which precludes all the
other events.

It has often been pointed out that in the presence of competing risks, the product-limit (Kaplan-Meier) method of
estimating the distribution of time to event by ignoring events of all types other than the one of interest yields biased
results. The assumption that an individual will experience the event of interest if the follow-up period is long enough
does not hold in competing-risks data, because the occurrence of the event of interest can be made impossible by the
occurrence of an earlier competing event. A useful quantity in competing-risks analysis is the cumulative incidence
function, which is the probability subdistribution function of failure from a specific cause. Lin, So, and Johnston (2012)
created a SAS macro that computes the nonparametric estimate of the cumulative incidence function and provides
Gray’s (1988) test for group comparisons.

Several modeling approaches are available for evaluating the effects of covariates on the cause-specific outcome
in competing-risks data (Prentice et al. 1978; Larson and Dinse 1985; Fine and Gray 1999). Two approaches are
especially popular. One approach models the cause-specific hazard of each event separately, by applying the standard
Cox regression for the event of interest and censoring all other observations. The other approach is Fine and Gray’s
(1999) extension of Cox regression that models (the hazards of) the cumulative incidence function.

The next section describes the competing-risks data that are used as an example in the paper. The subsequent
section presents some basic definitions of quantities of interests in competing-risks analysis. The final section shows
how you can use the PHREG procedure in SAS/STAT to perform these regression analyses of competing-risks data.

AN EXAMPLE OF COMPETING-RISKS DATA

Bone marrow transplant is a standard treatment for acute leukemia. Klein and Moeschberger (2003) present a set
of bone marrow transplant data for 137 patients, grouped into three disease categories based on their diagnosis at
the time of transplantation: acute lymphoblastic leukemia (ALL), acute myelocytic leukemia (AML) low-risk, and AML
high-risk. Of the 137 patients in the study, 38 patients were diagnosed with ALL, 54 patients were diagnosed with
AML low-risk, and 45 patients were diagnosed with AML high-risk. There are a number of concomitant variables in the
data set; for simplicity, only the waiting time for transplant is included here.
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During the follow-up period, some patients might experience a relapse of the leukemia or some patients might die
while in remission. The comparison of the disease groups focuses on the occurrence of relapse.

The following statements provide the data. The variable Group designates the disease group of a patient, which is
either ALL, AML low-risk, or AML high-risk. The variable T is the disease-free survival time in days, which is either the
time to censoring, the time to relapse, or the time to death while in remission, whichever occurs first. The indicator
variable Status has three values: 0 for censored observations, 1 for patients who relapse, and 2 for patients who die
before experiencing a relapse. The concomitant variable WaitTime is the waiting time for transplant, in days. Because
this variable has a very large variation, a log transform is applied to stabilize the variance.

proc format;
value DiseaseGroup 1='ALL'

2='AML-Low Risk'
3='AML-High Risk';

data bmt;
input Group T Status WaitTime @@;
logWaittime=log(WaitTime);
format Group DiseaseGroup.;
datalines;

