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ABSTRACT  

Retrospective case-control designs are frequently used to evaluate healthcare programs when it is not 
feasible to randomly assign members to participate or not in those programs. Without randomization, 
estimates of program impact are more susceptible to selection bias because those who participate in an 
intervention may be different than those who do not, in ways that are difficult to address. This paper will 
discuss how multinomial propensity score weighing and random effects techniques can be used to reduce 
the impact selection bias has on observational study outcomes. All results shown are drawn from a return 
on investment (ROI) analysis using a participant (cases) versus non-participant (control) study design for 
a fitness reimbursement program (FRP) aiming to reduce healthcare expenditures among participating 
members.  

Results for the fixed effects model showed members experienced between $6 (low moderate – 4 to 8 
gym visits per month) to $20 (high – 12 or more gym visits per month) lower per participant per month 
(PPPM) post period expenditures in comparison to the lowest participant group (members visiting the gym 
less than 4 times per month). Using the random effects model, members experienced between $4 (low 
moderate – 4 to 8 gym visits per month) to $19 (high – 12 or more gym visits per month) lower PPPM 
post period expenditures in comparison to the lowest participant group (members visiting the gym less 
than 4 times per month). Comparing these results, we found the random effects results were consistent 
with the fixed effects model, suggesting the within subject correlation does not appear to be biasing the 
post-period expenditure estimates for the FRP.  

INTRODUCTION  

Randomized Control Trials (RCTs) use the most rigorous form of experimental design because they 
effectively remove case-mix differences by randomly assigning subjects to a treatment or control group 
before estimating program impact.  Even though RCTs are considered the industry gold-standard, 
utilization of this design is not practical when healthcare programs allow members to decide for 
themselves whether to participate or not in the program interventions. Retrospective case-control designs 
are frequently used to estimate program impact when it is not feasible to randomly assign members to 
participant or non-participant status. Without randomization, observational studies are more susceptible to 
selection bias when there are underlying and unmeasured differences between the two study groups of 
interest. Without properly adjusting for selection bias the measured outcome estimates will likely be 
biased with unknown magnitude and direction, and may therefore lead to a misinterpretation of participant 
effects (Curtis, 2007).  
 
Researchers frequently use a statistical technique known as inverse propensity weighting (IPW) to reduce 
the bias caused by lack of study group randomization. Using a parametric model such as logistic 
regression, the first step of IPW is to determine the propensity score or the probability (on a scale of 0 to 
1) of being in the participant group conditional on observed covariates (Curtis, 2007). This predicted 
probability is then used to create a weighting variable for subsequent statistical analyses.  The value of 
the weight for each participant group member is defined as 1.0 divided by his or her predicted probability 
of participation, while the non-participant group member’s IPW is defined as1.0 divided by one minus his 
or her predicted probability of participation. After obtainment of these weights, an examination of the 
standardized differences of the weighted and unweighted covariates between the participant and non-
participant groups should be assessed prior to estimating program outcomes. If covariates are balanced, 
the participant effect can be estimated as the difference between the average outcomes of the two 
groups. To test if participation bias is adequately controlled for, some analysts also like to conduct 
additional sensitivity analyses looking at the degree of influence unmeasured covariates have on program 
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participation and outcomes using residual inclusion (not discussed in this paper) or random effects 
methods (Terza et al, 2008; Nyman, 2009).  
 
This paper discusses how to develop a multinomial inverse propensity weight and evaluates the impact 
unmeasured covariates had on healthcare expenditure outcomes using a random effects statistical 
design in comparison to a fixed effects model.  Results included in this paper evaluate the impact varying 
levels of participation had on post period healthcare expenditures. 

DESCRIPTION OF STUDY 

Optum FRP is a prevention program that reimburses participants $20 every month in which they visit a 
participating fitness center at least 12 times. The goal of service is to reduce sedentary lifestyles by 
offering incentives for gym participation because regular physical activity has been associated with better 
health, improved functioning, increased quality of life, and reduced healthcare expenditures (Nguyen, 
2008).  

