
Paper SAS101-2014

The Traveling Baseball Fan Problem and the OPTMODEL Procedure

Tonya Chapman, Matt Galati, and Rob Pratt, SAS Institute Inc.

ABSTRACT

In the traveling salesman problem, a salesman must minimize travel distance while visiting each of a given
set of cities exactly once. This paper uses the SAS/OR® OPTMODEL procedure to formulate and solve
the traveling baseball fan problem, which complicates the traveling salesman problem by incorporating
scheduling constraints: a baseball fan must visit each of the 30 Major League ballparks exactly once, and
each visit must include watching a scheduled Major League game. The objective is to minimize the time
between the start of the first attended game and the end of the last attended game. One natural integer
programming formulation involves a binary decision variable for each scheduled game, indicating whether
the fan attends. But a reformulation as a side-constrained network flow problem yields much better solver
performance.

INTRODUCTION

Cleary et al. (2000) introduced the traveling baseball fan problem and described a greedy heuristic that
produced a schedule for the 2000 Major League season that enabled a fan to complete the task in 41
days. More recently, Chuck Booth (Booth, Landgren, and Lee 2011) worked out a 24-day schedule by
hand for the 2009 season and actually attended the games, breaking a Guinness world record. In 2012, he
broke his own record by completing a 23-day schedule. In both cases, Booth used a variety of modes of
transportation, including airplanes, trains, rental cars, subways, and taxicabs. In 2008, Josh Robbins (Major
League Baseball 2008) completed a 26-day schedule, traveling only by car.

Instead of using a greedy heuristic or hand calculations, a more rigorous approach to finding an optimal
schedule is to formulate the problem in terms of mixed integer linear programming and call an optimization
solver. The OPTMODEL procedure in SAS/OR provides an algebraic modeling language and access to
several optimization solvers. This paper explores two main mathematical programming formulations, and
in doing so it illustrates the flexibility of PROC OPTMODEL to declare and modify formulations to improve
solver performance or incorporate more sophistication into the mathematical model.

ASSUMPTIONS

This paper initially makes the following assumptions:

• Every game has a known duration, which includes buffer time for extra innings, rain delays, and so on.

• No game is canceled.

• Travel times between stadiums are known and do not depend on time of day.

• There are no traffic delays.

In the section “EXTENSIONS” on page 25, several problem extensions address how you can handle
violations of these assumptions.

1



DATA

Major League Baseball has 30 teams, with stadiums throughout the United States plus one in Canada
(Toronto). During the regular season (usually April through September1), each team plays 162 games, for
a total of 30 � 162=2 D 2; 430 games.2 The input data that you need for the problem are date, starting time,
location, and duration of each game, and travel times between stadiums.

Figure 1 shows the first few observations from the Game_Data data set, which contains game-related input
data for the games in the 2014 regular season.

Figure 1 Input Data: Game_Data

START_TIME_ HOME_
START_DATE ET LOCATION AWAY_TEAM TEAM

03/30/2014 20:05:00.000 Petco Park Dodgers Padres
03/31/2014 13:05:00.000 PNC Park Cubs Pirates
03/31/2014 13:08:00.000 Comerica Park Royals Tigers
03/31/2014 13:10:00.000 Citi Field Nationals Mets

. .

The first several PROC OPTMODEL statements declare an index set and several numeric and string
parameters for the games and then read the Game_Data data set:

proc optmodel;
set GAMES;
num start_date {GAMES};
num start_time {GAMES};
str location {GAMES};
str away_team {GAMES};
str home_team {GAMES};
read data Game_Data into GAMES=[_N_]

start_date
start_time=start_time_et
location
away_team
home_team;

The following statements declare and populate parameters that are associated with the start and duration of
each game, with time measured in days and time 0 corresponding to the start time of the earliest possible
game:

num dhms {g in GAMES} = dhms(start_date[g],0,0,start_time[g]);
num min_dhms = min {g in GAMES} dhms[g];
num seconds_per_day = 60 * 60 * 24;
num start_datetime {g in GAMES} = (dhms[g] - min_dhms) / seconds_per_day;
num hours_per_game = 4;
num duration {GAMES} = hours_per_game / 24;

Note that, unlike many other professional sports, baseball does not use a game clock. Although the
game duration is assumed to be constant here (a conservative estimate of four hours for each game),
the optimization models that this paper presents do not require this assumption. You could instead read
game-dependent durations from a data set if you have more accurate predictions, perhaps based on previous
games. For example, games between two teams that have strong offenses might take longer because more
pitches are required to complete each inning.

Figure 2 shows the first few observations from the Stadium_Data data set, which contains stadium-related
input data for the 2014 regular season.

1In 2014, the regular season starts on March 22 in Sydney, Australia, and ends on September 28. For obvious reasons, this paper
ignores the two games in Australia.

2As of February 20, 2014, 24 games have undetermined starting times and are ignored in this paper.

2



Figure 2 Input Data: Stadium_Data

location latitude longitude city st

AT&T Park 37.7783 -122.389 San Francisco CA
Angel Stadium of Anaheim 33.8003 -117.883 Anaheim CA
Busch Stadium 38.6225 -90.193 St. Louis MO
Chase Field 33.4453 -112.067 Phoenix AZ

. .

The following statements declare an index set and parameters for the stadiums and then read the Sta-
dium_Data data set:

set <str> STADIUMS;
num stadium_id {STADIUMS};
num latitude {STADIUMS};
num longitude {STADIUMS};
str city {STADIUMS};
str state {STADIUMS};
read data Stadium_Data into STADIUMS=[location]

stadium_id=_N_ latitude longitude city state=st;

A simple way to get approximate travel times between stadiums is to use the GEODIST function to compute
great-circle distances and then convert them to travel times by assuming a constant driving speed, such as
60 miles per hour, as in the following statements (which are not run but are shown for illustration):

num miles_per_hour = 60;
set STADIUM_PAIRS = {s1 in STADIUMS, s2 in STADIUMS: s1 ne s2};
num miles_between_stadiums {<s1,s2> in STADIUM_PAIRS} =

geodist(latitude[s1],longitude[s1],latitude[s2],longitude[s2],'M');
num time_between_stadiums {<s1,s2> in STADIUM_PAIRS} =

miles_between_stadiums[s1,s2] / (miles_per_hour * 24);

A more accurate approach, described in a SAS® Global Forum paper by Zdeb (2010), is to use Google
Maps, which accounts for road networks and speed limits.

Figure 3 shows the first few observations from the Travel_Time_Data data set, which contains the travel-time
data from Google Maps, with time measured in days.

