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ABSTRACT  

Missing data is an unfortunate reality of statistics. However, there are various ways to estimate and deal 
with missing data. This paper explores the pros and cons of traditional imputation methods vs maximum 
likelihood estimation as well as singular versus multiple imputation. These differences are displayed 
through comparing parameter estimates of a known dataset and simulating random missing data of 
different severity. In addition, this paper utilizes the SAS® procedures PROC MI and PROC MIANALYZE 
and shows how to use these procedures in a longitudinal data set.  

INTRODUCTION  

At some point as a statistician, you will come across missing data. It is important to know what the 
common techniques are for handling missing data and what the benefits are to each method. In 
particular, this paper discusses list-wise deletion (also known as complete case analysis), regression 
imputation, stochastic regression imputation, maximum likelihood, and multiple imputation.  

List-wise deletion is perhaps the easiest and simplest method to implement. With this method any 
observation with one more missing values is discarded from the data set. The benefit to this method is 
purely convenience. However, more often than not, there are more disadvantages than advantages. It 
can add a large amount of bias to the data if the “missingness” is related to the observation (i.e. a certain 
group of observations has a higher chance of having incomplete data). In addition, it can reduce sample 
size by a large amount and is particularly destructive in multivariate scenarios where maybe 1 or 2 out of 
10 response are missing. In most cases, it is too much of a gamble to justify using it.  

Arithmetic mean imputation is another simple method that is worth mentioning. Instead of deleting 
observations, you would fill in the missing values with the average of the available cases. To one 
somewhat inexperienced in the statistics world, this method would appear appealing. However, this 
method is a gamble and it is very data dependent. In general, this method can seriously distort the results 
by skewing the parameter estimates. Specifically, this method reduces the variability of the data which in 
turn reduces the effectiveness of measures of association. This method of imputation should be avoided. 
No simulation was done on this method due to the fact that this method’s results vary depending on the 
form of the data. 

Regression imputation (also known as conditional mean imputation) fills missing values with predicted 
values that are generated from a regression equation. Variables tend to be related so it makes intuitive 
sense to use this information to fill in missing values. However, this method can be biased. It overstates 
the correlation between variables and also underestimates the variability of the data. In an attempt to 
resolve these issues, stochastic regression also uses regression equations to predict missing data, but it 
also adds a normally distributed residual term in an attempt to compensate for the natural variability in the 
data. In practice, this method has the highest potential of being unbiased out of the methods discussed so 
far. However, this method can also devalue the standard errors which can lead to a higher risk of type I 
error. In addition it does not reflect the uncertainty of the missing values. 

Another method of dealing with missing data is using maximum likelihood (ML) parameter estimation. 
Rather than filling in data and then estimating parameters, maximum likelihood estimates the mean vector 
and covariance matrix to create a single imputed data set. The way that maximum likelihood estimates 
parameters will depend on the algorithm used. This paper uses the expectation maximization (EM) 
algorithm for ML parameter estimation. This algorithm first estimates the missing value, given the 
observed values in the data. The data is then processed using ML estimation, giving new mean and 
covariance estimates. Using the new estimates, the missing values are again estimated. This process is 
repeated until the maximum change in estimates does not exceed a certain criterion. This method 
requires missing at random values and a large sample size to be effective.  
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Multiple imputation is the last strategy that will be discussed. Instead of attempting to estimate each value 
and using these estimates to predict the parameters, this method draws a random sample of the missing 
values from its distribution. This method involves 3 steps, creating multiple imputed data sets, carrying out 
the analysis model on each of the imputed data sets, and then combining parameter estimates to get a 
single set of parameter estimates. Steps 2 and 3 are fairly mechanical (see documentation), however, 
step 1 requires some planning. The method of choice depends on the patterns of “missingness”. For data 
sets with monotone continuous missing patterns, one can use stochastic regression as discussed earlier. 
For data sets with arbitrary missing patterns, it is suggested to use the Markov Chain Monte Carlo 
(MCMC) method (“Multiple Imputation in SAS: part 1”). In short this is very similar to maximum likelihood. 
It estimates the missing values, obtains new parameter estimates and then uses those estimates to 
predict the missing values again. However, the parameter estimates are derived using Bayesian 
estimation of the mean vector and covariance matrix.  