1 2081 0 98 1 1602 0 1720 1 1496 0 127 1 1462 0 168
1 1433 0 93 1 1377 0 2187 1 1330 0 1006 1 996 0 1319
1 226 0 208 1 1199 0 174 1 1111 0 236 1 530 0 151
1 1182 0 203 1 1167 0 191 1 418 2 110 1 383 1 824
1 276 2 146 1 104 1 85 1 609 1 187 1 172 2 129
1 487 2 128 1 662 1 84 1 194 2 329 1 230 1 147
1 526 2 943 1 122 2 2616 1 129 1 937 1 74 1 303
1 122 1 170 1 86 2 239 1 466 2 508 1 192 1 74
1 109 1 393 1 55 1 331 1 1 2 196 1 107 2 178
1 110 1 361 1 332 2 834 2 2569 0 270 2 2506 0 60
2 2409 0 120 2 2218 0 60 2 1857 0 90 2 1829 0 210
2 1562 0 90 2 1470 0 240 2 1363 0 90 2 1030 0 210
2 860 0 180 2 1258 0 180 2 2246 0 105 2 1870 0 225
2 1799 0 120 2 1709 0 90 2 1674 0 60 2 1568 0 90
2 1527 0 450 2 1324 0 75 2 957 0 90 2 932 0 60
2 847 0 75 2 848 0 180 2 1850 0 180 2 1843 0 270
2 1535 0 180 2 1447 0 150 2 1384 0 120 2 414 2 120
2 2204 2 60 2 1063 2 270 2 481 2 90 2 105 2 120
2 641 2 90 2 390 2 120 2 288 2 90 2 421 1 90
2 79 2 90 2 748 1 60 2 486 1 120 2 48 2 150
2 272 1 120 2 1074 2 150 2 381 1 120 2 10 2 240
2 53 2 180 2 80 2 150 2 35 2 150 2 248 1 30
2 704 2 105 2 211 1 90 2 219 1 120 2 606 1 210
3 2640 0 750 3 2430 0 24 3 2252 0 120 3 2140 0 210
3 2133 0 240 3 1238 0 240 3 1631 0 690 3 2024 0 105
3 1345 0 120 3 1136 0 900 3 845 0 210 3 422 1 210
3 162 2 300 3 84 1 105 3 100 1 210 3 2 2 75
3 47 1 90 3 242 1 180 3 456 1 630 3 268 1 180
3 318 2 300 3 32 1 90 3 467 1 120 3 47 1 135
3 390 1 210 3 183 2 120 3 105 2 150 3 115 1 270
3 164 2 285 3 93 1 240 3 120 1 510 3 80 2 780
3 677 2 150 3 64 1 180 3 168 2 150 3 74 2 750
3 16 2 180 3 157 1 180 3 625 1 150 3 48 1 210
3 273 1 240 3 63 2 360 3 76 1 330 3 113 1 240
3 363 2 180
;

You can use Gray’s (1988) test to compare the cumulative incidence functions for relapse among the disease groups;
the comparison is shown in Lin, So, and Johnston (2012). However, if you also want to adjust for some concomitant
variables, such as the effect of the waiting time for transplant, you need to perform a regression analysis. This paper
shows you how to use the PHREG procedure to fit two popular regression models to competing-risks data.
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BASIC QUANTITIES IN COMPETING RISKS

Suppose T and C denote the failure time and censoring time, respectively. For data that have K competing risks, the
pair (X , ı) is observed, where X D min.T; C / and ı D 1; : : : ; K is an indicator that has a value of 0 for censored
observations and other values that designate specific failure causes. For competing-risks data, two useful quantities
are the cause-specific hazard function and the cumulative incidence function:

� The cause-specific hazard function hk.t/ at time t is the instantaneous rate of failure due to cause k. It is
defined as

hk.t/ D lim
�t�>0

P.t < T < T C�t; ı D kjT > t/

�t
; k D 1; : : : ; K

� The cumulative incidence function, denoted by Fk.t/, is the probability of failure due to cause k prior to time t.
It is defined as

Fk.t/ D P.T � t; ı D k/; k D 1; : : : ; K

The cumulative incidence function is also referred to as the subdistribution function, because it is not a true
probability distribution function.

It follows from these definitions that

Fk.t/ D

Z t

0

S.u/hk.u/du D

Z t

0

S.u/dHk.u/; k D 1; : : : ; K

where Hk.t/ D
R t
0
hk.u/du is the cause-specific cumulative hazard function and S.t/ D exp

�
�
PK
kD1Hk.t/

�
is

the overall survival function, which is the probability of surviving beyond time t.

In the absence of competing risks (that is, if K D 1), the failure distribution function F1.t/ D 1 � exp.�H1.t// is
a monotone function of the hazard function h1.t/. This property does not hold in the presence of competing risks,
because the cumulative incidence of an event is not defined solely by its corresponding cause-specific hazard: it also
depends on the cause-specific hazards of the competing events. You can easily construct an example to illustrate
that two groups that have the same cause-specific hazard for an event can have very different cumulative incidence
functions (Gray 1988; Lin, So, and Johnston 2012).