Figure 3 Input Data: Travel_Time_Data

miles_
between_ time_between_

s1 s2 stadiums stadiums

AT&T Park Angel Stadium of Anaheim 408 0.25486
AT&T Park Busch Stadium 2051 1.20833
AT&T Park Chase Field 751 0.44861
AT&T Park Citi Field 2918 1.75000

. .

The following statements declare and read the travel-time data:

set STADIUM_PAIRS = {s1 in STADIUMS, s2 in STADIUMS: s1 ne s2};
num miles_between_stadiums {STADIUM_PAIRS};
num time_between_stadiums {STADIUM_PAIRS};
read data Travel_Time_Data into [s1 s2] miles_between_stadiums time_between_stadiums;

3



INITIAL FORMULATION

This section describes the initial mixed integer linear programming (MILP) formulation.

VARIABLES, OBJECTIVE, AND CONSTRAINTS

Because the traveling baseball fan will attend a subset of the 2,430 games, it is natural to define a binary
decision variable for each game g:

Attend[g] D

(
1 if the baseball fan attends game g

0 otherwise

One set of constraints enforces the rule that the fan visits each stadium s exactly once:X
g2GAMESW

location[g]Ds

Attend[g] D 1

Another set of constraints prevents the fan from attending any pair .g1; g2/ of games whose schedules
conflict:

Attend[g1]C Attend[g2] � 1

The following statements declare these variables and constraints:

/* Attend[g] = 1 if attend game g, 0 otherwise */
var Attend {GAMES} binary;

/* visit every stadium exactly once */
con Visit_Once {s in STADIUMS}:

sum {g in GAMES: location[g] = s} Attend[g] = 1;

/* do not attend games that conflict */
set CONFLICTS = {g1 in GAMES, g2 in GAMES:

location[g1] ne location[g2]
and start_datetime[g1] <= start_datetime[g2]

< start_datetime[g1] + duration[g1]
+ time_between_stadiums[location[g1],location[g2]]};

con Conflict {<g1,g2> in CONFLICTS}:
Attend[g1] + Attend[g2] <= 1;

Because the objective is to minimize the total time between the start of the first attended game and the end
of the last attended game, it is convenient to introduce two additional decision variables, Start and End,
which have the following interpretations:

Start D min
g2GAMESW

Attend[g]D1

start_datetime[g]

End D max
g2GAMESW

Attend[g]D1

.start_datetime[g] C duration[g]/

The standard way to use linear constraints to express these relationships is to use so-called big-M constraints.
In particular, if Attend[g] D 1, the constraints should enforce Start � start_datetime[g] . Similarly, if
Attend[g] D 1, the constraints should enforce End � start_datetime[g] C duration[g] .

The following statements declare these variables, objective, and constraints, along with a named problem
(InitialFormulation), because this same PROC OPTMODEL session will contain another formulation that is
described in the section “NETWORK FORMULATION” on page 12:

4



/* declare start of first game and end of last game */
var Start

>= min {g in GAMES} start_datetime[g]
<= max {g in GAMES} start_datetime[g];

var End
>= min {g in GAMES} (start_datetime[g] + duration[g])
<= max {g in GAMES} (start_datetime[g] + duration[g]);

/* minimize total time between start of first game and end of last game (in days) */
min TotalTime = End - Start;

/* if Attend[g] = 1 then Start <= start_datetime[g] */
con Start_def {g in GAMES}:

Start - start_datetime[g]
<= (Start.ub - start_datetime[g]) * (1 - Attend[g]);

/* if Attend[g] = 1 then End >= start_datetime[g] + duration[g] */
con End_def {g in GAMES}:

-End + start_datetime[g] + duration[g]
<= (-End.lb + start_datetime[g] + duration[g]) * (1 - Attend[g]);

problem InitialFormulation include
Attend Conflict Visit_Once Start End TotalTime Start_def End_def;

use problem InitialFormulation;

The following statement calls the MILP solver and imposes a one-hour time limit:

solve with MILP / logfreq=100000 maxtime=3600;

Figure 4 shows the log that results from calling the MILP solver for this initial big-M formulation.

5



Figure 4 MILP Solver Log for Initial Big-M Formulation

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 2406 variables (0 free, 0 fixed).
NOTE: The problem has 2404 binary and 0 integer variables.
NOTE: The problem has 35999 linear constraints (35969 LE, 30 EQ, 0 GE, 0 range).
NOTE: The problem has 74338 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 1922 constraints.
NOTE: The MILP presolver removed 2265 constraint coefficients.
NOTE: The MILP presolver modified 6526 constraint coefficients.
NOTE: The presolved problem has 2406 variables, 34077 constraints, and 72073

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . -178.1539881 . 5
0 1 0 . -177.9400607 . 12
0 1 0 . -177.9400607 . 18
0 1 0 . -177.9400607 . 23
0 1 0 . -177.9400607 . 29
0 1 0 . -177.9400607 . 47

NOTE: The MILP solver added 574 cuts with 17302 cut coefficients at the root.
3 3 1 162.1250000 -177.9400607 191.11% 57

70 36 2 161.0416667 -175.9994973 191.50% 157
106 54 3 120.8784722 -174.9358673 169.10% 198
194 98 4 109.0416667 -159.6774080 168.29% 280
228 115 5 77.4583333 -123.9041373 162.51% 297
745 297 6 73.9201389 0.1666667 44252.1% 314
842 76 7 39.1631944 0.1666667 23397.9% 372
869 76 8 37.1631944 0.1666667 22197.9% 425

5936 3665 9 35.1631944 0.1666667 20997.9% 482
8806 4510 10 35.0381944 0.1666667 20922.9% 521

10615 4526 11 34.1458333 0.1666667 20387.5% 549
18717 5249 12 33.4166667 0.1666667 19950.0% 722
18787 5175 13 32.9131944 0.1666667 19647.9% 725
47269 7579 14 32.0381944 1.1215278 2756.66% 1297
48292 7666 15 31.9166667 1.1666667 2635.71% 1326
100000 29846 15 31.9166667 2.3958333 1232.17% 2062
116365 39839 16 30.7881944 2.9166667 955.60% 2223
200000 99341 16 30.7881944 3.1215278 886.32% 2861
300000 174572 16 30.7881944 3.4166667 801.12% 3564
303185 177087 16 30.7881944 3.4201389 800.20% 3585

NOTE: CPU time limit reached.
NOTE: Objective of the best integer solution found = 30.788194444.

