
1 

Paper 2103-2015   

Preparing Students for the Real World with SAS® Studio 
AnnMaria De Mars, National University  

ABSTRACT  

A common complaint of employers is that educational institutions do not prepare students for the types of 
messy data and multi-faceted requirements that occur on the job. No organization has data that 
resembles the perfectly scrubbed data sets in the back of a statistics textbook. The objective of the 
Annual Report Project is to quickly bring new SAS® users to a level of competence where they can use 
real data to meet real business requirements. Many organizations need annual reports for stockholders, 
funding agencies, or donors. Or, they need annual reports at the department or division level for an 
internal audience. Being tapped as part of the team creating an annual report used to mean weeks of 
tedium, poring over columns of numbers in 8-point font in (shudder) Excel spreadsheets, but no more. No 
longer painful, using a few SAS procedures and functions, reporting can be easy and, dare I say, fun. All 
analyses are done using SAS® Studio (formerly SAS® Web Editor) of SAS OnDemand for Academics. 
This paper uses an example with actual data for a report prepared to comply with federal grant funding 
requirements as proof that, yes, it really is that simple. 

INTRODUCTION  
My first few years in business, I refused to hire anyone right out of a masters or Ph.D. program. The only 
experience they had was with perfect data from the back of statistics textbooks while our companies, in 
contrast, deal with nothing but messy data collected and entered by people who sometimes seem to be 
on a mission to make our lives difficult. In the past 15 years teaching as an adjunct professor, I am 
determined not to be part of the problem. By the second week of class, all of my students will be exposed 
to real data, and they are required to complete projects that are identical to what they will be required to 
do on the job. 

The software formerly known as SAS Web Editor 

This example uses SAS Studio, which is available free to students and faculty using SAS On-Demand. 
There are a few limitations of SAS Studio that professors (and their students) should keep in mind when 
deciding whether to use it: 

• Only the professor can upload data to the course directory, 
• Certain procedures are not available, most noticeably, PROC IMPORT for Excel files, 

because the web editor runs on Unix server 
• Saving permanent SAS datasets to the course directory is not an option for students. 

 

These drawbacks are outweighed by the significant advantage of being able to have data made available 
to students from off-campus and the fact that all statements in SAS Studio will run exactly as written on 
any machine with a regular SAS license. The primary objective of this assignment was to give students 
experience using real data to meet real requirements of doing business. That is, when students finish the 
course projects, they have experience that is directly transferable to the workplace. Gaining a bit of 
familiarity with Unix is also a plus. A second objective is to learn some of the basic statements, 
procedures and functions that can enable a student or new employee to become productive with SAS in a 
very short period of time. 

THE PROBLEM 
Many federally-funded programs require an annual progress report. This course assignment uses data from the first 
year of a Small Business Innovation Research Award from the U.S. Department of Agriculture. The 
purpose of this grant was to develop and test educational games that teach mathematics for grades three 
through six. Two games were developed in the first grant year. The assignment was designed to mirror 
the typical steps in reporting; taking an inventory of the data sets available, reading data sets into SAS 



Preparing Students for the Real World with SAS®  Studio 

 

2 

when necessary, a first pass at cleaning the data, automating the data cleaning, scoring measures, 
descriptive statistics, tables and graphs. It should be noted that while students all have some basic 
knowledge of statistics, it is assumed that this is their first experience using SAS. 

STEP 1: PROC DATASETS, OR, WHAT HAVE WE HERE? 
PROC DATASETS is a very versatile procedure and we’re going to use it twice in this project. The first 
pass is just to see what datasets we have available. 

libname mydata  "/courses/abc123x456/sgf15/";  

 proc datasets library= mydata ; 

This produces a listing of all of the datasets in the directory specified in the LIBNAME statement. Partial 
output is shown below. 

 

 

 

 

 

 

 

Output 1. Output from a PROC DATASETS Statement 

The file size seems reasonable and the date last modified fits with the cut-off for data collection for the 
year, so it is clear these are the most current data. However, two games were developed, and the only 
data sets are for one game, Spirit Lake. 

STEP 2: PROC IMPORT 
Whenever possible, I try reading in the data using the IMPORT procedure, because, as can be seen 
below, it is very simple. There is no need to declare variable lengths, type or names. Only three 
statements are required. 

proc import out= work.studentsf datafile=  

"/courses/abc123x456/sgf15/Fish_students.csv" dbms=csv replace; 

getnames=yes; 

datarow=2; 

This PROC IMPORT statement gives the location of the data file, specifies that its format is csv (comma 
separate values), the output file name is studentsf, in the work directory and that if the file specified in the 
OUT= option already exists, I want it to be replaced.  

 NOTE: You’re working with Unix now. That means when SAS checks for your data file name and 
path, it is case-sensitive. If your dataset is named fish_students.csv the statement above will 

return an error. 

The next statement in the procedure will cause SAS to get the variable names from the first row in the file. 
Since the variable names are in the first row of the file, the data begins in row 2. 

LIMITATIONS OF PROC IMPORT 

As handy as it can be, PROC IMPORT has its limitations. Three we ran into in this project are: 

• Excel files cannot be uploaded via FTP to the SAS server, so , no PROC IMPORT with Excel if 
you are using the SAS Studio, 

# Name Member Type File Size Last Modified 

1 SLPOST_SCORED DATA 208896 03/20/2015 07:59:51 

2 SLPRE_SCORED DATA 487424 03/20/2015 07:59:51 

3 SL_ANSWERS DATA 619520 03/20/2015 07:59:52 

4 SL_PRE_POST DATA 196608 03/20/2015 07:59:52 



Preparing Students for the Real World with SAS®  Studio 

 

3 

• If the data that you want to import is a type that SAS does not support, PROC IMPORT attempts 
to convert the data, but that does not always work. 

