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ABSTRACT  

One of the most common questions about logistic regression is “How do I know if my model fits the data?” There are 
many approaches to answering this question, but they generally fall into two categories: measures of predictive 
power (like R-square) and goodness of fit tests (like the Pearson chi-square). This presentation looks first at R-square 
measures, arguing that the optional R-squares reported by PROC LOGISTIC might not be optimal. Measures 
proposed by McFadden and Tjur appear to be more attractive. As for goodness of fit, the popular Hosmer and 
Lemeshow test is shown to have some serious problems. Several alternatives are considered. 

INTRODUCTION 

One of the most frequent questions I get about logistic regression is “How can I tell if my model fits the data?” Often 
the questioner is expressing a genuine interest in knowing whether a model is a good model or a not-so-good model.  
But a more common motivation is to convince someone else--a boss, an editor, or an audience--that the model is OK.  

There are two very different approaches to answering this question. One is to get a statistic that measures how well 
you can predict the dependent variable based on the independent variables. I’ll refer to these kinds of statistics as 
measures of predictive power. Typically, they vary between 0 and 1, with 0 meaning no predictive power whatsoever 
and 1 meaning perfect predictions. Predictive power statistics available in PROC LOGISTIC include R-square, the 
area under the ROC curve, and several rank-order correlations. Obviously, the higher the better, but there is rarely a 
fixed cut-off that distinguishes an acceptable model from one that is not acceptable. 

The other approach to evaluating model fit is to compute a goodness-of-fit statistic. With PROC LOGISTIC, you can 
get the deviance, the Pearson chi-square, or the Hosmer-Lemeshow test. These are formal tests of the null 
hypothesis that the fitted model is correct, and their output is a p-value--again a number between 0 and 1 with higher 
values indicating a better fit. In this case, however, a p-value below some specified α level (say, .05) would indicate 
that the model is not acceptable.  

What many researchers fail to realize is that measures of predictive power and goodness-of-fit statistics are testing 
very different things.  It’s not at all uncommon for models with very high R-squares to produce unacceptable 
goodness-of-fit statistics. And conversely, models with very low R-squares, can fit the data very well according to 
goodness-of-fit tests.  As I’ll explain in more detail later, what goodness-of-fit statistics are testing is not how well you 
can predict the dependent variable, but whether you could do even better by making the model more complicated, 
specifically, adding non-linearities, adding interactions, or changing the link function.   

The goal of this paper is to discuss several issues that I’ve been grappling with over the years regarding both 
predictive power statistics and goodness-of-fit statistics.  With one exception, I make no claim to originality here.  
Rather, I’m simply trying to make sense out of a rather complicated literature, and to distill it into some practical 
recommendations.  

I begin with measures of predictive power, and I’m going to focus exclusively on R-square measures. I don’t mean to 
imply that these are either better or worse than alternative measures like the area under the ROC curve.  But I 
personally happen to like R-square statistics just because they are so familiar from the context of ordinary linear 
regression.  

R2 STATISTICS FOR LOGISTIC REGRESSION 

There are many different ways to calculate  R2 for logistic regression and, unfortunately, no consensus on which one 
is best. Mittlbock and Schemper (1996) reviewed 12 different measures; Menard (2000) considered several others. 
The two methods that are most often reported in statistical software appear to be one proposed by McFadden (1974) 
and another that is usually attributed to Cox and Snell (1989) along with its “corrected” version.  

The Cox-Snell R2 (both corrected and uncorrected) was actually discussed earlier by Maddala (1983) and by Cragg 
and Uhler (1970). Cox-Snell is the optional R2 reported by PROC LOGISTIC.  PROC QLIM reports eight different R2 

measures including both Cox-Snell and McFadden. Among other statistical packages that I’m familiar with, Statistica 
reports the Cox-Snell measures. JMP reports both McFadden and Cox-Snell. SPSS reports the Cox-Snell measures 
for binary logistic regression but McFadden’s measure for multinomial and ordered logit.   

For years, I’ve been recommending the Cox-Snell R2 over the McFadden R2, but I’ve recently concluded that that was 
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a mistake. I now believe that McFadden’s R2 is a better choice. However, I’ve also learned about another R2 that has 
good properties, a lot of intuitive appeal, and is easily calculated. At the moment, I like it better than the McFadden 
R2, but I’m not prepared to make a definitive recommendation at this point.  