When using multiple imputation, the number of imputed data sets must be specified and as few as three 
to five data sets can be adequate. However, the larger the percentage of missing data, the more 
imputations are necessary to get an accurate estimate. Unfortunately, there is not a simple criterion to 
determine when MCMC has converged. The technique that is commonly used is to visually inspect the 
parameters from successive iterations to determine if there is a clear trend. If there is no trend, this 
suggests that the model has reached a stationary distribution. In addition, autocorrelation may be 
possible between imputed datasets. It is best to make sure that the new dataset does not have this 
feature. This method requires a fairly large sample size. After the multiple imputation is complete, the 
predetermined model is then used on each set and the parameter estimates are combined to obtain a 
singular set of estimates. 

METHODS 

The primary goal of this paper is to compare and contrast the previously discussed methods of imputation 
for missing data. To do this, various versions of the same data set were simulated with random values set 
to missing. The data used for the simulations was based on a fabricated example data set that measured 
a group of subject’s seizure occurrences within a time period of 2 weeks. Three predictor variables 
(treatment, baseline seizure count, and age) were recorded for 100 observations, where each had 4 time 
periods. For the sake of the simulations, no censoring was incorporated in the fabrication of the data set. 
The general trend of the example data set responses was linear, but this may not be the case for all 
datasets. The results of these simulations are obviously dependent on the dataset and may differ for 
other kinds of data. For example, if responses increase with time, then time points near the end and the 
beginning of the time will be drastically off course.  

 The first step to comparing the methods was deciding on a model to use for the data. The 4 time 
period seizure counts were modeled using the 3 predictor variables: what treatment they were assigned, 
their baseline seizure count, and their age. After the model was fit, the parameter estimates were 
recorded as the “true” parameter values (as a baseline comparison). After that, a certain percentage of 
responses were dropped randomly at the following rates: 5%, 10%, 15%, 20%, and 25%. After imputing, 
the same model previously used was fit, and the new parameter estimates were record and then 
compared across data sets. This was done 1000 times for each of the 5 missing rates. 

 Some of these imputation methods are easy to incorporate in SAS, demonstrating their appeal of 
convenience. List-wise deletion can be done simply by using the DELETE statement as shown in the 
following program. 

   DATA ListWiseExample; 
      SET test; 
      ARRAY var[*] Response1 Response2 ; 
 DO i=1 TO dim(var); 
    IF missing(var(i)) THEN DELETE; 
 END; 
   RUN;  
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 The remainder of the methods, stochastic regression, maximum likelihood estimation and multiple 
imputation can be all run using the MI procedure.  

PROC MI has the following structure: 

   PROC MI <options> 
 BY variables; 
 CLASS variables; 
 [Imputation method]; 
 FREQ variable; 
 TRANSFORM transform (variables </options>); 
 VAR variables; 

 

 The BY statement specifies groups to stratify imputations analysis. The CLASS statement lists 
which variables are categorical variables. If the variable exists in the data set, the FREQ statement 
specifies the frequency of occurrence. TRANSFORM specifies the variables to be transformed before 
imputing. The VAR statement specifies the numeric variables to be analyzed/imputed.  

To choose which imputation method you want, you have 4 options. If the data is missing at random, you 
would use EM (expectation maximization - MLE), FCS (fully conditional specification - Regression), or 
MCMC (Markov Chain Monte Carlo). If you know that your data has monotone missingness, you would 
use the MONOTONE statement to impute. The simulation data example is assumed to be missing at 
random and thus EM, FCS and MCMC are the options that are to be used.  

 To impute data using stochastic regression, the FCS statement is used. Within the FCS 
statement, you can impute using a discriminant function, logistic regression, regression, or predictive 
mean matching. Including the FCS statement will automatically use regression for continuous variables 
and discriminant functions for categorical variables. For each imputed variable, all other variables in the 
VAR statement are used as covariates. An error term is added to each missing observation based on the 
observed variability of the data. As an option, you can specify the set of effect to impute the variables.  