As the log shows, the optimality gap is still large after one hour. It turns out that the MILP solver would
eventually run out of memory for this instance. Furthermore, it takes a significant amount of time even to
deduce a positive lower bound.

AVOIDING THE BIG-M CONSTRAINTS

Big-M constraints are notorious for yielding weak linear programming relaxations. In the presence of the
Visit_Once constraints, you can express the same logical relationships among the Attend[g], Start, and
End variables by instead using two smaller (and stronger) sets of constraints. The following statements drop
the big-M constraints, replace them with these stronger constraints, and call the MILP solver:

6



drop Start_def End_def;

/* if Attend[g] = 1 then Start <= start_datetime[g] */
con Start_def2 {s in STADIUMS}:

Start <= sum {g in GAMES: location[g] = s} start_datetime[g] * Attend[g];

/* if Attend[g] = 1 then End >= start_datetime[g] + duration[g] */
con End_def2 {s in STADIUMS}:

End >= sum {g in GAMES: location[g] = s} (start_datetime[g] + duration[g]) * Attend[g];

solve with MILP / logfreq=100000 maxtime=3600;

Figure 5 shows the log that results from calling the MILP solver for this improved initial formulation.

Figure 5 MILP Solver Log for Improved Initial Formulation

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 2406 variables (0 free, 0 fixed).
NOTE: The problem has 2404 binary and 0 integer variables.
NOTE: The problem has 31251 linear constraints (31191 LE, 30 EQ, 30 GE, 0

range).
NOTE: The problem has 69593 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 4808 dropped constraints.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 1918 constraints.
NOTE: The MILP presolver removed 2261 constraint coefficients.
NOTE: The MILP presolver modified 6526 constraint coefficients.
NOTE: The presolved problem has 2406 variables, 29333 constraints, and 67332

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 0.1666667 . 2
0 1 1 37.1284722 0.1666667 22177.1% 3
0 1 1 37.1284722 0.1666667 22177.1% 3
0 1 1 37.1284722 0.1666667 22177.1% 3
0 1 1 37.1284722 0.1666667 22177.1% 6

NOTE: The MILP solver added 36 cuts with 240 cut coefficients at the root.
181 94 2 35.1666667 0.1666667 21000.0% 24
227 117 3 34.8750000 0.1666667 20825.0% 25

11923 6606 4 34.1250000 0.1666667 20375.0% 167
44211 19225 5 33.1284722 0.1666667 19777.1% 760
69020 16237 6 33.1250000 0.1666667 19775.0% 1993
100000 23495 6 33.1250000 0.1666667 19775.0% 2509
146898 38239 7 32.1909722 0.1666667 19214.6% 3212
173247 47049 7 32.1909722 0.1666667 19214.6% 3599

NOTE: CPU time limit reached.
NOTE: Objective of the best integer solution found = 32.190972222.

As the log shows, the optimality gap is still large after one hour, but the MILP solver finds a positive lower
bound right away.

A LOWER BOUND

You can improve the formulation by including one optional cut constraint that captures the fact that the total
time must include watching a game at each stadium:

End � Start �
X

s2STADIUMS

min
g2GAMESW

location[g]Ds

duration[g]

7



The following statements declare this optional cut and call the MILP solver:

con Cut:
End - Start >= sum {s in STADIUMS} min {g in GAMES: location[g] = s} duration[g];

solve with MILP / logfreq=100000 maxtime=3600;

Figure 6 shows the log that results from calling the MILP solver and including this optional cut.

Figure 6 MILP Solver Log for Initial Formulation with Optional Cut

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 2406 variables (0 free, 0 fixed).
NOTE: The problem has 2404 binary and 0 integer variables.
NOTE: The problem has 31252 linear constraints (31191 LE, 30 EQ, 31 GE, 0

range).
NOTE: The problem has 69595 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 4808 dropped constraints.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 1918 constraints.
NOTE: The MILP presolver removed 2261 constraint coefficients.
NOTE: The MILP presolver modified 6599 constraint coefficients.
NOTE: The presolved problem has 2406 variables, 29334 constraints, and 67334

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 5.0000000 . 2
0 1 1 39.2534722 5.0000000 685.07% 3
0 1 1 39.2534722 5.0000000 685.07% 3
0 1 1 39.2534722 5.0000000 685.07% 3
0 1 2 36.9131944 5.0000000 638.26% 3
0 1 2 36.9131944 5.0000000 638.26% 5

NOTE: The MILP solver added 43 cuts with 587 cut coefficients at the root.
3285 1883 4 33.8958333 5.0000000 577.92% 54

100000 79795 4 33.8958333 5.0000000 577.92% 740
200000 158418 4 33.8958333 5.0000000 577.92% 1429
275992 210547 5 33.1284722 5.0000000 562.57% 2035
300000 228983 5 33.1284722 5.0000000 562.57% 2173
334064 254912 6 32.3784722 5.0000000 547.57% 2459
400000 307987 6 32.3784722 5.0000000 547.57% 2907
423595 325770 7 32.2916667 5.0000000 545.83% 3111
438732 335411 8 31.1284722 5.0000000 522.57% 3242
456722 348813 9 31.0416667 5.0000000 520.83% 3347
482881 366978 9 31.0416667 5.0000000 520.83% 3599

NOTE: CPU time limit reached.
NOTE: Objective of the best integer solution found = 31.041666667.

Again, the optimality gap is still large after one hour. But the MILP solver finds a better lower bound right
away.

A BETTER LOWER BOUND FROM TSP

You can push this idea further by also including a lower bound on the total travel time between stadiums.
To obtain such a bound, you can solve the traveling salesman problem (TSP) on a graph that contains one
node per stadium, as well as a dummy node (with zero-cost edges to the other nodes) that represents the
start and end of the tour. This approach is a standard way to solve a traveling salesman problem variant in
which the traveler is allowed to start and end in different cities.

The following statements create this graph and solve the TSP by using the TSP option in the new SOLVE
WITH NETWORK statement available in SAS/OR 13.1:

8



/* solve TSP with dummy node to get lower bound on travel time */
set TSP_NODES = {'dummy'} union STADIUMS;
set TSP_EDGES = {i in TSP_NODES, j in TSP_NODES: i ne j};
num tsp_weight {<i,j> in TSP_EDGES} =

if 'dummy' in {i,j} then 0
else min(time_between_stadiums[i,j],time_between_stadiums[j,i]);

set <str,str> TOUR;
solve with NETWORK / links=(weight=tsp_weight) tsp out=(tour=TOUR);
put TOUR=;
num tsp_lower_bound = sum {<i,j> in TOUR} tsp_weight[i,j];
num tsp_miles = sum {<i,j> in TOUR: 'dummy' not in {i,j}}

min(miles_between_stadiums[i,j],miles_between_stadiums[j,i]);
put 'miles: ' tsp_miles;

Figure 7 shows the log that results from solving the TSP.