Here are some details. Logistic regression is, of course, estimated by maximizing the likelihood function. Let L0 be the 
value of the likelihood function for a model with no predictors, and let LM be the likelihood for the model being 
estimated. McFadden’s R2 is defined as  

R2
McF = 1 – ln(LM) / ln(L0)  

where ln(.) is the natural logarithm. The rationale for this formula is that ln(L0) plays a role analogous to the residual 
sum of squares in linear regression. Consequently, this formula corresponds to a proportional reduction in “error 
variance”. It’s sometimes referred to as a “pseudo” R2.  

The Cox and Snell R2 is 

R2
C&S = 1 – (LM / L0)2/n 

where n is the sample size. The rationale for this formula is that, for normal-theory linear regression, it’s an identity. In 
other words, the usual R2 for linear regression depends on the likelihoods for the models with and without predictors 
by precisely this formula. It’s appropriate, then, to describe this as a “generalized” R2 rather than a pseudo R2.  By 
contrast, the McFadden R2 does not have the OLS R2 as a special case. I’ve always found this property of the Cox-
Snell R2 to be very attractive, especially because the formula can be naturally extended to other kinds of regression 
estimated by maximum likelihood, like negative binomial regression for count data or Weibull regression for survival 
data. 

It’s well known, however, that the big problem with the Cox-Snell R2 is that it has an upper bound that is less than 1.0. 
Specifically, the upper bound is 1 – L0

2/n. This can be a lot less than 1.0, and it depends only on p, the marginal 
proportion of cases with events: 

 upper bound = 1 – [pp(1-p)(1-p)]2 

I have not seen this formula anywhere else, so it may be the only original thing in this paper. The upper bound 
reaches a maximum of .75 when p=.5. By contrast, when p=.9 (or .1), the upper bound is only .48. 

For those who want an R2
 that behaves like a linear-model R2, this is deeply unsettling. There is a simple correction, 

and that is to divide R2
C&S by its upper bound, which produces the R2 attributed to Nagelkerke (1991) and which is 

labeled in SAS® output as the max-rescaled R2. But this correction is purely ad hoc, and it greatly reduces the 
theoretical appeal of the original R2

C&S. I also think that the values it typically produces are misleadingly high, 
especially compared with what you get from just doing OLS with the binary dependent variable. (Some might view 
this as a feature, however).  

So, with some reluctance, I’ve decided to cross over to the McFadden camp. As Menard (2000) argued, it satisfies 
almost all of Kvalseth’s (1985) eight criteria for a good R2. When the marginal proportion is around .5, the McFadden 
R2 tends to be a little smaller than the uncorrected Cox-Snell R2. But when the marginal proportion is nearer to 0 or 1, 
the McFadden R2

 tends to be larger.  

But there’s another R2, recently proposed by Tjur (2009), that I’m inclined to prefer over McFadden’s. It has a lot of 
intuitive appeal, its upper bound is 1.0, and it’s closely related to R2 definitions for linear models. It’s also easy to 
calculate.  

The definition is very simple. For each of the two categories of the dependent variable, calculate the mean of the 
predicted probabilities of an event. Then, take the absolute value of the difference between those two means. That’s 
it! 

The motivation should be clear. If a model makes good predictions, the cases with events should have high predicted 
values and the cases without events should have low predicted values. Tjur also showed that his R2 (which he called 
the coefficient of discrimination) is equal to the arithmetic mean of two R2 formulas based on squared residuals, and 
equal to the geometric mean of two other R2’s based on squared residuals.   

Here’s an example of how to calculate Tjur’s statistic in SAS. I used a well-known data set on labor force participation 
of 753 married women (Mroz 1987). The dependent variable INLF is coded 1 if a woman was in the labor force, 
otherwise 0.  A logistic regression model was fit with six predictors.  

Here’s the code: 

proc logistic data=my.mroz; 
  model inlf(desc) = kidslt6 age educ huswage city exper; 
  output out=a pred=yhat; 



3 

proc ttest data=a; 
  class inlf; var yhat; run; 

 

The OUTPUT statement produces a new data set called A with predicted probabilities stored in a new variable called 
YHAT.  PROC TTEST is a convenient way to compute the mean of the predicted probabilities for each category of 
the dependent variable, and to take their difference. The output is shown in Table 1. Ignoring the sign of the 
difference, the Tjur R2 is .2575.  By contrast, the Cox-Snell R2 is .2477, and the max-rescaled R2is .3322.  McFadden 
R2 is .208.  The squared correlation between the observed and predicted values is .2572.   

