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ABSTRACT 

Utility companies in America are always challenged when it comes to knowing when their infrastructure 
fails. One of the most critical components of a utility company’s infrastructure is the transformer. It is 
important to assess the remaining lifetime of transformers so that the company can reduce costs, plan 
expenditures in advance and mitigate the risk of failure to a large extent. It is also equally important to 
identify the high risk transformers in advance and maintain them accordingly to avoid sudden loss of 
equipment due to overloading. The objective of this paper is to use SAS® to predict the lifetime of 
transformers, identify the various factors that contribute to their failure and model the transformer into high, 
medium and low risky categories based on load for easy maintenance. The data set used in this study is 
from a utility company in Southwestern United States and contains around 18,000 observations and 26 
variables from 2006 till 2013. Survival analysis is performed on this data. By building a Cox’s regression 
model, the important factors contributing to the failure of a transformer are identified. Several risk based 
models are then built to categorize the transformers into high, medium and low risk categories based on 
their loads. 

INTRODUCTION 

Power transformers are important assets in the utility industry. The loss due to the failure of a transformer 
comprises of costs to replace the transformer as well as the bad reputation of reliability and lack of service 
to customers. In commercial environments, the transformers are operated in high power environment, 
hence chances of their failing due to severe overloading may be higher. The average age of a power 
transformer is 40 years. The Utility Company began storing the age of the transformers from 2006. Hence, 
our survival analysis is to predict life time for these transformers that were installed after 2006. 

The main areas of research in this paper are as follows: 

 Use survival analysis to predict the life time of transformers

 Build non parametric models for failure time data to explore lifetime of transformers based on age
and overloaded strata

 Find important factors that contribute to the failure of the transformer using Cox’s Proportional
hazard model

 Build transformer risk based models to identify the transformers that get overloaded in advance so
that these can be maintained properly

RIGHT CENSORED DATA 

Right censoring occurs when a subject leaves the study before an event occurs, or the study ends before 
the event has occurred. In this study we are looking at a time period of 2006 - 2013. Hence, the transformers 
that have not failed after 2013 are considered to be right censored. In our analysis, we have considered 
data from 2006 to 2013 as shown in the figure below. 
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Figure 1. Right censored data 

DATA COLLECTION AND ANALYSIS 

The data was obtained by merging 12 different tables (as shown in Figure 2). The current table (transformer 
details), the load table (7 different tables containing information on load, temperature, kVA rating and other 
factors from 2006 till 2013), the failures table (failure information of transformers), normal and overloaded 
transformer conditions table were merged together to form one final flat file for the analysis data set. 

 

 

                                                        Figure 2. Data consolidation schematic view 
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Num. Variable Type of Variable Description 

1 Age Continuous/ Response Age of the transformer in days 

2 Avg_temp_f Continuous Average maximum temperature of the transformer 

3 Avg_Loaded_Max Continuous Average maximum load of the transformer 

4 Avg_kVA_Rating Continuous Average kVA rating of the transformer 

5 Normal Continuous Number of times the transformer was normal 

6 Overloaded Continuous Number of times the transformer was overloaded 

7 Indicator Binary / Censor 1 – Old (Failed) 

0 – New (Existing) 

8 Cat_Ind Binary 1 - Commercial 

0 - Residential 

Table 1. Final variables in the analysis data set 

The final data set (Table 1) has variables: age, average kVA, average temperature, average load, 
Indicator=1 (Failed Transformers), Indicator=0 (Censored variables – existing transformers), normal and 
overloaded Conditions for residential (Cat_Ind=0) and commercial transformers (Cat_Ind=1). From the bar 
chart, we can see that there are more number of residential transformers compared to the commercial 
transformers (Figure 3) in the data.  

 

Figure 3. Age of the transformer based on category 

PROBABILITY DENSITY FUNCTION OF FAILED TRANSFORMERS 

Consider a random variable, time, which records survival times. The function that describes likelihood of 
observing time at time t relative to all other survival times is known as the probability density function (pdf), 
or f (t). Integrating the pdf over a range of survival times gives the probability of observing a survival time 
within that interval. 

 

                       
 

 
 



4 

Figure 4. Probability density function of failed transformers 

We can see that risk of transformer failure is higher between the ages of 450-1,650 days and then this 
value decreases drastically as shown in the figure above. 

CUMULATIVE DISTRIBUTIVE FUNCTION OF FAILED TRANSFORMERS 

The cumulative distribution function (cdf), F (t), describes the probability of observing time less than or equal 
to sometime t, or P (Time≤t). The cumulative distribution function is shown below: 

                 F (t) =∫t0 f (t) dt 

 

 

 

Figure 5. Cumulative distributive function of failed transformers 

We can see that probability of transformer surviving till 1,500 days is higher than 50% as shown above.        
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SURVIVAL FUNCTION OF FAILED TRANSFORMERS 

A simple transformation of the cumulative distribution function produces the survival function, S (t):  

                   S (t) =1− F (T) 

 

                                             Figure 6. Survival function of failed transformers 

We can see that the probability of a transformer surviving more than 2,000 days is about 10% as shown 
above. 