• For delimited files, the first 20 rows are used to determine the variable attributes. You can give a 
higher value for the number of rows scanned using the GUESSINGROWS statement, but you 
may have no idea what that higher value should be. For example, the first 300 rows may all have 
numbers and then the class that was records 301-324 has entered their grade as “4th” instead of 
the number 4. 

STEP 3: WHEN PROC IMPORT FAILS, USE A FILENAME AND DATA STEP  

In the third step, we use a FILENAME, DATA, INFILE and INPUT statement 

filename inf3 "/courses/abc123x456/sgf15/Fish_pretest.csv" ; 

data pretestf ; 
 infile inf3 firstobs = 2 delimiter = "," missover ; 
 attrib username length = $16. ans18 length = $20.  ; 
 input date_test $ username $ age school  $ grade  ans18 $  ; 

 

Note that the FILENAME statement includes the name of the file, unlike the LIBNAME statement, which 
only includes the complete path for the directory. This makes sense if you think about it for a minute, 
because in the LIBNAME statement you are referencing a directory where many SAS files may be 
stored, while the FILENAME statement refers to a specific file. I only mention this because a common 
error for new SAS users is leaving off the name of the file. 

The DATA statement creates a temporary dataset named pretestf. With the SAS Web Editor, students do 
not have permission to write permanent datasets to the course directory. 

The INFILE statement links back to the FILENAME statement with the fileref – in this case, inf3. Again, 
the data are in the second line of the file, so the first data observation read will be in line 2. The delimiter 
between fields is a comma. When SAS runs out of data, say, a student did not answer question number 
18, I want the field to be set to missing. Without that option, SAS would go on to a new line when it ran 
out of data. 

The ATTRIB statement is used to assign variable attributes – length, format, informat and labels. It can 
also be used to reorder variables in an existing data set. In this case, we want to set the length of 
selected variables. The maximum username assigned to students was 12 characters, but because they 
occasionally made errors typing in their names and added extra characters, we are going to assign the 
username a length of 16 in each data set and fix the data entry errors in a later step. 

With variable lengths already assigned, the INPUT statement is simply a list of the variable names, in the 
order they occur in the data set, remembering to put a $ after each character variable. 

STEP 4: TAKE A FIRST LOOK AT THE DATA  

If there was only one lesson I could drill into anyone who will be doing data analysis, it would be this – 
Before you do anything else with a data set, look for data problems. Your problem could be the same 
username showing up many times when it should be unique, out of range variables like the 99-year-old in 
fourth grade, usernames that should not show up but do, e.g. the answer keys used for scoring and our 
interns who acted as game testers. 

What you find will vary widely from one project to another, but you are almost guaranteed to find 
something that will skew your results if you don’t fix it. This is a reality check. The particular PROCs you 
use may also vary but I’d recommend always using PROC MEANS to examine all of your numeric 
variables.  I used an option to set the maximum decimals equal to two because that seemed easier to 
read and more than sufficient with variables like age and grade. 

proc means data= studentsf maxdec=2; 



Preparing Students for the Real World with SAS®  Studio 

 

4 

Variable N Mean Std Dev Minimum Maximum 
Age 

Grade 

494 

494 

12.65 

4.64 

9.65 

0.96 

0.00 

1.00 

100.00 

7.00 

Output 2. Output from a PROC MEANS Statement 

I can tell at a glance that the number of subjects in this data set is about what I expected. The mean and 
standard deviation for age are a little high and it is apparent why when I look to the right and see that the 
minimum age entered was 0 and the maximum was 100. The grade distribution could be correct. Our 
games are designed for fourth through sixth graders, but we do have a few gifted children in grades 1-3 
that use the games, as well as students in middle school who are below grade level. Still, I’d better do a 
PROC FREQ just to be sure. 

proc freq data = studentsf ; 

 tables grade username ; 

grade Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

1 7 1.42 7 1.42 

2 1 0.20 8 1.62 

3 21 4.25 29 5.87 

4 190 38.46 219 44.33 

5 208 42.11 427 86.44 

6 49 9.92 476 96.36 

7 18 3.64 494 100.00 

Output 3. Output from a PROC FREQ 

The frequency distribution by grade looks exactly as I had expected, with one classroom each of 
advanced third-graders and not so advanced seventh- graders. There is one first-grader who is an outlier. 
It’s all good and nothing further needs to be done with this variable. 

I also included the username in the TABLES statement because I had good reason to be concerned there 
were problems there, plus I knew I had less than 500 records. 

After users are familiar with some standard procedures, there are many good methods for automating the 
data quality checks. I’ve written about it previously myself (De Mars, 2012).  

NOTE: You would often not want to do a frequency distribution with usernames because a large 
dataset might have hundreds of thousands, or even millions, of unique names. Know your data! 

STEP 5: LOVE THOSE CHARACTER FUNCTIONS 

Our first pass at fixing the data makes ample use of functions. Beta testers – teachers, staff, interns – 
played the game but their data should be deleted from the datasets for the annual report. There is also a 
problem with data entry errors. The subjects in this study were children in grades three through six and 
they frequently mistyped their usernames.  SAS has a wealth of character functions and this is a first 
opportunity to get to know and love three of them. 

username = compress(upcase(username),'.  ') ; 

The UPCASE function, not surprisingly, changes the value of a variable to upper case.  The COMPRESS 
function, if given only the variable as an argument, will remove blanks from a value. You can, however, 
include additional characters to remove. Since many of the students entered their names on some days 
as JohnDoe and others as John.Doe , we are removing both blanks and periods. 