A retrospective, multinomial cohort study applying inverse propensity score weighting was used to 
evaluate the effectiveness of varying levels of FRP participation had on downstream healthcare 
expenditures for small employer group customers (e.g. 2 to 99 employees). Eligible FRP study group 
members (N=8,723) were divided into four participation frequency groups based on the average number 
of gym visits as follows:  

• Low Participation: Under 4 visits (non-participant group) 
• Low Moderate Participation: Between 4 and 8 visits (participant group) 
• High Moderate Participation: Between 8 and 12 visits (participant group) 
• High Participation: 12 or more visits (participant group) 

 
Impact on healthcare expenditures was estimated by comparing the difference in post PPPM 
expenditures between those with higher levels of participation (high, high moderate & low moderate) 
versus lower level participants after controlling for various demographic, healthcare supply, health status 
and healthcare utilization characteristics (e.g. age, gender, income, pre-intervention period healthcare 
costs, etc.). In addition, a sensitivity analysis using a random effects model was conducted to assess the 
impact participation bias or unmeasured covariates had on study outcomes.   

MULTINOMIAL INVERSE PROPENSITY SCORE WEIGHTING 

DEVELOPING PROPENSITY SCORE  

Using the parametric model of logistic regression, the first step in building out a multinomial propensity 
weight is to determine the propensity score. The propensity score (on a scale of 0 to 1) is the probability 
of each subject being in the participant group conditional on observed covariates prior to participant 
status assignment. The basic syntax used is as follows: 

 
proc logistic data= <Analysis_Data> <desc>;  
class <Class Covariates>;  
model <Group_Level>(ref = 'n') = <Covariates> / link = <glogit>; 
output out= <Propensity_Scores> predprobs = <i>;  
run; 

 

The PROC LOGISTIC statement is interpreted as follows: 

 <Analysis_Data> is the subject-level dataset that includes a multinomial categorical variable for 
participant level assignment along with the baseline variables that the propensity score model 
requires.  

 <Class Covariates> the CLASS statement contains all of the categorical covariates to be used in 
propensity score assignment. 
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 <Group_Level> is the multinomial variable indicating which participant group level the subject is a 
member of and the ref=’n’ defines the reference group used for comparison. 

 <Covariates> are all the variables being used in the propensity score model to generate the 
propensity score.  These are measurable variables that occurred prior to participant assignment 
and should be theoretically related to the decision to participate in the intervention of interest or at 
least shown empirically to influence that decision in previous analyses. 

 <Propensity_Scores> is the output dataset containing the original <Analysis_Data> variables 
along with the new propensity score value output for each subject. 

 <i> outputs individual probabilities generated from the propensity scores with a value between 0 
and 1. 

 <Desc> is needed if there is order to dependent variable. 

 <glogit> fits a multinomial model. 

 

DEVELOPING MULTINOMIAL INVERSE PROPENSITY WEIGHT 

This predicted probability is then used to create a weighting variable for subsequent statistical analyses.  
Inverse propensity weighting uses the propensity score to weight the subject in the outcome variable 
modeling.  The value of the weight for each participant group level for a multinomial variable is defined as 
1.0 divided by his or her predicted probability of being in the respective participation group (Crowson, 
2013). The inverse propensity weight is assigned in SAS® as follows: 

 
%let levels = <Multinomial_Levels>; /*Number of dependant variable levels*/  
%macro IPWeight; 
 data <Propensity_Weight> (drop=_from_ _into_); 
 set <Propensity_Scores>;  
 %do i = 0 %to &levels.-1; 
  if <Group_Level> = &i. then Progpswt = (1/IP_&i.);  
 %end;  
   run; 
%mend IPWeight; 
%IPWeight; 

 

 <Multinomial_Levels> defines the number of levels for the categorical dependent variable. 

 <Propensity_Weight> is the output data set containing the inverse propensity weight <progpswt> 
of the propensity score and is used for outcome assessment.   

 

WEIGHT ADJUSTED OUTCOMES – FIXED EFFECTS   

The inverse propensity weight is used as a case weight when estimating the impact of the intervention on 
the outcome(s) of interest. Since the measured variables used to construct the model occur prior to 
engagement in the FRP, propensity score weighting helps adjust for unbalanced baseline covariates 
between participant and non-participant (Faries, 2010). Application of the inverse propensity weighting 
using Proc Genmod is shown as follows:  

title "FIXED EFFECTS"; 
proc genmod data= <Propensity_Weight>;  
 class <Group_Level>;  
  model <Dependent_Var> = <Group_Level> / dist=<Dist> link=<Link>;  
  lsmeans <Group_Level> / <pdiff> <cl>; 
  weight <Progpswt>;  
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run; 
 <Dist> and <Link> options model can be used to model a non-normal distribution and are used 

when outcome data is skewed. These options can be adjusted to another distribution depending 
on the data. If you specify no distribution and no link function, then the GENMOD procedure 
defaults to the normal distribution with the identity link function. 