Figure 7 TSP Log

NOTE: The experimental Network solver is used.
NOTE: The number of nodes in the input graph is 31.
NOTE: The number of links in the input graph is 465.
NOTE: Processing the traveling salesman problem.
NOTE: The initial TSP heuristics found a tour with cost 5.5159722222 using 0.17

(cpu: 0.05) seconds.
NOTE: The MILP presolver value NONE is applied.
NOTE: The MILP solver is called.
NOTE: The MILP solver added 11 cuts with 462 cut coefficients at the root.
NOTE: Optimal.
NOTE: Objective = 5.5159722222.
NOTE: Processing the traveling salesman problem used 0.19 (cpu: 0.06) seconds.
TOUR={<'dummy','Marlins Park'>,<'Marlins Park','Tropicana Field'>,<
'Tropicana Field','Turner Field'>,<'Turner Field','Great American Ball Park'>,<
'Great American Ball Park','Progressive Field'>,<'Progressive Field','PNC Park'>
,<'PNC Park','Nationals Park'>,<'Nationals Park','Oriole Park at Camden Yards'>,
<'Oriole Park at Camden Yards','Citizens Bank Park'>,<'Citizens Bank Park',
'Yankee Stadium'>,<'Yankee Stadium','Citi Field'>,<'Citi Field','Fenway Park'>,<
'Fenway Park','Rogers Centre'>,<'Rogers Centre','Comerica Park'>,<
'Comerica Park','U.S. Cellular Field'>,<'U.S. Cellular Field','Wrigley Field'>,<
'Wrigley Field','Miller Park'>,<'Miller Park','Target Field'>,<'Target Field',
'Kauffman Stadium'>,<'Kauffman Stadium','Busch Stadium'>,<'Busch Stadium',
'Minute Maid Park'>,<'Minute Maid Park','Globe Life Park in Arlington'>,<
'Globe Life Park in Arlington','Coors Field'>,<'Coors Field','Chase Field'>,<
'Chase Field','Petco Park'>,<'Petco Park','Angel Stadium of Anaheim'>,<
'Angel Stadium of Anaheim','Dodger Stadium'>,<'Dodger Stadium','O.co Coliseum'>,
<'O.co Coliseum','AT&T Park'>,<'AT&T Park','Safeco Field'>,<'Safeco Field',
'dummy'>}
miles: 8756.5

The following statements first strengthen the original cut by increasing the right-hand side by the TSP lower
bound and then call the MILP solver:

Cut.lb = Cut.lb + tsp_lower_bound;

solve with MILP / logfreq=100000 maxtime=3600;

Figure 8 shows the log that results from calling the MILP solver and including this strengthened cut.

9



Figure 8 MILP Solver Log for Initial Formulation with Strengthened Cut

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 2406 variables (0 free, 0 fixed).
NOTE: The problem has 2404 binary and 0 integer variables.
NOTE: The problem has 31252 linear constraints (31191 LE, 30 EQ, 31 GE, 0

range).
NOTE: The problem has 69595 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 4808 dropped constraints.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 1918 constraints.
NOTE: The MILP presolver removed 2261 constraint coefficients.
NOTE: The MILP presolver modified 6675 constraint coefficients.
NOTE: The presolved problem has 2406 variables, 29334 constraints, and 67334

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 10.5159722 . 2
0 1 1 36.2500000 10.5159722 244.71% 3
0 1 1 36.2500000 10.5159722 244.71% 3
0 1 1 36.2500000 10.5159722 244.71% 3
0 1 2 33.1284722 10.5159722 215.03% 3
0 1 2 33.1284722 10.5159722 215.03% 5

NOTE: The MILP solver added 42 cuts with 656 cut coefficients at the root.
78503 70026 3 33.1236111 10.5159722 214.98% 285
100000 89874 3 33.1236111 10.5159722 214.98% 349
200000 178584 3 33.1236111 10.5159722 214.98% 653
260577 232560 4 32.0437500 10.5159722 204.72% 844
300000 268520 4 32.0437500 10.5159722 204.72% 964
400000 353880 4 32.0437500 10.5159722 204.72% 1290
500000 445483 4 32.0437500 10.5159722 204.72% 1585
600000 535926 4 32.0437500 10.5159722 204.72% 1963
700000 627542 4 32.0437500 10.5159722 204.72% 2336
800000 719088 4 32.0437500 10.5159722 204.72% 2705
900000 810134 4 32.0437500 10.5159722 204.72% 3085

1000000 898860 4 32.0437500 10.5159722 204.72% 3500
1024356 920765 4 32.0437500 10.5159722 204.72% 3599

NOTE: CPU time limit reached.
NOTE: Objective of the best integer solution found = 32.04375.

Again, the optimality gap is still large after one hour. But the MILP solver finds a better lower bound right
away.

CLIQUES

Another way to strengthen this initial formulation is to tighten the Conflict constraints by using cliques. For
example, if x is a collection of binary variables, you can replace conflict constraints such as

xi C xj � 1; xi C xk � 1; xj C xk � 1

with one (stronger) clique constraint:

xi C xj C xk � 1

The MILP solver automatically looks for these “clique cuts” during the branch-and-cut algorithm, but some-
times you can reduce the solve time by explicitly including all such cuts a priori in the formulation.

The following statements drop the Conflict constraints, find the maximal cliques by calling the network solver
available in SAS/OR 13.1, declare the Clique constraints (one per maximal clique), and call the MILP solver:

10



drop Conflict;
set <num,num> ID_NODE;
solve with NETWORK / links=(include=CONFLICTS) clique out=(cliques=ID_NODE);
set CLIQUES init {};
set GAMES_c {CLIQUES} init {};
for {<c,g> in ID_NODE} do;

CLIQUES = CLIQUES union {c};
GAMES_c[c] = GAMES_c[c] union {g};

end;
con Clique {c in CLIQUES}:

sum {g in GAMES_c[c]} Attend[g] <= 1;

solve with MILP / logfreq=100000 maxtime=3600;

Figure 9 shows the log that results from calling the MILP solver and including the strengthened cut and
cliques.