Preparing Students for the Real World with SAS®  Studio 

 

5 

Here is a general tip. Any time you find yourself thinking, “Gee it would be nice if SAS did thing X”, it is 
a pretty good bet that someone else thought the same idea and there is a function for it. The INDEX 
function is a perfect example of that. Our testers played the games many, many times and used 
usernames like “tester1”, “this.test”, “skippy the tester” or “intern7”.  

“Wouldn’t it be nice if there was way to find out whether a given string appeared anywhere in a value?” 

Enter the INDEX function, which does exactly that. This function is case-sensitive, but since we 
already converted the username to upper case above, that is no problem for us. The statement below will 
do exactly what we want. 

if index(username, “TEST”) > 0 or index(username,”INTERN”) > 0 then delete ; 

 

The INDEX function returns a number that is the starting position in the string of the substring we are 
trying to find. So, in “skippy the tester”, the value is 12, in “tester1” it is 1.  If the string is not found, the 
value is 0. 

STEP 6: %INCLUDE IS YOUR FRIEND 

This report uses eight datasets that all have the same problems with the usernames. In addition to 
needing to remove every username that contained the word “test” or “intern” we also needed to delete 
specific names of the classroom teachers who had played the game. We needed to correct names that 
were misspelled. Here are a few examples of a very long list of statements: 

 

if username in("MSDMARIA","1ANSWERKEY","MSDELAPAZ","MSCARRINGTON") then 
delete ; 

 if username = "GRETBUFFALO" then username = "GREYBUFFALO" ; 

  else if username = "HALFHORES" then username = "HALFHORSE" ; 

 else if username ="TTCARLSON18TTCARLSON18" then username = 
"TTCARLSON18" ; 

These problems occurred in every dataset. A second problem found when looking at the contents of 
each of the 8 datasets was that the username variable was not the same length in all of them, which 
could cause problems later when they were to be merged together or concatenated.  Also, now that all of 
the usernames have been cleaned up, none should be over 12 characters in length. Wouldn’t it be nice if 
there was a way to just get the first n characters of a string? Enter our fourth character function, substr, 
which returns a substring of a variable beginning at any position and for as many characters as you like. 
Problem solved. 

newid = substr(username, 1, 12) ; 
 

It seems pretty inefficient to write this set of statements eight times in eight different data sets. Also, next 
year we will have another eight data sets, and some will have these same students’ usernames and same 
problems. Wouldn’t it be a lot easier to have these statements in one place and add to the “fixnames.sas” 
file whenever we find a new problem? So, now we have the write once, use anywhere solution of 
%INCLUDE. 

What %INCLUDE does 

The %INCLUDE statement references lines from an external file and processes them immediately. It has 
almost the exact same effect as if you had copied and pasted those lines write into your program. The 
exception that makes it “almost” is that a %INCLUDE statement must begin at a statement boundary.  
That is, it has to be either the first statement in your program or occur after a semi-colon ending a 
statement as in this example. 

data studentsf ; 



Preparing Students for the Real World with SAS®  Studio 

 

6 

 infile inf delimiter = "," missover ; 

 attrib teacher length = $12. username length = $ 16. ; 

 input username $ age sex $ grade school $ teacher $ ; 

 %include "/courses/abc123x456/sgf15/fixnames.sas" ; 

Also, you need to think about it as if you had copied and pasted those lines into your program. Is it still 
valid code? Whenever using %INCLUDE, you should make sure the code runs in your program as 
expected, with no errors, before cutting it out and making it an external file. 

To source or not to source 

The default is not to show the statements that were in the included file. Generally, this is desirable. This is 
code you have already debugged and if you are using it multiple times (otherwise, why bother with the 
%INCLUDE), having the same 20 lines repeated 8 times in your log just makes it harder to debug. 

Professors might want to use real data but hide all of the messy data handling from the students initially in 
fear they would run screaming for the door. I meant, professors might want to gradually introduce SAS 
statements and functions for data handling. In either case, students could use the %INCLUDE statement 
as shown in the example above. 

To see the code include in your log is quite simple, just add a source2 option as shown.  

%include "/courses/abc123x456/sgf15/fixnames.sas" /source2 ; 

It will be in your log as follows 

NOTE: %INCLUDE (level 1) file "/courses/abc123x456/sgf15/fixnames.sas is file  
       "/courses/u_mine.edu1/wuss14/fixnames.sas. 
 419       +username = compress(upcase(username),". ") ;  
 420       +if (index(username,"TEST") > 0 or index(username,"INTERN") > 0  
 
The + signs next to each statement denote it was in the included file. 

WHAT HAVE WE HERE- AGAIN 

Now that we have cleaned up the data in every data set, we are not quite ready to start merging them 
together. A common problem is that data sets have different names, lengths or types for the same 
variable. You’d be wise to check the variable names, types and lengths of all the variables. 
 

proc datasets library= work ; 
contents data = _all_ ; 

 
You may recognize the code above as what we did in Step 1. This time, we added another statement. 
The “contents data = _all_ “ will print the contents of all of the data sets. In perusing the contents, I see 
that grade is entered as character data in one – 5th, 4th and so on, while it is numeric data in another. This 
is the sort of thing you never run into in “back of the textbook” data, but that shows up often in real life. 
 