Analogous to the relationship between hazard function and survivor function in the absence of competing risks is the
subdistribution hazard, defined by Fine and Gray (1999), which is the hazard of the cumulative incidence function
Fk.t/,

Qhk.t/ D
d

dt
log.1 � Fk.t//

This subdistribution hazard is a mathematical construct and might not be interpreted as a hazard rate. In the presence
of competing risks, the subdistribution hazard Qhk.t/ is not the same as the cause-specific hazard hk.t/. In terms of
estimating these quantities, the difference is in the risk set. For the cause-specific hazard, the risk set decreases at
each time point when there is a failure of a different cause. However, for the subdistribution hazard, individuals who
fail from a competing cause remain in the risk set until their potential censoring time.

To study the effect of covariates on the cause-specific outcome, you can model the cause-specific hazard function or
you can model the subdistribution hazard function. These two modeling approaches might yield different results.

REGRESSION MODELS FOR COMPETING-RISKS DATA

In competing-risks data, you can evaluate the influence of covariates in relation to the cause-specific hazard or the
subdistribution hazard (the hazard of the cumulative incidence function) of the specific failure type. This section briefly
describes each regression model and then shows how you can use the PHREG procedure to fit the model to the bone
marrow transplant data.

For the i th subject, i D 1; : : : ; n, let Xi , ıi , and Zi .t/ be the observed time, cause of failure, and covariate vector at
time t, respectively. Assume that K causes of failure are observable (ıi 2 f1; : : : ; Kg); ı D 0 indicates a censored
observation. Consider failure from cause 1 to be the event of interest, and consider failures from other causes to be
competing events.
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Modeling the Cause-Specific Hazard

The standard Cox regression is applied to the cause-specific hazard of interest, and competing events are treated as
censored observations. The cause-specific hazard of interest for a subject that has covariate vector Z follows the
proportional hazards assumption

h1.t jZ/ D h10.t/ exp.ˇ0Z/

where h10.t/ is the baseline of the cause-specific hazard of interest and the vector ˇ represents the covariate effects
on the event of interest. In Cox regression, you estimate the parameter vector ˇ by maximizing the partial likelihood

L.ˇ/ D
Y
i

 
exp.ˇ0Zi /P

j2Ri
exp.ˇ0Zj /

!ıiD1

where Ri is the risk set of patients who do not fail or are not censored before Xi .

The following statements use PROC PHREG to fit the cause-specific hazard model for relapse:

proc phreg data=bmt;
class Group / order=internal ref=first param=glm;
model T*Status(0,2) = Group logWaitTime;
hazardratio 'Cause-Specific Hazards' Group / diff=pairwise;

run;

Patients who die while in remission (without experiencing a relapse) have a Status value of 2. To treat these failures
as censored observations, you add the value of 2 to the list of censoring values. The HAZARDRATIO statement
requests the cause-specific hazard ratios for each pair of disease groups.

Patients who die without experiencing a relapse are treated as censored observations. As a result, the data contain
42 patients who have a relapse and a total of 95 censored observations (Figure 1). Figure 2 shows a significant effect
(p = 0.0004) of Group on relapse. The cause-specific hazard ratio estimates of one risk group relative to the other
are displayed in Figure 3.

Figure 1 Failure Summary for Cause-Specific Regression

The PHREG ProcedureThe PHREG Procedure

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

137 42 95 69.34

Figure 2 Cause-Specific Hazard Regression

Type 3 Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

Group 2 15.7564 0.0004

logWaittime 1 1.4071 0.2355
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Figure 3 Pairwise Cause-Specific Hazard Ratios

Cause-Specific Hazards: Hazard Ratios for Group

Description
Point

Estimate

95%
Wald

Confidence
Limits

Group AML-Low Risk vs AML-High Risk 0.197 0.088 0.441

Group AML-High Risk vs AML-Low Risk 5.074 2.268 11.353

Group AML-Low Risk vs ALL 0.342 0.138 0.847

Group ALL vs AML-Low Risk 2.924 1.181 7.238

Group AML-High Risk vs ALL 1.735 0.849 3.546

Group ALL vs AML-High Risk 0.576 0.282 1.178

The hazard of relapse for the AML high-risk patients is 5.1 times that for the AML low-risk patients (95% CI 2.27 to
11.35) and is 1.7 times that for the ALL patients (95% CI 0.85 to 3.55). The hazard of relapse for the ALL patients is
2.9 times that for the AML low-risk patients (95% CI 1.18 to 7.24).