CORRELATION 

                              

Table 2. Correlation analysis 

Pearson correlation analysis is performed using PROC CORR and results show that there is not to high 
multicollinearity among the interval input variables. 

KAPLAN-MEIER SURVIVAL ESTIMATION 

This method (also known as product-limit method) produces an estimate of the survival function based on 
complete or censored data. 

 

Where, ni is the number of subjects at risk and di is the number of subjects who fail, both at time ti. Thus, 
each term in the product is the conditional probability of survival beyond time ti, meaning the probability of 
surviving beyond time ti, given the subject has survived up to time ti. The survival function estimate of 
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the unconditional probability of survival beyond time t (the probability of survival beyond time t from the 
onset of risk) is then obtained by multiplying together these conditional probabilities up to time t together. 

 

Table 3. Product-limit survival estimates 

From the above Product-Limit Estimates we find that there are few failures between 0 - 200 days.  

APPLYING LIFE-TABLE METHOD  

Life Table Method allows to estimate survival, probability density and failure rate functions from complete 
or censored data.  

                                                                       

                                                            Table 4. Life-table survival estimates                                                                                          

From, the above life table survival estimates, we find that there is more number of failures in the age interval 
between 500 – 1,000 days and in the interval between 1,500 – 2,000 days. There are fewer number of 
failures after the age of 2,000 days. 
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PROC LIFE TEST BASED ANALYSIS                

AGE BASED STRATUM 

PROC LIFETEST can be used to compute the product-limit estimate of the survivor function for each 
treatment and to compare the survivor functions between the two treatments. PROC LIFETEST is invoked 
here to compute the product-limit estimate of the survivor function for each transformer category and to 
compare the survivor functions between the two categories. 

 

 

                                                          Figure 7. Product-limit survivor plot 

Using PROC LIFETEST across different (Figure. 7) age based strata (Intervals of 250 days from 0 – 3,500 
days), we are able to see a greater decline in survival probabilities from the age of 0 to 1,500 days. This 
gives us an interesting insight that if a transformer is going to fail in a short period of time, it is going to 
predominantly fail in the first 1,500 days. 

 

    Figure 8. Negative Log survival plot 

The Negative log survival plot (Figure. 8) shows us that from 0 to 1,625 days, the survival function seems 
to be straight. This in turn suggest to us that in this stratum the hazard function also increases comparing 
to the other strata. This re-iterates our previous result on short lived transformers.      
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OVERLOAD BASED STRATUM 

        

                                                         Figure 9. Product-limit survivor functions 

Using PROC LIFETEST across different (Figure 9) overload based strata (Intervals of 2 from 0 to 20 times), 
we are able to see that the survival probabilities decreases as the number of times a transformer gets 
overloaded increases. 

 

 

Figure 10. Log – Log survival functions 

The Log negative log survival plot (Figure. 10) shows us that the survival probability of commercial 
transformers decreases faster when compared to those of the residential transformers. 
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SMOOTH HAZARD FUNCTION 

 

                                                                    Figure 11. Smoothed hazard function  

We used a SMOOTH macro that produces non parametric plots of hazard functions using a kernel 
smoothing method (Figure. 11). The macro uses the data set from the OUTSRV statement of the PROC 
LIFETEST. From the output hazard function we are able to see that there are considerable amount of peaks 
at the time period of 1,500-1,625 days. 

PROC PHREG BASED ANALYSIS – SCORE BASED MODEL 

 

                                      Table 5. Regression models selected by score criterion 

The Variable importance is judged through Chi-Square based score criterion (PHREG model). 
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COX’S PROPORTIONAL HAZARD MODEL 

In the Cox’s proportional hazard model, the response variable age is crossed with the censoring variable 
(Indicator = 0 for existing transformers). The other variables used in the model are Overloaded, Normal, 
Avg_temp_f, Avg _kVA_Rating and Avg_Loaded_Max. 

 

 

                                                               Table 6. PHREG model results 

From the PHREG model results with TIES=DISCRETE option we can see that Overloaded, Normal, 
Avg_temp_f and Avg _kVA_Rating (with p<0.05) are the major factors contributing to the hazard of the 
transformers (Table 6). From the SMOOTH hazard macro (Figure 12) that produces non parametric plots 
of hazard functions using a kernel smoothing method, we can see that Group 1 (commercial transformers) 
has a higher hazard rate when compared to Group 0 (residential transformers).  