NOTE: If you had hundreds of data sets in your library, or even a few data sets with thousands of 
variables, this is going to give you more output than you want to wade through. This should 
seldom be the case in a working directory, and almost never in a working directory in a classroom 

setting. 

STILL LOVE THOSE CHARACTER FUNCTIONS 

If only there was a way to eliminate every alphabetic character – and what did we just discuss about 
whenever you caught yourself saying that? 
 

nugrade=compress(upcase(grade),'ABCDEFGHIJKLMNOPQRSTUVWXYZ ') + 0 ; 
  drop grade ; 



Preparing Students for the Real World with SAS®  Studio 

 

7 

This use of the COMPRESS function does exactly that, removes every alphabetic character. Since we 
used the UPCASE function first, we only need to worry about the upper case letters. Adding a zero as the 
variable is created will make it numeric. 
 
Maybe counting Steps 1 and 5 again is cheating, but it also highlights two important points. First, data 
cleaning and analysis is an iterative process. You often don’t catch all of the problems on the first pass 
through the data. Second, you can be a pretty effective programming by applying a small number of steps 
over and over. This is not  to say you shouldn’t branch out and learn new techniques, you should, but it is 
encouraging to know that you can accomplish quite a lot with a handful of trusty statements and 
functions. 

STEP 7: IT’S ALWAYS GOOD TO KEEP YOUR OPTIONS OPEN 

When merging data sets, it can be useful to keep a record of the source of the data. The IN = option does 
just that. It creates a variable that is 1 if you the record came from a particular data set and 0 otherwise. A 
fact that may throw off the new programmer is that values of IN= variables are available to program 
statements during the DATA step, but the variables are not included in the SAS data set that is being 
created. Once your data step is ended, the s and f variables created in the example below are gone. If 
you want to keep that information, you need to assign those values to a new variable you create, as 
shown below.  
 

Data allstudents ; 
 set sl_students (in = s rename =(nugrade= grade)) studentsf (in=f) ; 
 if s then game = "SPIRIT" ; 
  else if f then game = "FISH  " ; 

 
It is also helpful to rename variables “on the fly” so that the variable names will match in the output 
dataset. Note the TWO sets of parentheses  dataset_name (rename = (oldname = newname))  . That is 
not a typing error. Yes, you need two sets of parentheses. Because SAS sets variable length from the 
first occurrence in the data set, I add two spaces after the word FISH so that the variable length would be 
set as six.  
 
I don’t need a procedure at all to find the first number for my report, “How many total student records do 
we have? “ All I need is to look in my SAS log. 

NOTE: There were 1464 observations read from the data set WORK.SL_STUDENTS. 
 NOTE: There were 503 observations read from the data set WORK.FISH_STUDENTS. 
 NOTE: The data set WORK.ALLSTUDENTS has 1967 observations and 9 variables. 

PROC FREQ AND FINALLY SOME RESULTS 

The FREQ procedure is my favorite and its versatility is often overlooked. It can do so much more than 
just produce frequency tables. Let’s start with answering a few questions. We know that some students 
are in our database multiple times. These aren’t necessarily errors. They may have finished the game 
and then started over. Perhaps they were in our beta group and then played the same game again when 
it was released commercially and their school obtained a license. They may have played two of our 
games, Fish Lake and Spirit Lake. I’d like to know: 

• How many unique student records do we have? 
• How many unique students do we have per game? That is, if you played Spirit Lake and Fish 

Lake, it would be acceptable to count you as a unique id when we are doing analyses just of that 
game. 

 
There is a bit of touchy subject here, too, because these are records from minors, I want to be extra 
careful and not show you the id values, just the number of unique IDs. 

 
proc freq data = allstudents  nlevels; 
 tables newid / noprint  ; 



Preparing Students for the Real World with SAS®  Studio 

 

8 

Produces the following output: 
 

Number of Variable Levels 

Variable Levels 
Missing 

Levels 
Nonmissing 

Levels 

newid 1159 1 1158 
 
Output 5. Output from PROC FREQ with NLEVELS and NOPRINT options 

 
The NLEVELS option on the PROC FREQ statement requests the number of levels of the variable given 
in the TABLES statement. The NOPRINT option suppresses printing the frequency distribution table. 
Even if there is nothing confidential about your data, NOPRINT is still a handy option to keep in your back 
pocket for those times when you are really only interested in summary statistics and don’t want to wade 
through twenty pages of tables to find the one number you need. Note in here that we have reduced the 
number of observations from 1,967 unique records to 1,158. If you didn’t think data cleaning before 
analysis was important, I hope you see the error of your ways. 

How NOT to do things 

You might think the next question, unique student records per game, would be answered like this: 
 

proc freq data = allstudents  nlevels; 
 tables newid*game / noprint  ; 

 
That would be logical. Wrong, but logical. The code above will actually give you these results, which are 
not exactly what we had in mind. 
 