Prediction of the cumulative incidence function from the cause-specific regression model has been studied by Cheng,
Fine, and Wei (1998). It requires estimating the cumulative cause-specific hazards for both the cause of interest and
the competing causes. The variance estimation is especially complicated, and you need special software to do it
(Rosthoj, Andersen, and Abidstrom 2004).

Modeling the Cumulative Incidence

Fine and Gray (1999) introduce a way to model the cumulative incidence function by defining the hazard of the
cumulative incidence function, known as the subdistribution hazard, and impose the proportional hazards assumption
on the subdistribution hazards,

Qh1.t jZ/ D Qh10.t/ exp.ˇ0Z/

where Qh10.t/ is the baseline of the subdistribution hazard of cause 1. The partial likelihood of this proportional
subdistribution hazards model is given by

QL.ˇ/ D
Y
i

 
exp.ˇ0Zi /P

j2 QRi
wij exp.ˇ0Zj /

!ıiD1

The modified risk set QRi at Xi includes patients who are still at risk for the event of interest and also patients who
experience a competing event before Xi . The weights wij are needed as soon as censoring occurs. Patients who
experience no event of interest before Xi are given a weight wij D 1, whereas patients who experience competing
events before Xi are given a weight wij that reduces with time,

wij D
OG.Xi /

OG.min.Xj ; Xi //

where OG.t/ is the Kaplan-Meier estimate of the survival function of the censoring distribution, which is the cumulative
probability that a patient is still being followed at time t.

You estimate the regression coefficients ˇ by maximizing the partial likelihood QL.ˇ/, and you compute the covariance
matrix of the parameter estimator as a sandwich estimate. The methodology has been implemented in the PHREG
procedure in SAS/STAT 13.1.

You fit this proportional subdistribution hazards model in PROC PHREG by using the MODEL statement, where you
specify the failure cause of interest in the EVENTCODE= option.

The following statements use PROC PHREG to fit the proportional subdistribution hazards model:
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proc phreg data=bmt;
class Group / order=internal ref=first param=glm;
model T*Status(0) = Group logWaitTime / eventcode=1;
hazardratio 'Subdistribution Hazards' Group / diff=pairwise;

run;

To designate relapse (Status = 1) as the event of interest, you specify EVENTCODE=1 in the MODEL statement. The
HAZARDRATIO statement requests the subdistribution hazard ratio for each pair of the disease groups.

Out of the 137 transplant patients, 42 patients have a relapse, 41 die while in remission, and 54 patients are censored.

Figure 4 Failure Summary for Subdistribution Hazard Regression

The PHREG ProcedureThe PHREG Procedure

Summary of Failure Outcomes

Total
Event of
Interest

Competing
Event Censored

137 42 41 54

Figure 5 shows a significant effect on relapse among the disease groups (p = 0.0011). The subdistribution hazard
ratio estimates of one disease group relative to another disease group are displayed in Figure 6. The hazard of
relapse for the AML high-risk patients is 4.3 times that for the AML low-risk patients (95% CI 1.99 to 9.39) and is 1.6
times that for the ALL patients (95% CI 0.76 to 3.20). The hazard of relapse for the ALL patients is 2.8 times that for
the AML low-risk patients (95% CI 1.19 to 6.45).