11



Figure 9 MILP Solver Log for Initial Formulation with Strengthened Cut and Cliques

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 2406 variables (0 free, 0 fixed).
NOTE: The problem has 2404 binary and 0 integer variables.
NOTE: The problem has 4858 linear constraints (4797 LE, 30 EQ, 31 GE, 0 range).
NOTE: The problem has 48773 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 35969 dropped constraints.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 10 constraints.
NOTE: The MILP presolver added 70 constraint coefficients.
NOTE: The MILP presolver modified 336 constraint coefficients.
NOTE: The presolved problem has 2406 variables, 4848 constraints, and 48843

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 43.4201389 -160.9715278 126.97% 0
0 1 1 43.4201389 10.5159722 312.90% 0
0 1 2 36.2500000 10.5159722 244.71% 2
0 1 2 36.2500000 10.5159722 244.71% 2
0 1 2 36.2500000 10.5159722 244.71% 2
0 1 2 36.2500000 10.5159722 244.71% 3

NOTE: The MILP solver added 23 cuts with 1250 cut coefficients at the root.
1000 248 3 35.5451389 10.5159722 238.01% 25
2040 1263 4 35.1701389 10.5159722 234.44% 36
4543 3708 5 34.1284722 10.5159722 224.54% 55
5038 4181 6 29.1666667 10.5159722 177.36% 62

23227 21900 7 28.0833333 10.5159722 167.05% 184
28111 26616 8 27.8763889 10.5159722 165.09% 209
100000 94531 8 27.8763889 10.5159722 165.09% 551
200000 189289 8 27.8763889 10.5159722 165.09% 1366
214032 202341 9 27.1250000 10.5159722 157.94% 1406
300000 283048 9 27.1250000 10.5159722 157.94% 1645
400000 378370 9 27.1250000 10.5159722 157.94% 1791
500000 470490 9 27.1250000 10.5159722 157.94% 2131
600000 562517 9 27.1250000 10.5159722 157.94% 2443
700000 656979 9 27.1250000 10.5159722 157.94% 2623
800000 750384 9 27.1250000 10.5159722 157.94% 2781
900000 843916 9 27.1250000 10.5159722 157.94% 2919

1000000 937607 9 27.1250000 10.5159722 157.94% 3087
1100000 1033437 9 27.1250000 10.5159722 157.94% 3204
1200000 1124936 9 27.1250000 10.5159722 157.94% 3479
1285109 1204501 9 27.1250000 10.5159722 157.94% 3599

NOTE: CPU time limit reached.
NOTE: Objective of the best integer solution found = 27.125.

Again, the optimality gap is still large after one hour. Because this formulation is tighter and has fewer
constraints, the node throughput is higher. But it turns out that the MILP solver would eventually run out of
memory for this instance. It seems that a completely different approach is needed.

NETWORK FORMULATION

This section describes a network-based integer programming formulation that performs much better than the
initial formulation discussed in the previous section.

12



NETWORK DEFINITION

The network contains one node per game, plus a dummy source node and a dummy sink node to represent
the start and end of the schedule, respectively. Figure 10 shows the nodes in the network, with game start
time along the horizontal axis and stadium along the vertical axis.

Figure 10 Network-Based Formulation: Nodes

The (directed) arcs in the network are of three types:

• from the source node to each game node

• from each game node to the sink node

• from game g1 to game g2 if it is possible to attend game g1 and then game g2

The cost for each arc is the additional time incurred from the end of game g1 to the end of game g2. The
goal is to find a shortest path that starts at the source, visits every stadium, and ends at the sink.

The following statements declare the source, sink, and set of nodes:

num source = 0;
num sink = 1 + max {g in GAMES} g;
set NODES = GAMES union {source,sink};

The following statement (which is not run but is shown for illustration) is a simple way to declare the set of
arcs, but the resulting optimization model would be unnecessarily large and highly degenerate:

set ARCS init {g1 in GAMES, g2 in GAMES: location[g1] ne location[g2] and
start_datetime[g1] + duration[g1]

+ seconds_between_stadiums[location[g1],location[g2]]
<= start_datetime[g2]};

Without loss of optimality, for a given node you can instead consider only the shortest feasible arc to each
stadium. The following statements declare this smaller set of arcs and the cost per arc:

13



/* for each game and stadium, include only the shortest feasible arc */
num infinity = constant('BIG');
set <num,num> ARCS init {};
num min {STADIUMS};
num argmin {STADIUMS};
str loc_g1, loc_g2;
for {g1 in GAMES} do;

loc_g1 = location[g1];
for {s in STADIUMS} do;

min[s] = infinity;
argmin[s] = -1;

end;
for {g2 in GAMES} do;

loc_g2 = location[g2];
if loc_g1 ne loc_g2

and start_datetime[g1] + duration[g1]
+ time_between_stadiums[loc_g1,loc_g2]

<= start_datetime[g2]
and min[loc_g2] > start_datetime[g2] then do;
min[loc_g2] = start_datetime[g2];
argmin[loc_g2] = g2;

end;
end;
ARCS = ARCS union (setof {s in STADIUMS: argmin[s] ne -1} <g1,argmin[s]>);

end;
/* include source and sink */
ARCS = ARCS union ({source} cross GAMES) union (GAMES cross {sink});
/* cost = start2 - end1 + duration2 */
num cost {<g1,g2> in ARCS} =

(if g1 ne source and g2 ne sink then start_datetime[g2]
- (start_datetime[g1] + duration[g1]))

+
(if g2 ne sink then duration[g2]);

Figure 11 shows the arcs to and from an arbitrary game node in the network.

14



Figure 11 Network-Based Formulation: Arcs to and from an Arbitrary Game

VARIABLES, OBJECTIVE, AND CONSTRAINTS

In this network formulation, you have a binary decision variable for each arc:

UseArc[g1; g2] D

(
1 if the fan attends games g1 and g2 and no game in between
0 otherwise

As before, the objective is to minimize the total time, which is expressed here as a sum of the arc costs:X
.g1;g2/2ARCS

cost[g1; g2] UseArc[g1; g2]

One set of constraints enforces flow balance at every node g:

X
.g;g2/2ARCS

UseArc[g; g2] �
X

.g1;g/2ARCS

UseArc[g1; g] D

8̂<̂
:

1 g D source
�1 g D sink
0 otherwise

Another set of constraints enforces the rule that the fan visits each stadium s exactly once:X
.g1;g2/2ARCSW

g2 6Dsink and location[g2]Ds

UseArc[g1; g2] D 1

The following statements declare these variables, objective, and constraints, as well as a named problem
(NetworkFormulation):

15



/* UseArc[g1,g2] = 1 if attend games g1 and g2 and no game in between, 0 otherwise */
var UseArc {ARCS} binary;