Number of Variable Levels 

Variable Levels 

newid 1158 

game 2 
 
Output 6. Output from PROC FREQ with Cross-tabulation, NLEVELS and NOPRINT options 

STEP 8: SORT, THEN FREQ 

To obtain the number of observations for each of the two levels separately, you need to sort the data, 
then do a PROC FREQ with a BY statement as shown. 
 

proc sort data = allstudents ; 
 by  game ; 
proc freq data = allstudents  nlevels; 
 tables newid / noprint  ; 

 
Game = FISH 

  
Number of Variable Levels 

Variable Levels 

newid 497 
 



Preparing Students for the Real World with SAS®  Studio 

 

9 

Game = SPIRIT 
Number of Variable Levels 

Variable Levels 
Missing 

Levels 
Nonmissing 

Levels 

newid 746 1 745 
 
Output 7. Output from PROC FREQ with BY statement, Cross-tabulation, NLEVELS and NOPRINT 
options 

Note that the number of levels per game added up to 1,242– which is more than the total obtained in our 
previous analysis. If these should have been non-overlapping groups, say, the number of separate ids for 
males and females, then this would represent a problem. In our case, it is not a problem. This just points 
out a fact that should be become a mantra for the rest of your career – you need to have some 
substantive knowledge of what your data represents, or work closely with someone who does. When I’m 
working on a study on what causes tooth decay, I’m talking to the dentists who collected that data every 
day. 

PROC FREQ AND THE RESULTS ARE POURING IN 

This next simple analysis answered some important questions. 

proc freq data=answersf order= freq; 

 tables problem_num*prob_correct /nocol ; 

 

At the next step, for each of the games, I need to answer a pretty substantial question. While the low 
mathematics achievement of students attending our target schools has been documented, we now have 
data on a large number of students at a finely-grained level of detail. The teachers were under the 
impression that students were not doing too badly as the students seem to be getting most of the 
answers correct. The first statistic we want to inspect, at the end of the table and labeled A, is the 
percentage of students who answered a problem correctly, 82%. This would seem to indicate the 
students are doing well.  

Here is the first of two times where the ORDER=FREQ option comes in useful. Problems in the games 
are in order of difficulty. The first is two years below grade level. The next statistic we want to inspect, 
labeled B, is the percentage of the total answers that were to the first question and we can see that 25% 
of the time students were answering a question it was two years below grade level.  

One of the objectives of this project was to develop valid and reliable measures for assessment within a 
computer game. The second use of the ORDER = FREQ option is that it shows the proposed order of 
difficulty on the test is generally appropriate. If you look at the row labeled C, Question 8 seems to be out 
of order and examining the wording and content of that question is warranted. (In case you are dying to 
know, it is a question on adding mixed fractions and converting the result from an integer to an improper 
fraction.) The ORDER = FREQ is the total number of times a category appears, not the number of times 
students answered correctly.  

The last statistics we’ll look at for now, labeled D, relate to the most difficult question in this particular 
game. Even though if you look at the percentage correct for that question, it seems pretty high, 9 out of 
17 students answered correctly, that is 53%. However, inspection of the last column shows that less than 
1% of the time were students attempting this question. (A careful reader would note that the total number 
of students attempting the first problem, N=539, exceeds the number of students, because many students 
played the game more than once. Re-analyzing the data with only including the first attempt at the 
question is not reproduced here because it showed essentially the same pattern of results. Those results 
showed a similar pattern, and also revealed that nearly 1 in 4 students gave up before attempting the first 
question. ) 

 



Preparing Students for the Real World with SAS®  Studio 

 

10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output 7. Output from PROC FREQ Cross-tabulation with ORDER=FREQ option 

 
 

 

B 

C 



Preparing Students for the Real World with SAS®  Studio 

 

11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output 7 (continued). Output from PROC FREQ Cross-tabulation with ORDER=FREQ option 

Wait, why do questions 2.2, 4.2, 4.3, 5.1 and 6.2 show up out of order? Because this is an on-going 
research project and after the first year, cooperating teachers recommended that more math problems be 
added to the games. Since these problems were added in the second year of data collection, fewer 
students had the opportunity to try them. This, yet again, emphasizes the importance of knowing your 
data.  

LOVE THOSE FUNCTIONS EVEN MORE 

Because the Fish Lake questions are supposed to be more difficult than the Spirit Lake items, it would be 
of interest to combine the two data sets and compare the number of students who answered each item 
correctly. There are just two small problems. First, the variable prob_correct was originally entered as a 
character variable. Because it’s impossible to obtain the mean of a character variable, this must be 
converted to numeric. Further complicating the situation, the problem has the name “probname” and a 
character type in one data set and the name problem_num and numeric type in the other. 

How NOT to do things 

A common problem in combining data from different sources is that the same variable will be different 
types in different data sets – which causes an error. If only there was a way to convert variable types …  

You cannot actually change the type of a variable in SAS. What you can do is read the data into a new 
variable of the type you want. The INPUT function converts character data to numeric and the PUT 
function converts numeric data to character. Each function takes the arguments (variable,format) as 
shown below.  The new variable, “correctly”, will be a numeric variable with the value of prob_correct read 
into it with the 8.0 format, that is a width of 8 and 0 decimals. 

 Data all_ans2 ; 
   set all_ans ; 
   correctly = input(prob_correct,8.0) ; 
   if game = "SPIRIT" then probname = put(problem_num, $11.); 

 
There is already a variable named probname which is character type with a width of 11, so we read the 
value of the problem_num variable into that using the PUT function. It puts into the probname variable, 
the value of problem_num. 

A 

D 



Preparing Students for the Real World with SAS®  Studio 

 

12 

 

BEFORE      AFTER

Game Probname Problem_num 

FISH F1  

FiSH F2  

SPIRIT  8 

 

Game Probname Problem_num 

FISH F1 1 

FISH F2 2 

SPIRIT 8  

Table 1: Data structure before and after applying  functions 

NOTE: Because you are using a character function, PUT, with a numeric variable, you will get a 
warning in your SAS log. You should always read your log and decide whether you need to worry 

about any warnings or not. In this case,  the answer is “not”. You already knew the variable was numeric. 
 