 PROC MI is a procedure designed to do multiple imputations; however, you can use it to do 
single imputations by specifying in the options that NIMPUTE (number of imputations) is equal to 1. In 
addition, in the FCS statement, make sure to include that NBITER (number of burn in iterations) equals 1. 
This will ensure 1 iteration of imputation and 1 set of imputed data. Lastly, to output the imputed data, use 
the OUT = option. The imputation for the example simulation data using stochastic regression is shown in 
the following code. 

   PROC MI DATA = test NIMPUTE = 1 OUT = example3;  
 CLASS Treat; 
 FCS NBITER = 1; 
 VAR Treat B_Count Age Response1 Response2; 
   RUN; 

 
 To use maximum likelihood estimation, instead of using the FCS statement, you would use the 
EM statement. In addition, specify the OUT = option to save the imputed data set. You can also output 
the mean and covariance matrix estimates from the MLE using the OUT = option. Do be aware that as of 
now, PROC MI does not utilize categorical data in MLE estimation, and a dummy variable needs to be 
created if you want to include that information.  

Use the following PROC MI step to utilize MLE:  

   PROC MI DATA = test; 
 EM OUT = example4; 
 VAR Treat B_Count Age Response1 Response2; 
   RUN;  

 

 The last method is multiple imputation using MCMC. Even though there are various options for 
the MCMC statement, only a few were used as a focused for this paper. You can specify whether or not a 
single chain is used for all imputations or separate chains are used for each imputation. You can also 
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include a PLOTS option to view both the trace and autocorrelation function plots. This allows you to 
ensure convergence and independence in your iterations. You can specify the number of imputed data 
sets in the PROC MI statement using the NIMPUTE option. To output the imputed data sets, specify OUT 
= option in the PROC MI statement. The default number of burn-in iterations is 200. The MCMC 
imputation for the simulation example is shown in the following code. 

   PROC MI DATA = test NIMPUTE = 6 OUT = example5; 
 MCMC CHAIN = MULTIPLE PLOTS = TRACE PLOTS = ACF; 
 VAR Treat B_Count Age Response1 Response2; 
   RUN; 

 

 Now that you have your missing data imputed multiple times, you can run your model and obtain 
your estimates for the model parameter estimates. For this paper, a multivariate regression model was 
used. You need to specify the OUTEST option so that a data set containing parameter estimates is 
output. Another way to output a data set of parameter estimates would be to use the ODS OUTPUT 
option. It is important to also include the COVOUT option for the next step, as shown in the following 
code. 

   PROC REG DATA = example5 OUTEST = regout COVOUT; 
 MODEL Response1 Response2 = Treat B_Count Age;  
 BY _imputation_; 
   RUN; 

 

For the multiple imputation a new procedure needs to be used, the MIANALYZE procedure. This 
procedure summarizes the multiple imputations and provides parameter estimates.  

PROC MIANALYZE has the following structure: 

   PROC MIANALYZE <options>; 
 BY variables; 
 CLASS variables; 
 MODELEFFECTS effects; 
 <label:> TEST equation1<,...,<equationk>></options>; 
 STDERR variables; 

 
 The BY and CLASS statements have the standard uses. The required MODELEFFECTS 
statement lists the effects to be analyzed. The TEST statement tests linear hypothesis around the 
parameters. If the data analyzed includes both parameter estimates and standard errors as variables, use 
STERR statement to list the standard errors associated with effects. For the simulation in this paper, 
because there are multiple responses, some alterations are necessary for the MCMC imputation analysis 
to work. After PROC MI and PROC REG, you must use PROC MIANALYZE separately on each response 
variable. If no BY statement is used, an error statement about within-imputation COV matrix not being 
symmetric will appear. In addition, after PROC REG is finished, the dataset is sorted by imputation, not by 
the response variables. Therefore, a PROC SORT is also necessary as shown in the following code.  

   PROC REG DATA = MCMCimp OUTEST = regMCMCout COVOUT; 
 MODEL Response1 Response2 = Treat B_Count Age;  
 BY _imputation_; 
   RUN; 

 

   PROC SORT DATA = regMCMCout; 

 BY _DEPVAR_; 

   RUN; 

 

   PROC MIANALYZE DATA = regMCMCout; 

 BY _DEPVAR_; 

 MODELEFFECTS Treat B_Count Age; 

   Run; 
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It is important to note that both PROC MI and PROC MIANALYZE are only appropriate with single-level 
observations. That is, if data has observations that are nested within clusters, these methods are not 
appropriate as they may result in variance estimates based toward zero and possible other biased 
parameters (Mistler, 2013).  