 

 

                                                                Figure 12. Smooth hazard function 
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                                             Table 7. PHREG model comparison 

Various PHREG models such as Stepwise, Forward, Backward and models with option TIES=EFRON 
(uses the approximate likelihood of Efron (1977)) and options TIES=DISCRETE (replaces the proportional 
hazards model by the discrete logistic model,             

h(𝑡;𝑧)

1−h(𝑡;𝑧)
=

h𝑜(𝑡;𝑧)

1−h𝑜(𝑡;𝑧)
exp (𝑧′′β) 

Where, h0 (t) and h (t; z) are discrete hazard functions that are built.                                 
The R-Square value is computed using the formula, 

 R2= 1 − exp(−
𝐺2

𝑛
)  

G – Likelihood Ratio and n – Sample size 

Using R-Square value as the assessment criterion, we compared the built models and found the PHREG 
model with TIES=DISCRETE to be the best model for this data set. 

MODELING RISK ASSOCIATED WITH OVERLOADING OF TRANSFORMERS 

There are two approaches that can be used in modeling risk associated with the overloading of the 
transformers. The figure below shows the risk categories of transformers based on transformer type and 
average loaded percentage. The average loaded percentage is the average maximum load calculated 
across various years. 

 

Table 8. Risk categories of transformer 

PHREG Model  R-Square                        Variables 

TIES=DISCRETE 0.71 Overloaded, Normal, Avg_temp_f and Avg _kVA_Rating 

TIES=EFRON 0.70 Overloaded, Normal, Avg_temp_f and Avg _kVA_Rating 

Stepwise 0.693 Overloaded, Normal, Avg_temp_f and Avg _kVA_Rating 

Forward 0.692 Overloaded, Normal, Avg_temp_f and Avg _kVA_Rating 

Backward 0.69 Overloaded, Normal, Avg_temp_f and Avg _kVA_Rating 

Type of Transformer Avg_Loaded_Max Risk Category 

Residential >=160% High 

120%<= and <=160% Medium 

<120% Low 

Commercial >=120% High 

100%<= and <=120% Medium 

<100% Low 
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METHOD 1: LOAD BASED LINEAR REGRESSION – WITH AND WITHOUT AGE AS AN INDEPENDENT 

VARIABLE 

In this methodology (Figure 13), the target variable is the continuous variable Average maximum load 
(Avg_Loaded_Max). The independent variables are as shown in the data table (Table 9). After predicting 
the load, it is binned into high, medium and low risk categories based on the risk category (Table 8). 

 

            Figure 13. Method 1 

 

S.NO Variable Type Description 

1 Avg_pf_max Continuous Power Factor of transformers 

2 Avg_Temp _f Continuous Average maximum temperature of the transformer 

3 Avg_Loaded_
Max 

Target/ 
Continuous 

Average maximum load of the transformer 

4 Age Continuous  Age of the transformer in days 

5 Avg_max_kVA Continuous Average kVA rating of the transformer 

6 Normal Continuous Number of times the transformer was normal 

7 Overloaded Continuous Number of times the transformer was overloaded 

8 Cat_Ind Binary Residential - 0 Commercial -1 

    Table 9. Data – Method 1 

 

There are two different data sets used in this research. One data set covers 2006-2013 transformers where 
ages of the transformers are known. Therefore regression modeling is performed on these data with age 
as an input variable. The other data consists of 196,280 transformers where ages of the transformers are 
not known exactly, hence for these transformers regression modeling is performed without age as an 
independent variable. 

DATA PARTITION                                

The data from both the data set is split into 40% training, 30% validation and 30% testing.   

TRANSFORMATION                                                                                                                                                                         

Avg_Loaded_Max, Avg_max_kVA, Overloaded have substantial positive skeweness and hence these 
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variables are log transformed. Avg_temp_f and Normal have moderate positive skeweness and hence 

these variables are square transformed.       

MODEL COMPARISON                                                                                                                                                                              

 

Model Age Training ASE Validation ASE 

Regression (default) Yes 0.53865 0.546903 

Stepwise Regression Yes 0.53865 0.546871 

Forward Regression Yes 0.53865 0.546871 

Backward Regression Yes 0.53865 0.546871 

Decision Tree No 0.22679 0.23081 

Stepwise Regression No 0.24794 0.24570 

Forward Regression No 0.24794 0.24570 

Regression (default model) No 0.24795 0.24567 

   Table 10. Model comparison  

 

Models such as full regression, stepwise selection, backward selection, forward selection regression and 
Decision trees are built with the selection criterion as average square error for the transformers that have 
age as a parameter. From the above output of the model comparison node (Table 10) we can conclude 
that the Decision tree performs better with the lowest average square error.                           