 WARNING: Variable problem_num has already been defined as numeric. 
 

When is a FISH not a FISH? 

Random SAS fact: Recall that in Step 7, instead of using an ATTRIB statement we just assigned the 
value “FISH  “ with two blank spaces added at the end. Won’t this cause problems? Does “FISH” = “FISH  
“? As it turns out, yes, it does. SAS will ignore trailing blanks but not leading ones, so: 
 
“FISH” = “FISH  “ ≠ “  FISH”  

STEP 9: A CHART! 

Speaking of appropriate level of difficulty, students had two games available. The easier game, Spirit 
Lake, began at the second grade level, with subtraction. The first few questions were multiplication items 
at the third grade level, before moving to the fourth and fifth grade items, which were at the ostensible 
grade level for the students. If our assumptions about the difficulty of the items are correct, we should see 
that fewer students answered the items for the second game correctly, and the further along each game 
they went, the fewer correct answers occurred. The code below produces the output we want. 
 

proc gchart data=all_ans2 ; 
 vbar probname / sumvar=correctly descending; 
 

The first statement simply begins PROC GCHART. If you try to follow these steps and you get a really 
ugly chart that looks like it came from the year 1973 when charts were still produced on green and white 
lined paper, you made a mistake and left off the “G” in GCHART. 

The VBAR statement requests a vertical bar chart for the variable named, in this case, the “probname” 
variable.  After the / are the options. SUMVAR gives a variable that is going to be used to create statistics 
for each bar. The default variable type is sum, which is what we want, so there is no need to specify a 
type. The DESCENDING option requests the bars be shown on the chart in descending order of the 
statistic. 

Problem names in the second game begin with a letter, to easily distinguish between the games. This 
chart paints a pretty clear picture. We can see that the easiest problems from the first game were 
answered by most students, followed by the easiest problems from the second game. There is a pretty 
clear separation, with the eight items with the least number of correct answers all from the second game. 
This was the last question from the first game and it strongly suggests we need to take a look at the 
appropriateness of that question.  

 



Preparing Students for the Real World with SAS®  Studio 

 

13 

 
Output 8. Output from PROC GCHART 

Recall from Step 8 saying that we should take another look at the item that was out of order of expected 
difficulty, question number 8 from the first game, Spirit Lake. Now it isn’t out of order. What happened? 
One point made by this step is the importance of looking at your data in multiple ways. 

The frequency distribution was ordered by how frequently the questions appeared, that is, how often 
students got to that point in the game. The chart shows how often students got the item correct. Students 
may have actually missed that item at a higher frequency or it may represent a technical problem. An 
earlier version of the game had a problem when an internet connection was dropped that it kept 
repeatedly sending the data to the server until it found a connection.  (It was fixed. We checked.) 

It’s not always easy to track down the option you need in SAS/GRAPH procedures, or even to know that 
those options exist. (Did you know how to get the bars ordered by descending height of a second 
variable? Be honest, now.) A gentle introduction is offered by Cochran (2004). 

PROC FREQ, ONE LAST TIME 

Because the Spirit Lake game teaches and tests information taught in earlier grades than Fish Lake, we 
should see, then, that there is a significant difference between the two tests with students scoring more 
questions correct on the easier game. PROC FREQ has a variety of options for inferential statistics. Here 
we’ll just take the simplest one, a chi-square, which is requested with a simple CHISQ option added to the 
TABLES statement. 

proc freq data=all_ans ; 
 tables game*prob_correct / nocol nopercent chisq; 

prob_correct	  SUM

	  	  	  	  	  	  	  	  	  	  	  0

	  	  	  	  	  	  	  	  	  100

	  	  	  	  	  	  	  	  	  200

	  	  	  	  	  	  	  	  	  300

	  	  	  	  	  	  	  	  	  400

	  	  	  	  	  	  	  	  	  500

	  	  	  	  	  	  	  	  	  600

	  	  	  	  	  	  	  	  	  700

	  	  	  	  	  	  	  	  	  800

	  	  	  	  	  	  	  	  	  900

	  	  	  	  	  	  	  	  1000

	  	  	  	  	  	  	  	  1100

	  	  	  	  	  	  	  	  1200

probname

0
0
3

0
0
1

0
0
4

F
1

F
2

0
0
5

0
1
0

0
0
6

F
3

0
0
7

0
0
8

F
4

0
1
1

F
6

0
0
9

F
5

F
7

F
8

F
9

F
_
1
0

F
_
1
4

F
_
1
3

F
_
1
1

F
_
1
2



Preparing Students for the Real World with SAS®  Studio 

 

14 

 
Table of game by prob_correct 

game prob_correct 

Frequency 
Row Pct 0 1 Total 

FISH 390 
18.06 

1770 
81.94 

2160 
 

SL 2091 
32.70 

4303 
67.30 

6394 
 

Total 2481 6073 8554 

 
Statistic DF Value Prob 

Chi-Square 1 168.2138 <.0001 

Likelihood Ratio Chi-Square 1 179.4845 <.0001 

Continuity Adj. Chi-Square 1 167.5033 <.0001 

Mantel-Haenszel Chi-Square 1 168.1941 <.0001 

Phi Coefficient  -0.1402  

Contingency Coefficient  0.1389  

Cramer's V  -0.1402  

 
Output 9. Partial Output from PROC FREQ with CHISQ Option 

This is barely scratching the surface of what you can do with PROC FREQ, in fact, the above only 
includes part of the output from chi-square, since I left off the Fisher’s Exact Test table. One basic paper I 
recommend to give you an introduction to its many uses is “PROC FREQ: It’s more than counts” , 
Severino (2000). 
 