 <Dependent_Var> is the outcome variable being assessed after adjusting for the effect of 
participation <Group_Level> and case mix adjustment via the inverse propensity weight 
<Progpswt>. 

 <Progpswt> is inverse propensity weight determined from the proc logistic code above.  

 <pdiff> requests that p-values for differences of the LS Means to be produced. 

 <cl> requests that confidence limits for predicted values be displayed (see the OBSTATS option). 

 
Fixed effects (FE) explore the relationship between predictor and outcome variables and attempt to 
remove the net influence predictor variables have on the outcome variable by assuming the effect size is 
the same across observations and the only reason effect size may vary is due to sampling error (Nyman, 
2009). FE adjusts only for the unmeasured variables that do not change over time but does not control for 
confounding factors that may vary over time (Cameron, 2005).  

The PPPM expenditure results for FRP (after adjusting for pre-period spend and other demographic 
predictors) for the fixed effects model design are listed in Table 1.  

TABLE ONE – FIXED EFFECTS HEALTHCARE EXPENDITURES BY PARTICIPANT LEVEL 

 

For the fixed effects model, members experienced between $6 (low moderate – 4 to 8 gym visits per 
month) to $20 (high – 12 or more gym visits per month) lower PPPM post period expenditures in 
comparison to the lowest participant group (members visiting the gym less than 4 times per month). 
These results indicate a significant difference between the highest participant group relative to the lowest 
participant group using a 90 percent confidence interval.    

These results show positive effects on healthcare expenditures as the frequency of gym visits increases, 
but it is a good quality check to assess what degree of influence unmeasured covariates have on 
outcomes using a random effects methods (Nyman, 2009). Validating random effects (RE) helps 
determine if the fixed effects estimates are biased due to lack of controlling for unmeasured variables.   

RANDOM EFFECTS  

FE models adjust only for the unmeasured variables that do not change over time, making it hard to 
generalize beyond the sample included in the study. RE supports this extrapolation because it attempts to 
control for unmeasured confounders that may vary over time. Another key difference between RE and FE 
is an assumption about whether the unmeasured variables are correlated with the independent variables 
included in the regression model.  FE assumes they are, while RE assumes they are not, so it is good 
practice to conduct sensitivity analysis to test the impact these assumptions have on outcomes.  

In repeated measures and longitudinal studies, observations can be clustered within a subject. When this 
is the case, the observations and residuals may be correlated with each other and may lead to biased 
outcomes. Literature varies on how much variance is introduced by using fixed instead of random effects.  

A common approach is to evaluate both fixed and random effects models using a Hausman test. This test 
is designed to indicate the discrepancies in parameter estimates between the two techniques. However, 
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according to Clark, “the Hausman test is neither a necessary nor a sufficient metric for deciding between 
fixed and random effects”.  Instead, they suggest focusing on an examination of the correlation matrices 
between the covariate and subject effects and the degree of within-subject variation between the 
predictor variables and the outcome of interest (Clark, 2012).   

Code designed to model fixed and random effects simultaneously (e.g. referred to as a mixed model) and 
test total variance between subjects can be applied in SAS Proc HPMIXED by using a random statement 
and specifying the preferred variance structure in the following syntax: 

 
Title2 "RANDOM EFFECTS"; 
  Proc HPMixed Data=<Propensity_Weight>; 
 Class <Group_Level> <Time> <Group_Level*Time>; 

Model <Dependent_Var> = <Group_Level> <Time> 
<Group_Level*Time>/solution 

Random INT / Subject = <Member_ID> Type = <Corr>; 
Lsmeans <Group_Level> <Time> <Group_Level*Time>; 
Weight <Progpswt>; 

 
RUN; 
QUIT; 
 

 <Member_ID> identifies the subjects in your mixed model.  

 <Corr> specifies the type of covariance structure to model for G side effects. If type is not 
specified than the default is Variance Components (VC) is used and this specifies a 
heterogeneous variance model as shown in the figure below.  