 

Figure 14. Decision tree model output 

LOG_Avg_max_kVA, Cat_Ind, SQR_Avg_temp_max_f, SQR_Avg_pf_max and SQR_Normal are the 
important variables contributing to the transformed load factor in the Decision tree model (Figure 14). The 
predicted Avg_Loaded_max is then binned into appropriate risk categories for residential and commercial 
transformers (Table 8). 
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DATA FOR ANALYSIS – METHOD 2 

Num. Variable Type Description 

1 Avg_pf_max Continuous Power Factor of transformers 

2 Avg_Temp _f Continuous Average maximum temperature of the transformer 

4 Age Continuous  Age of the transformer in days 

5 Avg_max_kVA Continuous Average kVA rating of the transformer 

6 Normal Continuous Number of times the transformer was normal 

7 Overloaded Continuous Number of times the transformer was overloaded 

8 Cat_Ind Binary Residential – 0 Commercial -1 

9 Risk_Category 

 

Target 2/ 
Category 

High, Low and Medium 

 

  Table 11. Data – Method 2 

 

METHOD 2: CATEGORY BASED LOGISTIC REGRESSION - WITH AND WITHOUT AGE AS AN 

INDEPENDENT VARIABLE 

In this methodology, the target variable is the categorical variable Risk_Category. The independent 
variables are as shown in the previous table (Table 11). The load is binned into high, medium and low risk 
categories based on the risk category (Table 8). After binning them into these 3 categories it is predicted 
with the help of a logistic regression (Figure 15). As in method 1, two different data sets are used in method 
2.   

 

                Figure 15. Method 2 

 

DATA PARTITION                              

The data from both the data set is split into 40% training, 30% validation and 30% testing.   

TRANSFORMATION                                                                                                      

Avg_Loaded_Max, Avg_max_kVA, Overloaded have substantial positive skeweness and hence these 
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variables are log transformed. Avg_temp_f and Normal have moderate positive skeweness and hence 

these variables are square transformed. 

 

MODEL COMPARISON 

 

  Table 12. Model Comparison Output 

 

Models such as Stepwise regression, Forward regression, Backward regression and Full regressions are 
built with the selection criterion as Misclassification rate using SAS Enterprise Miner 12.1. From the above 
output of the model comparison node we can see that the Backward Regression model performs better 
with the lowest misclassification rate (0.001598) and Average square error (.000739) in the validation data 
(Table 12). 

 

  

 

 

 

 

Model Age Training 
Misclassification 
Rate 

Validation 
Misclassification 
Rate 

Training 
ASE 

Validation 
ASE 

Stepwise Regression Yes 0.079186 0.078999 0.049572 0.049496 

Backward 
Regression 

Yes 0.00001 0.001598 0.000037 0.000739 

Forward Regression No 0.10802 0.10803 0.083926 0.084147 

Backward 
Regression 

No 0.10802 0.10803 0.083929 0.084151 

Stepwise Regression No 0.10802 0.10803 0.083929 0.084151 

Regression (Default) No 0.10806 0.10815 0.083935 0.084184 
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BACKWARD REGRESSION MODEL RESULTS 

 

 

                                                               Figure 16. Cumulative Lift Chart 

The cumulative lift is higher from a depth of 0 - 60 in Backward Regression compared to Step wise 
Regression which shows good ability of the model to split the categories efficiently at this depth (Figure 16). 

 

                                              Figure 17. Classification Table Results – Backward Regression 

From the classification table results we can see that overall there is 98% accurate prediction in terms of 
risk categories in the validation data set. 

CONCLUSION 

The average age of installed transformers in the United States is 40 years. In our analysis we considered 
short lived transformers (those that were installed after 2006 and failed before 2013). In the short lived 
transformers, we find that predominantly these fail at the age interval of 1,500-1,625 days. From the PHREG 
model, we find that the major factors that contribute to the failure rate of transformers in order of their hazard 
rate are the overloaded count, average temperature, average kVA rating, and the normal condition count 
of the transformers. We find that the commercial transformers fail faster when compared to the residential 
transformers. This makes sense considering the harsher conditions under which the commercial 
transformers operate. Models built to predict the risk factor associated with the transformers suggest that 
age, average kVA rating and normal condition are the important factors contributing to the overloading of 
the transformers. 
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FUTURE SCOPE 

An interactive daily dashboard showing high risky transformers can be built so that transformers can be 
monitored and maintained properly. This can save a lot of cost to the utility companies in terms of repair 
and damage replacement of equipment. This study concentrates on failing of transformers due to 
overloading and aging. There can be many other reasons such as failure of insulation material, 
manufacturing errors, oil contamination, line surge, improper maintenance and lightning which are not 
considered here. Building a comprehensive model in the future, considering all these factors that impact 
the failure of transformers will be a great benefactor. 
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