This is also a really mean thing to do to students since of the nine tests produced by this chi-square 
analysis (including those not shown), not one  is appropriate for answering the question of whether the 
second game truly is harder. The reason is that all of the statistics produced by default assume 
independent samples and what we have is far from independent observations. Not even the McNemar 
test for repeated measures is appropriate (and that is also an option for PROC FREQ), because that is 
only appropriate for 2 x 2 tables and students may have completed 5 or 10 problems in each game. 
 
The point of this step is to know your data (I cannot say that enough), including how it was collected and 
who it represents. Often, teachers began all students with the easier game, so only students who had 
successfully completed the first game ever had the opportunity to begin the second game. Other teachers 
assigned students to play games based on their assessment of the student’s proficiency level. For both of 
these reasons, the players were non-randomly assigned to play the games. 
 
What should students do with the highly significant results from the chi-square analysis? The answer is, 
“They should do nothing with it. They should throw it out.”  This is another part of data analysis in the real 
world. You cannot assume that every analysis you are provided is appropriate and useful.  
  
This step leads into a class discussion of what would be appropriate analyses for determining if games 
were of increasing difficulty, which leads into the next step of trying to create a pretest measure of 
mathematical proficiency. 



Preparing Students for the Real World with SAS®  Studio 

 

15 

STEP 10: MORE THAN CORRELATIONS WITH PROC CORR 

While one might be excused for thinking that PROC CORR only produces correlations. It actually has a 
few other nifty uses. Of interest for our purposes are that it produces both descriptive statistics and 
reliability statistics. All it takes is two statements 

proc corr data= sl_pre alpha nocorr ; 
   var sc1- sc24 ; 

 
Descriptive statistics are produced by default. The NOCORR option suppresses printing the correlation 
matrix, since I’m not in the mood to look at 576 correlations and their associated probabilities. The 
ALPHA option will cause SAS to print a Cronbach alpha coefficient, which is a measure of internal 
consistency reliability. 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

sc1 841 0.78597 0.41039 661.00000 0 1.00000 

sc2 841 0.87515 0.33075 736.00000 0 1.00000 

sc3 841 0.86207 0.34503 725.00000 0 1.00000 

sc4 841 0.85493 0.35238 719.00000 0 1.00000 

sc5 841 0.51249 0.50014 431.00000 0 1.00000 

sc6 841 0.45184 0.49797 380.00000 0 1.00000 

sc7 841 0.56599 0.49592 476.00000 0 1.00000 

sc8 841 0.66350 0.47279 558.00000 0 1.00000 

sc9 841 0.54459 0.49830 458.00000 0 1.00000 

sc10 841 0.68728 0.46388 578.00000 0 1.00000 

sc11 841 0.32342 0.46806 272.00000 0 1.00000 

sc12 841 0.32699 0.46939 275.00000 0 1.00000 

sc13 841 0.39001 0.48804 328.00000 0 1.00000 

sc14 841 0.37693 0.48491 317.00000 0 1.00000 

sc15 841 0.41260 0.49260 347.00000 0 1.00000 

sc16 841 0.36623 0.48206 308.00000 0 1.00000 

sc17 841 0.52556 0.49964 442.00000 0 1.00000 

sc18 841 0.57907 0.49400 487.00000 0 1.00000 

sc19 841 0.23068 0.42152 194.00000 0 1.00000 

sc20 841 0.25565 0.43648 215.00000 0 1.00000 

sc21 841 0.31153 0.46340 262.00000 0 1.00000 

sc22 841 0.31629 0.46530 266.00000 0 1.00000 

sc23 841 0.36029 0.48037 303.00000 0 1.00000 

sc24 841 0.43876 0.49653 369.00000 0 1.00000 

Output 10. Descriptive Statistics Output from PROC CORR 



Preparing Students for the Real World with SAS®  Studio 

 

16 

Because items are scored 1 if correct and 0 if incorrect (always a good practice), inspecting the means 
shows the percentage of students who answered each item incorrectly. The minimum and maximum 
values show at a glance that there were no items out of range, all were between 0 and 1. 
 

It isn’t a good measure just because you said so 

It’s rather amazing how often conclusions rest on the assumption that a set of questions the researcher 
made up are a valid and reliable measure of X.  A complete discussion of what makes up a good test is 
beyond this paper (for that, check Nunnally & Bernstein, 1994). 
 

The thinking behind internal consistency reliability is that there should be correlations among questions 
that supposedly measure the same thing, in this case, knowledge of topics in third through fifth-grade 
number and operations standards. One could inspect how well every one of the 24 items correlates with 
the other 23 items, or, do a single statistic which gives an estimate of how well the items, on average, 
relate to one another. The next table gives exactly such a statistic, Cronbach’s coefficient alpha. Valid 
values for alpha range from 0 to 1.0. What is a “good” number depends on the context. If similar 
measures exist with a reliability of .94 then a .84 would be on the low end. 
 

Cronbach Coefficient Alpha 

Variables Alpha 
Raw 0.869111 

Standardized 0.867399 

Output 11. Output from ALPHA OPTION of PROC CORR 

CONCLUSION  
If you want to build a ship, don't drum up people together to collect wood and don't assign them tasks and 
work, but rather teach them to long for the endless immensity of the sea.” 
--Antoine de Sainte Exupery 

 
“If you want to be like most people, start with what you will have your students do. If you want to 
be more sensible, start with what you want them to learn.” 