/* minimize total time between start of first game and end of last game */
min TotalTime_Network = sum {<g1,g2> in ARCS} cost[g1,g2] * UseArc[g1,g2];

/* flow balance at every node */
con Balance {g in NODES}:

sum {<(g),g2> in ARCS} UseArc[g,g2] - sum {<g1,(g)> in ARCS} UseArc[g1,g]
= (if g = source then 1 else if g = sink then -1 else 0);

/* visit every stadium exactly once */
con Visit_Once_Network {s in STADIUMS}:

sum {<g1,g2> in ARCS: g2 ne sink and location[g2] = s} UseArc[g1,g2] = 1;

problem NetworkFormulation include
UseArc TotalTime_Network Balance Visit_Once_Network;

use problem NetworkFormulation;

This network-based formulation models the problem as an integer network flow problem (shortest path
in a directed acyclic network) that has relatively few side constraints. The Conflict constraints in the
initial formulation correspond to a removal of arcs (variables) in this formulation. Although the number of
variables increases from O.jGAMESj/ to O.jGAMESj � jSTADIUMSj/, the network-based formulation is
solved successfully without running out of memory.

The following statement calls the MILP solver to minimize TotalTime_Network:

solve with MILP / logfreq=100000;

Figure 12 shows the log that results from calling the MILP solver for the network formulation.

Figure 12 MILP Solver Log for Network Formulation

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 72747 variables (0 free, 0 fixed).
NOTE: The problem has 72747 binary and 0 integer variables.
NOTE: The problem has 2436 linear constraints (0 LE, 2436 EQ, 0 GE, 0 range).
NOTE: The problem has 215837 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 72747 variables, 2436 constraints, and 215837

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 23.2615355 . 20
0 1 1 29.2500000 23.2615355 25.74% 44
0 1 1 29.2500000 23.2615355 25.74% 60

256 27 2 24.1631944 23.6264785 2.27% 2699
381 0 2 24.1631944 24.1631944 0.00% 2893

NOTE: Optimal.
NOTE: Objective = 24.163194444.

The solver returns an optimal solution in about 50 minutes. The resulting schedule completes the 30 games
in 24.2 days of real time, or 25 calendar days.

By using the PARALLEL=1 option (experimental in SAS/OR 13.1), you can run a threaded version of the
MILP solver to reduce the run time:

16



solve with MILP / logfreq=100000 parallel=1;

Figure 13 shows the log that results from calling the MILP solver for the network formulation and using the
PARALLEL=1 option.

Figure 13 MILP Solver Log for Network Formulation with PARALLEL=1 Option

NOTE: The experimental parallel Branch and Cut algorithm is used.
NOTE: The Branch and Cut algorithm is using up to 4 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 23.2615355 . 23
0 1 1 29.2500000 23.2615355 25.74% 46

477 406 2 25.9145833 23.5790094 9.91% 1202
523 327 3 24.1631944 23.5790094 2.48% 1284
718 0 3 24.1631944 24.1631944 0.00% 1685

NOTE: Optimal.
NOTE: Objective = 24.163194444.

The solver returns an optimal solution in about 28 minutes. For another way to use parallel processing to
solve this problem faster in SAS/OR 13.1, see the section “COFOR STATEMENT” on page 24.

The following statements declare sets and create the output data set Schedule1, which corresponds to the
optimal solution that the solver returns:

set PATH = {<g1,g2> in ARCS: UseArc[g1,g2].sol > 0.5};
set SOLUTION = {<g1,g2> in PATH: g2 ne sink};

create data Schedule1(drop=g1) from [g1 g]=SOLUTION
location[g] away_team[g] home_team[g] city[location[g]] state[location[g]]
start_datetime=dhms[g]/format=datetime14.
latitude[location[g]] longitude[location[g]];

Figure 14 shows the resulting optimal path in the network, Figure 15 shows the resulting optimal schedule,
and Figure 16 shows the resulting optimal schedule geographically.

17



Figure 14 Network-Based Formulation: Optimal Path

18



Figure 15 Network-Based Formulation: Optimal Schedule

Obs location away_team home_team city state start_datetime

1 AT&T Park Dodgers Giants San Francisco CA 15APR14:22:15
2 Chase Field Mets D-backs Phoenix AZ 16APR14:15:40
3 Globe Life Park in Arlington Mariners Rangers Arlington TX 17APR14:14:05
4 Tropicana Field Yankees Rays St. Petersburg FL 18APR14:19:10
5 PNC Park Brewers Pirates Pittsburgh PA 19APR14:19:05
6 Progressive Field Blue Jays Indians Cleveland OH 20APR14:13:05
7 Fenway Park Orioles Red Sox Boston MA 21APR14:11:05
8 Citi Field Cardinals Mets Flushing NY 21APR14:19:10
9 Comerica Park White Sox Tigers Detroit MI 22APR14:19:08

10 Wrigley Field D-backs Cubs Chicago IL 23APR14:14:20
11 Miller Park Padres Brewers Milwaukee WI 23APR14:20:10
12 Minute Maid Park Athletics Astros Houston TX 24APR14:20:10
13 U.S. Cellular Field Rays White Sox Chicago IL 25APR14:20:10
14 Nationals Park Padres Nationals Washington DC 26APR14:13:05
15 Oriole Park at Camden Yards Royals Orioles Baltimore MD 26APR14:19:05
16 Rogers Centre Red Sox Blue Jays Toronto ON 27APR14:13:07
17 Busch Stadium Brewers Cardinals St. Louis MO 28APR14:20:15
18 Marlins Park Braves Marlins Miami FL 29APR14:19:10
19 Kauffman Stadium Blue Jays Royals Kansas City KS 30APR14:20:10
20 Target Field Dodgers Twins Minneapolis MN 01MAY14:13:10
21 Great American Ball Park Brewers Reds Cincinnati OH 02MAY14:19:10
22 Yankee Stadium Rays Yankees Bronx NY 03MAY14:13:05
23 Citizens Bank Park Nationals Phillies Philadelphia PA 03MAY14:19:05
24 Turner Field Giants Braves Atlanta GA 04MAY14:13:35
25 Coors Field Rangers Rockies Denver CO 05MAY14:20:40
26 O.co Coliseum Mariners Athletics Oakland CA 06MAY14:22:05
27 Petco Park Royals Padres San Diego CA 07MAY14:15:40
28 Angel Stadium of Anaheim Yankees Angels Anaheim CA 07MAY14:22:05
29 Dodger Stadium Giants Dodgers Los Angeles CA 08MAY14:22:10
30 Safeco Field Royals Mariners Seattle WA 09MAY14:22:10

19



Figure 16 Network-Based Formulation: Map of Optimal Schedule

A SECONDARY OBJECTIVE

Because the total time is determined by only the first and last games attended, the problem usually has
multiple optimal solutions. A natural way to break ties among solutions that have the same minimum total
time is to introduce a secondary objective to minimize the total distance traveled.