 When comparing methods, two things were of interest for this paper. How far the simulated 
parameter estimates were from the “true” parameter estimates and how far the simulated standard 
deviation estimates were from the “true” standard deviation. Bias was calculated in the following way.  

Parameter Estimate Bias = 𝛽 − 𝑏𝑖 

Standard Deviation Bias = 𝜎𝛽 − 𝑠𝑏𝑖
 

In addition, the mean square error of the parameter estimate bias for each percentage and overall were 
investigated. MSE was calculated in the following way.  

MSE for each percentage = ∑ ∑ [(𝑏𝑖𝑗 − 𝛽)
2

]1,000
𝑖=1 /(4 𝑥 1,000)4

𝑗=1  

MSE Overall = ∑ ∑ ∑ [(𝑏𝑖𝑗𝑘 − 𝛽)
2

]/(51,000
𝑖=1

4
𝑗=1 𝑥 4 𝑥 1,000)5

𝑘=1  

Where i is simulation iterations, j is dependent variable, and k is percentage.  

Lastly, how the methods were related to each was also of interest. Because each method was used on 
the same simulated missing dataset, methods that are similar to each will most likely both estimate either 
high or low on the same dataset. A scatterplot matrix of the parameter bias is provided to further explore 
this.  

RESULTS 

MEAN SQUARE ERROR 

After completing the simulations, the measured mean square error (MSE) was obtained for each method. 
Table 1 displays the MSE for each method by percentage of missing observations as well as overall 
MSE.  

 

Percentage List-Wise 
Stochastic Re-

gression 
MLE MCMC 

5 0.319177 0.154360 0.072803 0.082472 

10 0.712898 0.265906 0.150776 0.170686 

15 1.253279 0.437186 0.244857 0.277702 

20 2.144380 0.616171 0.354181 0.399573 

25 3.232556 0.784034 0.451530 0.517979 

Overall 1.532458 0.445531 0.254829 0.289682 

 

Table 1. Mean Square Error for Each Method at Various Percentages of Missing Data   
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For each of the methods investigated, the MSE increased as the percentage of missing observations 
increased. List-Wise had the highest MSE for each percentage and overall. In addition, MLE had the 
lowest MSE of the four methods for each percentage and overall. 

BIAS 

As previously mentioned, the different Bias Estimates for our data were also recorded. Table 2 displays 
the parameter estimate bias (while Table 3 displays the sample SD bias) for each method. In addition 
both tables provide 95% confidence intervals on the biases. If the confidence interval does not contain 
zero, the method at that percentage was considered to be biased either high or low, as shown in bold. 
That is, a biased high estimate will have a confidence interval with only positive bounds and vice versa. 
Otherwise, the method was considered to be unbiased.  

 

Missing Percentage 5 10 15 20 25 

List-Wise Deletion 

Mean 0.0028 0.0031 0.0191 -0.0106 -0.0025 

CI 
(-0.0044, 
0.0100) 

(-0.0069, 
0.0132) 

(0.0070, 
0.0313) 

(-0.0249, 
0.0036) 

(-0.0180, 
0.0130) 

Stochastic Regression 

Mean 0.0176 0.0170 0.0355 0.01515 0.0166 

CI 
(0.0067, 
0.0286) 

(0.0010, 
0.0330) 

(0.0151, 
0.0560) 

(-0.0092, 
0.0395) 

(-0.0108, 
0.0441) 

MLE 

Mean 0.0124 0.0165 0.0479 0.0210 0.0309 

CI 
(0.0041, 
0.0208) 

(0.0045, 
0.0286) 

(0.0326, 
0.0632) 

(0.0026, 
0.0395) 

(0.0101, 
0.0517) 

MCMC 

Mean 0.0135 0.0140 0.0484 0.0199 0.0314 

CI 
(0.0046, 
0.0224) 

(0.0012, 
0.0268) 

(0.0321, 
0.0647) 

(0.0003, 
0.0395) 

(0.0091, 
0.0537) 

 

Table 2. Parameter Estimate Bias and Confidence Interval for Each Method at Various Percentages of 
Missing Observations.   