Figure 5 Subdistribution Hazard Regression

Type 3 Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

Group 2 13.6866 0.0011

logWaittime 1 2.1283 0.1446

Figure 6 Pairwise Subdistribution Hazard Ratios

Subdistribution Hazards: Hazard Ratios for Group

Description
Point

Estimate

95%
Wald

Confidence
Limits

Group AML-Low Risk vs AML-High Risk 0.231 0.106 0.503

Group AML-High Risk vs AML-Low Risk 4.323 1.990 9.394

Group AML-Low Risk vs ALL 0.362 0.155 0.843

Group ALL vs AML-Low Risk 2.765 1.186 6.445

Group AML-High Risk vs ALL 1.564 0.763 3.203

Group ALL vs AML-High Risk 0.640 0.312 1.310

The Breslow estimator of the baseline cumulative subdistribution hazard function, denoted by Oƒ10.t/, incorporates
the modified risk sets and the gradual reduction of weights for those subjects who are artificially retained in the risk
set, as in the partial likelihood of the subdistribution model. With time-invariant covariates Z, you can estimate the
cumulative incidence function by

OF1.t jZ/ D 1 � expŒ� Oƒ10.t/ exp. Ǒ 0Z/�

You can predict the cumulative incidence by using the BASELINE statement in PROC PHREG. You use the
COVARIATES= option in the BASELINE statement to specify a data set that contains settings for predicting the
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cumulative incidence function or for displaying the cumulative incidence curves, which are requested here by using
the PLOTS=CIF option in the PROC PHREG statement. The following statements use the PHREG procedure to plot
the predicted cumulative incidence function for each disease group at logWaitTime = 5.2, the median value of the log
of the waiting times:

Data Risk;
logWaitTime=5.2;
Group=1; output;
Group=2; output;
Group=3; output;
format Group DiseaseGroup.;
run;

proc phreg data=bmt plots(overlay=strata)=cif;
class Group / param=glm order=internal ref=first;
model T*Status(0) = Group logWaitTime / eventcode=1;
baseline covariates=risk out=_null_ / rowid=Group;

run;

Figure 7 displays the predicted cumulative incidence for all three disease groups. At any given time after the transplant,
an AML high-risk patient is more likely to relapse than an ALL patient, and an ALL patient is more likely to relapse
than an AML low-risk patient.

Figure 7 CIF of the Three Disease Groups at logTimeWait = 5.2

You do not need to issue two separate calls to PROC PHREG, one for estimating the hazard ratios and one for
predicting the cumulative incidence functions, as presented earlier. The following statements produce the earlier
results when you issue a single call to PROC PHREG:

Data Risk;
logWaitTime=5.2;
Group=1; output;
Group=2; output;
Group=3; output;
format Group DiseaseGroup.;
run;
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proc phreg data=bmt plots(overlay=strata)=cif;
class Group / param=glm order=internal ref=first;
model T*Status(0) = Group logWaitTime / eventcode=1;
hazardratio 'Subdistribution Hazards' Group / diff=pairwise;
baseline covariates=risk out=_null_ / rowid=Group;

run;

CONCLUSION

This paper illustrates the use of the PHREG procedure to fit two popular models to competing-risks data. You fit the
cause-specific hazard model as a Cox regression model by censoring all individuals who did not experience the event
of interest, but prediction of the cumulative incidence function is difficult. On the other hand, the implementation of
Fine and Gray’s (1999) regression in the PHREG procedure in SAS/STAT 13.1 enables you to fit the subdistribution
hazard model and to predict the cumulative incidence function easily.

Although these two models yield very similar results among the disease groups for the bone marrow transplant data
discussed in the paper, that might not be the case with other data. Both approaches work for their respective purposes,
and each might provide useful insights about the covariates (Pintilie 2006; Dignam, Zhang, and Kocherginsky 2012).
Covariate effects in the cause-specific hazard model pertain to the event of interest only, without regard to how the
covariates act on the competing risks. If you are interested in the pure effect (for example, the biological mechanism)
of how a specific characteristic affects an event outcome, the cause-specific hazard model is preferred. But this model
is of little use to patients who must make decisions in the real world, where death from other causes plays a big role.
In such cases, you should consider using the subdistribution hazard model.
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