Variance 

components 

VC (default) 

 

The FRP PPPM expenditures were modeled using a random effects model design with a VC covariance 
structure. Due to the presence of only one random effect, having only two observations per subject and 
needing to process random effects for a large data set, the default covariance structure of VC was 
selected. This analysis also did not require the use of a positive definitive matrix or homogeneous 
variances like other correlations structures enforce. Finally, this structure is preferable when working with 
large datasets as it uses considerably less processing time than more complicated correlation structures 
(Kiernan, 2012). To test the impact of the covariance structure, additional testing of alternative correlation 
structures was done using type equals Compound Symmetry (CS), Unstructured (UN), and First-Order 
Autoregressive (AR(1)). All of the least squares (LS) Means estimates and standard errors were 
consistent between the covariance structures and did not impact final outcomes. Results for based on 
random effects using the VC covariance structure are listed in Table 2.  

TABLE TWO: RANDOM EFFECTS HEALTHCARE EXPENDITURES BY PARTICIPANT LEVEL (VC 
COVARIANCE STRUCTURE) 
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$252 $248 $249 $233 (3.95)$           (3.33)$           (18.82)$        

* p‐value<.1, ** p‐value<.01, *** p‐value<.001 
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Using the random effects model and VC covariance structure, members experienced between $4 (low 
moderate – 4 to 8 gym visits per month) to $19 (high – 12 or more gym visits per month) lower PPPM 
post period expenditures in comparison to the lowest participant group (members visiting the gym less 
than 4 times per month). The findings do not show significant differences between the highest participant 
groups relative to the lowest. These results are also consistent with the fixed effects model, suggesting 
the within subject correlation is not biasing the post-period expenditure estimates.   

MODEL SELECTION 

The models showed consistent findings (fixed effects and random effects using the VC correlation 
matrix). However, due to the slight differences in results, the covariance parameter estimate should be 
evaluated to determine which model more accurately estimates the outcomes.  

Based on the HP Mixed SAS output, the covariance parameter estimate can be used to calculate the ratio 
of the between-cluster variance to the total variance, which is known as the Intraclass Correlation 
Coefficient (ICC). The ICC provides the proportion of the total variance in Y that is accounted for by the 
clustering (e.g. variable specified as the subject in the random statement) and is interpreted as the 
correlation among observations within the same cluster (Grace-Martin, Singer, 2008). For the FRP, the 
ICC would measure the correlation within the same member relative to the total variance. The ICC 
formula is: 

  

The numerator is the sum of the total variance in Y (σo
2) that is not explained by X (σ2). The lower the ICC 

score the less likely that unmeasured random effects would be influencing the outcome estimates. The 
covariance parameter estimate used to calculate the ICC for the FRP study is shown in Table 3 below. 

TABLE THREE: RANDOM EFFECTS COVARIANCE PARAMETER ESTIMATES ICC CALCULATION 

Correlation 
Type  Covariance Parmeter  Subject  Estimate  ICC 

VC 

Intercept (σo
2)  INDV_ID  19826  5% 

Residual (σ2)     341084    
 

Based on the similarity in the outcome estimates between the models and the small value of ICC, this 
indicates usage of the fixed effects model over the random effects (Grace-Martin). 

CONCLUSION 

Randomized controls trials are not feasible when members can elect to participate or not participate in 
programs. As a result, case control observation studies using inverse propensity weighting can help to 
adjust for participation bias, resulting in more accurate estimates of program effect. However, aside from 
using inverse propensity weighting to adjust for bias, it is also important to evaluate the impact clustered 
estimates may have on study outcomes by evaluating a random effects model. As shown in this paper, 
Proc HPMixed is one technique that can be used to control for variation within subjects. Through an 
evaluation of the means and the ICC test one can evaluate whether or not a random or fixed effects 
model produces less biased estimations of the overall effect. Using FRP as an example, it was apparent 
that fixed effects modeling was appropriate because the means were similar between the tests and the 
ICC test was small after adjusting for random effects.  

Finally, there are other methods to address selection bias related to both measurable and unmeasurable 
outcome predictors.  An explication of these methods is beyond the scope of this paper.  So far we have 
not seen full discussions in the literature of how these other methods compare to fixed effects and 
random effects approaches or discussions or whether it makes sense to combine these other approaches 
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with fixed or random effects modeling.   Nevertheless, interested readers can turn to papers by 
Hainmueller (2011) for an entropy weighting approach to making apples to apples comparisons based on 
measurable factors, and to Terza et al (2008) for more information about how to reduce selection bias 
due to unmeasurable variables that influence outcomes of interest. 
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