The following statements declare a constraint on the primary objective and declare TotalDistance as a
secondary objective:

num minTotalTime;
minTotalTime = TotalTime_Network.sol;
con TotalTime_con:

TotalTime_Network <= minTotalTime;

num distance {<g1,g2> in ARCS} =
(if g1 = source or g2 = sink then 0
else miles_between_stadiums[location[g1],location[g2]]);

min TotalDistance = sum {<g1,g2> in ARCS} distance[g1,g2] * UseArc[g1,g2];

The following statement calls the MILP solver to minimize the secondary objective and uses the PRIMALIN
option because the solution from the previous solver call is a good starting solution:

solve with MILP / logfreq=100000 parallel=1 primalin;

Figure 17 shows the log that results from calling the MILP solver for the network formulation to minimize the
secondary objective.

20



Figure 17 MILP Solver Log for Network Formulation with Secondary Objective

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 72747 variables (0 free, 0 fixed).
NOTE: The problem uses 1 implicit variables.
NOTE: The problem has 72747 binary and 0 integer variables.
NOTE: The problem has 2437 linear constraints (1 LE, 2436 EQ, 0 GE, 0 range).
NOTE: The problem has 286180 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 72747 variables, 2437 constraints, and 286180

constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The experimental parallel Branch and Cut algorithm is used.
NOTE: The Branch and Cut algorithm is using up to 4 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 20373.2000000 9892.8041634 105.94% 16

281 109 2 19099.2000000 12734.5262553 49.98% 506
424 0 2 19099.2000000 19099.2000000 0.00% 581

NOTE: Optimal.
NOTE: Objective = 19099.2.

You can see that the solver finds a solution that, while minimizing total time, also reduces the total distance
traveled by about 1,300 miles.

The following statement creates the output data set Schedule2, which corresponds to this new optimal
solution:

create data Schedule2(drop=g1) from [g1 g]=SOLUTION
location[g] away_team[g] home_team[g] city[location[g]] state[location[g]]
start_datetime=dhms[g]/format=datetime14.
latitude[location[g]] longitude[location[g]];

quit;

Figure 18 shows the new resulting optimal path in the network, Figure 19 shows the new resulting optimal
schedule, and Figure 20 shows the new resulting optimal schedule geographically.

21



Figure 18 Network-Based Formulation: Optimal Path with Secondary Objective

22



Figure 19 Network-Based Formulation: Optimal Schedule with Secondary Objective

Obs location away_team home_team city state start_datetime

1 AT&T Park Dodgers Giants San Francisco CA 15APR14:22:15
2 Chase Field Mets D-backs Phoenix AZ 16APR14:15:40
3 Minute Maid Park Royals Astros Houston TX 17APR14:20:10
4 Tropicana Field Yankees Rays St. Petersburg FL 18APR14:19:10
5 PNC Park Brewers Pirates Pittsburgh PA 19APR14:19:05
6 Progressive Field Blue Jays Indians Cleveland OH 20APR14:13:05
7 Fenway Park Orioles Red Sox Boston MA 21APR14:11:05
8 Citi Field Cardinals Mets Flushing NY 21APR14:19:10
9 Rogers Centre Orioles Blue Jays Toronto ON 22APR14:19:07

10 Wrigley Field D-backs Cubs Chicago IL 23APR14:14:20
11 Miller Park Padres Brewers Milwaukee WI 23APR14:20:10
12 Comerica Park White Sox Tigers Detroit MI 24APR14:13:08
13 U.S. Cellular Field Rays White Sox Chicago IL 25APR14:20:10
14 Nationals Park Padres Nationals Washington DC 26APR14:13:05
15 Oriole Park at Camden Yards Royals Orioles Baltimore MD 26APR14:19:05
16 Busch Stadium Pirates Cardinals St. Louis MO 27APR14:14:15
17 Globe Life Park in Arlington Athletics Rangers Arlington TX 28APR14:20:05
18 Marlins Park Braves Marlins Miami FL 29APR14:19:10
19 Kauffman Stadium Blue Jays Royals Kansas City KS 30APR14:20:10
20 Target Field Dodgers Twins Minneapolis MN 01MAY14:13:10
21 Great American Ball Park Brewers Reds Cincinnati OH 02MAY14:19:10
22 Yankee Stadium Rays Yankees Bronx NY 03MAY14:13:05
23 Citizens Bank Park Nationals Phillies Philadelphia PA 03MAY14:19:05
24 Turner Field Giants Braves Atlanta GA 04MAY14:13:35
25 Coors Field Rangers Rockies Denver CO 05MAY14:20:40
26 O.co Coliseum Mariners Athletics Oakland CA 06MAY14:22:05
27 Petco Park Royals Padres San Diego CA 07MAY14:15:40
28 Angel Stadium of Anaheim Yankees Angels Anaheim CA 07MAY14:22:05
29 Dodger Stadium Giants Dodgers Los Angeles CA 08MAY14:22:10
30 Safeco Field Royals Mariners Seattle WA 09MAY14:22:10

23



Figure 20 Network-Based Formulation: Map of Optimal Schedule with Secondary Objective

COFOR STATEMENT

Besides the MILP solver PARALLEL=1 option, another way to use parallel processing to solve the problem
faster is to use the COFOR statement, which is new in SAS/OR 13.1. The COFOR statement operates in
the same manner as the FOR statement, except that with the COFOR statement PROC OPTMODEL can
execute the SOLVE statement concurrently with other statements.

Suppose that you know an upper bound n on the number of days in an optimal schedule. Then you can
divide and conquer the problem by considering each possible interval of n consecutive days as a separate
subproblem. Each of these subproblems (179, in 2014) has the same structure as the original problem but
considers a much smaller subset of games, and an optimal solution to the original problem is among the
optimal solutions to the subproblems.