In terms of parameter estimates, biases performed in the following way. List-Wise was in general 
unbiased, except for at 15% missing. This is most likely an artifact of the fact that the data was missing at 
random, and not due the particular missing percentage. Because the data were missing at random, we 
essentially have a smaller sample size when using this method and our expected parameter estimate 
would not change. However, for the other methods they were in general biased high. MLE and MCMC 
were biased high for all percentages while Stochastic Regression was biased high only for 5%, 10% and 
15%. 

Missing Percentage 5 10 15 20 25 

List-Wise Deletion 

Mean -0.1092 -0.2414 -0.3893 -0.5725 -0.7943 

CI 
(-0.1152,  
-0.1032) 

(-0.2513,  
-0.2316) 

(-0.4034,  
-0.3751) 

(-0.5918, 
 -0.5533) 

(-0.8199, 
 -0.7686) 
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Stochastic Regression 

Mean -0.0055 -0.0092 -0.0143 -0.0057 -0.0046 

CI 
(-0.0085, 
-0.0025) 

(-0.0134,  
-0.0050) 

(-0.0194, 
 -0.0093) 

(-0.0119, 
0.0005) 

(-0.0115, 
0.0022) 

MLE 

Mean 0.0173 0.0355 0.0509 0.0789 0.1012 

CI 
(0.0144, 
0.0201) 

(0.0315, 
0.0632) 

(0.0461, 
0.0556) 

(0.0731, 
0.0848) 

(0.0948, 
0.1076) 

MCMC 

Mean -0.0302 -0.0615 -0.0965 -0.1189 -0.1506 

CI 
(-0.0333, 
 -0.0271) 

(-0.0661, 
 -0.0570) 

(-0.1023,  
-0.0908) 

(-0.1261,  
-0.1116) 

(-0.1589, 
 -0.1423) 

 

Table 3. Standard Deviation Bias and Confidence Interval for Each Method at Various Percentages of Missing 
Observations.   

The last output provides a comparison of bias for each method. Figure one displays these comparisons.  

 

Figure 1. Scatterplot Matrix of the Parameter Estimate of each Method.  
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CONCLUSION 

As seen above, the MSE for MLE and MCMC were consistently the smallest out of the four methods. For 
each increase in missing percentage, list-wise deletion’s MSE increased on average by 0.728. 
Regression increased on average by 0.157, MLE by 0.095, and MCMC by 0.109. Based on this, it 
appears MLE and MCMC deal with higher missing percentages better than the other methods.  

For the parameter estimates, List-Wise Deletion was unbiased the most. However this result cannot be 
expected across all data sets. The unbiasedness of the results is due to the fact that the simulation data 
was designed to be missing at random. However, the slightest relationship between observations and 
their completeness will skew the parameter estimates. The next best method based on the simulation is 
stochastic regression. If your data is linear with respect to both predictor variables and response 
variables, stochastic regression imputation will be the most precise method. However, unless this is 
known a priori, it is safer to use MLE and MCMC as they are more robust methods.  

For the standard deviation (SD) estimates, the List-Wise Deletion underestimated the standard deviation 
consistently and severely. Stochastic Regression underestimated for smaller percentages of missingness, 
but for 20% and 25%, the SD estimate was on point. MLE overestimated consistently for all missing rates 
and MCMC underestimated consistently. However, none of them are as drastic as the list-wise deletion 
method. 

The scatterplot matrix reveals a couple of interesting things. MCMC and MLE imputation methods appear 
to be very similar to each other. Regression also appears to be equally related to MLE and MCMC. 
However list-wise deletion is nothing like the other methods and is fairly inconsistent.   

For this analysis to be truly comprehensive, the same method should be used on various datasets with 
different attributes. In addition, as an improvement on the methods used here, a greater population of 
observations could be created that could be sampled from and then each sample would have random 
recordings removed. Plans for future analysis include exploring datasets with categorical responses and 
using different models to see how each method estimates.  
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