Why I do what I do 

Contrary to what my students might think, I don’t just make this all up as I go along. I have some very 
definite reasons for the specific procedures, statements and data sets used in this assignment. While the 
specific requirements for each report will vary, there are some common goals to meet for one to be a 
competent in preparing these reports. 

My number one goal is for students to understand the process of research and data analysis. It is not a 
simple linear “pure scientific” process like they learned in middle school, but a messy iterative one. 
Throughout this paper, I’ve given a lot of details on the games we created, level of difficulty of each game, 
individual items. Too often, masters and Ph.D. students (and their professors!) dismissively wave away 
these details,  

“I’m not interested in that. The statistical procedures we teach apply to any data.” 

Yes, they do, but you’re not working with any data, you’re working with the data right in front of you and 
your capability to make sense of the output, to ask questions and give answers with SAS, or any other 
technology, is going to be far more valuable than the mere ability to email output. The type of data may 
vary, from health to marketing to educational applications, but the need to dig deeper into the implications 
of the results is always there. The fact is that all analyses, no matter how complex, are based on an 
assumption that the data are valid. Ironically, the “grunt work” of insuring that validity, of interim reports, 
evaluations, is often left in the hands of more junior staff. 



Preparing Students for the Real World with SAS®  Studio 

 

17 

My second goal is to develop students to be the most competent SAS programmers possible in a very 
short period of time. 

When presented with two alternatives, learn the more general one first 

In SAS, there is almost always more than one way to do things. You can set the variable length using an 
ATTRIB statement or a LENGTH statement. You can get the contents of a dataset using PROC 
DATASETS or PROC CONTENTS. On principle, I choose the more general PROC when teaching new 
SAS users, reasoning if you are only going to know a dozen procedures at first, it’s better to make these 
procedures that can fulfill multiple functions.  

There will always be charts and tables (everything else is optional) 

There have always been tables – tables of sales figures, tables of sample descriptive statistics. Ever 
since they started printing graphs in the newspaper, apparently every document over two pages is 
required to have a chart. I call it the Law of USA Today. Other than those two stalwarts, every report is 
different and it is impossible in one presentation, or a single course assignment, to cover all the variation 
of charts, tables and statistics. Almost every SAS procedure offers many, many options. One lesson SAS 
programmers should learn early is to look for these and find to what new uses they can put old 
procedures. 

Deliberately use SAS to learn basic programming 

Debugging is a key concept in programming. All programmers spend more time debugging than they do 
actually writing code. Thus, early on, I want to introduce new users to the information they can find in their 
SAS log. 

I try to introduce the %INCLUDE statement early on because once users are comfortable with the idea of 
referencing statements in an external file, it is easy to introduce the concept of macros which are crucial 
to moving beyond basic SAS programming. Functions, macros, also known as user-written functions, 
references to code in external files and defining variable attributes are basic features in many other 
programming languages.  

SAS is a component of courses required in many majors not traditionally considered STEM – social work, 
nursing, education, psychology – and these programming concepts are frequently new to them.  

Make the most of what you know 

I might be accused of cheating since clearly this project entailed more than ten steps – or did it? If we 
define a step as something a student must learn, then it did not, and that is a key point I want to 
emphasize to beginning SAS users, that learning just a few steps can take you a long way. 

REFERENCES 
Cochran, B. (2004). A gentle introduction to SAS/GRAPH® Software. Paper presented at the Southeast 
SAS Users Group. Available at http://analytics.ncsu.edu/sesug/2004/TU02-Cochran.pdf  

De Mars, AnnMaria, (2012). Data quality macro explained. AnnMaria’s Blog  Available at 
http://www.thejuliagroup.com/blog/?p=1364  

Nunnally, J. C. & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill. 

Severino, R. (2000) PROC FREQ: It’s more than counts. Proceedings of SAS Users Group International. 
Available at http://www2.sas.com/proceedings/sugi25/25/btu/25p069.pdf 

  



Preparing Students for the Real World with SAS®  Studio 

 

18 

ACKNOWLEDGMENTS 
Data collection was funded from a Small Business Innovation Research Award 2013-33610-21047, U. S. 
Department of Agriculture.  

We gratefully thank the staff of Tate Topa Tribal School, Warwick Public School District, Ojibwa Indian 
School and Turtle Mountain Elementary School for their assistance in data collection and research 
design. 

Thanks to Tricia Anderude for comments on an earlier draft of this paper. 

RECOMMENDED READING 
• Cody, R. (2010) SAS functions by example, 2nd ed. Cary, NC: SAS Press. 

• Murphy, W.C. (2006). Squeezing Information out of Data. Proceedings of SAS Users Group 
International  Available at http://www2.sas.com/proceedings/sugi31/028-31.pdf  

• Slaughter, S. J. & Delwiche, L.D. (2004). SAS ® Macro Programming for beginners.  
http://www2.sas.com/proceedings/sugi29/243-29.pdf  

 

CONTACT INFORMATION  
Your comments and questions are valued and encouraged. Contact the author at: 

Name: AnnMaria De Mars 
Enterprise: 7 Generation Games 
Address: 2425 Olympic Blvd, Ste. 4000-W 
City, State ZIP: Santa Monica, CA, 90404 
Work Phone: (310) 717-9089 
E-mail: annmaria@7generationgames.com 
Web: www.7generationgames.com 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  