The following statements declare some numeric parameters and sets used for this approach, with n D 25

because you know that a 25-day schedule exists for the 2014 season:

num n = 25;
num num_solved init 0;
num bestObj init infinity;
set <num,num> INCUMBENT;
set START_DATES = setof {g in GAMES} start_date[g];
num cutoff {START_DATES} init infinity;
set GAMES_d {d in START_DATES} = {g in GAMES: start_date[g] in d..d+n-1};
set ARCS_d {d in START_DATES} =

{<g1,g2> in ARCS: (g1 = source and g2 in GAMES_d[d])
or (g1 in GAMES_d[d] and g2 = sink)
or (g1 in GAMES_d[d] and g2 in GAMES_d[d])};

You can now use a FOR statement to loop through the start dates, fix the UseArc variables to 0 for arcs
that include a game outside the current n-day subproblem, call the MILP solver, and unfix the variables that

24



were fixed. But because the subproblems are independent of one another, you can solve them in parallel by
simply changing the FOR statement to a COFOR statement instead, as in the following:

cofor {d in START_DATES} do;
put d=date9.;
for {<g1,g2> in ARCS diff ARCS_d[d]} fix UseArc[g1,g2] = 0;
cutoff[d] = bestObj;
solve with MILP / cutoff=(cutoff[d]);
for {<g1,g2> in ARCS diff ARCS_d[d]} unfix UseArc[g1,g2];
num_solved = num_solved + 1;
if substr(_solution_status_,1,7) = 'OPTIMAL' and bestObj > _OBJ_ then do;

bestObj = _OBJ_;
INCUMBENT = {<g1,g2> in ARCS: UseArc[g1,g2].sol > 0.5};

end;
put num_solved= bestObj=;

end;
for {<g1,g2> in ARCS} UseArc[g1,g2] = (<g1,g2> in INCUMBENT);

Note that the MILP solver CUTOFF= option is used to terminate each subproblem early if the solver
determines that the current subproblem cannot yield a better solution than the current best. Figure 21 shows
the log for the COFOR loop iteration that yields an optimal solution.

Figure 21 Log for One Iteration of COFOR Loop

d=15APR2014
NOTE: Problem generation will use 2 threads.
NOTE: The problem has 72747 variables (0 free, 63617 fixed).
NOTE: The problem has 72747 binary and 0 integer variables.
NOTE: The problem has 2436 linear constraints (0 LE, 2436 EQ, 0 GE, 0 range).
NOTE: The problem has 215837 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 63617 variables and 2063 constraints.
NOTE: The MILP presolver removed 188788 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 9130 variables, 373 constraints, and 27049

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 24.1631944 24.1631944 0.00% 3
0 0 1 24.1631944 24.1631944 0.00% 3

NOTE: Optimal.
NOTE: Objective = 24.163194444.
num_solved=17 bestObj=24.163194444

It turns out that this entire COFOR loop finishes running in six minutes, yielding a provably optimal schedule.
Furthermore, you can apply this same approach to the weaker initial formulation by instead fixing and unfixing
the Attend variables.

EXTENSIONS

Because PROC OPTMODEL provides a flexible modeling language, you can easily modify the optimization
model to increase accuracy or to account for additional rules.

Two natural refinements that require essentially no changes to the optimization model are as follows:

• game-dependent game durations

• time-dependent travel times

25



The first refinement was already addressed in the section “DATA” on page 2. The second
refinement can be handled by replacing times_between_stadiums[location[g1] ; location[g2]] with
times_between_games[g1; g2] values read from a data set.

You can account for the following extensions by adding constraints to the optimization model:3

• See each team exactly twice.

• See your favorite team at least n times.

• See a particular matchup at least n times.

• No repeat matchups.

• No consecutive games with the same team.

• Do not visit cold cities in April or September.

• Force a game to coincide with your existing travel plans to a city.

• Fix variables and reoptimize if your plan is disrupted (perhaps because of a game cancellation, extra
innings, or traffic delays).

Although you can express many of these constraints more naturally by using the Attend[g] variables from
the initial formulation rather than the UseArc[g1; g2] variables from the network formulation, you can rewrite
any constraints that involve Attend[g] by using the correspondence

Attend[g] D
X

.g1;g/2ARCS

UseArc[g1; g]

either as an explicit constraint,

con Link {g in GAMES}:
Attend[g] = sum {<g1,(g)> in ARCS} UseArc[g1,g];

or as an implicit variable,

impvar Attend {g in GAMES} =
sum {<g1,(g)> in ARCS} UseArc[g1,g];

For example, because the existing constraints already enforce seeing every team t once at its home stadium,
you can write the first side constraint (“see each team exactly twice”) for each t as follows:X

g2GAMESW
away_team[g]Dt

Attend[g] D 1

The following statement declares this set of constraints:

con See_away_once {t in TEAMS}:
sum {g in GAMES: away_team[g] = t} Attend[g] = 1;

You can handle the remaining extensions similarly.

CONCLUSION

This paper demonstrates the power and flexibility of the OPTMODEL procedure in SAS/OR to formulate
and solve a routing and scheduling optimization problem. The rich and expressive algebraic modeling
language enables you to easily explore multiple mathematical programming formulations and access multiple
optimization solvers, all within one PROC OPTMODEL session. When a natural formulation turns out to
be weak, sometimes a reformulation that uses more decision variables turns out to be easier to solve.
PROC OPTMODEL also offers ways to exploit parallel processing, including solver options and the COFOR
statement, which is new in SAS/OR 13.1. When you have a tractable approach to solve a basic version of
the problem, it is often easy to model several side constraints.

3Including any of these side constraints would require the full arc set rather than the smaller arc set used to generate the results in
this paper.

26



REFERENCES

Booth, D., Landgren, C. B., and Lee, K. A. (2011), The Fastest Thirty Ballgames: A Ballpark Chasers World
Record Story, Bloomington, IN: AuthorHouse.

Cleary, R., Faga, D., Lui, A., and Topel, J. (2000), “The Traveling Baseball Fan,” Math Horizons, 8, 18–22.
URL http://www.jstor.org/stable/25678277

Major League Baseball (2008), “TWIB: 30 Ballparks,” online, video.
URL http://wapc.mlb.com/play/?content_id=3295802

Zdeb, M. (2010), “Driving Distances and Times Using SAS and Google Maps,” in Proceedings of the SAS
Global Forum 2010 Conference, Cary, NC: SAS Institute Inc.
URL http://support.sas.com/resources/papers/proceedings10/050-2010.pdf

ACKNOWLEDGMENTS

Thanks to Phil Gibbs for introducing the authors to this problem and to Robert Allison for providing the SAS
code to generate the maps.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the following author:

Rob Pratt
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
919-531-1099
Rob.Pratt@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

27

http://www.jstor.org/stable/25678277
http://wapc.mlb.com/play/?content_id=3295802
http://support.sas.com/resources/papers/proceedings10/050-2010.pdf