The TTEST Procedure  
Variable: yhat (Estimated Probability) 

INLF N Mean Std Dev Std Err Minimum Maximum 

0 325 0.4212 0.2238 0.0124 0.0160 0.9592 

1 426 0.6787 0.2119 0.0103 0.1103 0.9620 

Diff (1-2)   -0.2575 0.2171 0.0160    
 

Table 1. PROC TTEST Output to Compute Tjur’s R2. 

 

One possible objection to the Tjur R2 is that, unlike Cox-Snell and McFadden, it’s not based on the quantity being 
maximized, namely, the likelihood function. As a result, it’s possible that adding a variable to the model could reduce 
the Tjur R2.  But Kvalseth (1985) argued that it’s actually preferable that R2 not be based on a particular estimation 
method. In that way, it can legitimately be used to compare predictive power for models that generate their 
predictions using very different methods. For example, one might want to compare predictions based on logistic 
regression with those based on a linear model or on a classification tree method.  

Another potential complaint is that the Tjur R2 cannot be easily generalized to ordinal or nominal logistic regression. 
For McFadden and Cox-Snell, the generalization is trivial.   

CLASSIC GOODNESS-OF-FIT STATISTICS 

I now turn to goodness-of-fit (GOF) tests, which can help you decide whether your model is correctly specified. GOF 
tests produce a p-value. If it’s low (say, below .05), you reject the model. If it’s high, then your model passes the test.  

Classic GOF tests are readily available for logistic regression when the data can be aggregated or grouped into 
unique “profiles”. Profiles are groups of cases that have exactly the same values on the predictors. For example, 
suppose we fit a model to the MROZ data with just two predictor variables, CITY (1=urban, 0=nonurban) and 
NKIDSLT6 which has integer values ranging from 0 to 3. There are then eight profiles, corresponding to the eight 
cells in the cross-classification of CITY by NKIDSLT6.   

After fitting the model, we can get an observed number of events and an expected number of events for each profile. 
There are two well-known statistics for comparing the observed number with the expected number: the deviance and 
Pearson’s chi-square. Here’s how to get them with PROC LOGISTIC: 

proc logistic data=my.mroz; 
  model inlf(desc) = kidslt6 city / aggregate scale=none; run; 

The AGGREGATE option says to aggregate the data into profiles based on the values of the predictor variables.  The 
SCALE=NONE option requests the deviance and the Pearson chi-square, based on those profiles.  Here are the 
results. 
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Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 4.1109 5 0.8222 0.5336

Pearson 3.9665 5 0.7933 0.5543

                           Number of unique profiles: 8 
Table 2. PROC LOGISTIC Output of GOF Statistics 

For both statistics, the chi-squares are low relative to the degrees of freedom, and the p-values are high. This is 
exactly what we want to see. There is no evidence to reject the null hypothesis, which is that the fitted model is 
correct. Now let’s take a closer look at these two statistics. 

The formula for the deviance is 
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If the fitted model is correct, both statistics have approximately a chi-square distribution, with the approximation 
improving as the sample gets larger.   

But what exactly are these statistics testing? This is easiest to see for the deviance, which is a likelihood ratio test 
comparing the fitted model to a “saturated” model that perfectly fits the data. In our example, a saturated model would 
treat KIDSLT6 as a CLASS variable, and would also include the interaction of KIDSLT6 and CITY.  Here’s the code 
for that model, with the GOF output in Table 3. 

proc logistic data=my.mroz; 
  class kidslt6; 
  model inlf(desc) = kidslt6 city kidslt6*city / aggregate scale=none; run; 

 

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 0.0000 0 . .

Pearson 0.0000 0 . .

Table 3. PROC LOGISTIC Output for a Saturated model 

So the answer to the question “What are GOF tests testing?” is simply this: they are testing whether there are any 
non-linearities or interactions. You can always produce a satisfactory fit by adding enough interactions and 
nonlinearities. But do you really need them to properly represent the data? GOF tests are designed to answer that 
question.  

A related issue is whether the “link” function is correct. Is it logit, probit, complementary log-log, or something else 
entirely? Note that in a saturated model, the link function is irrelevant. It’s only when you suppress interactions or 
non-linearities that the link function becomes an issue. For example, it’s possible (although unusual) that interactions 
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that are needed for a logit model could disappear when you fit a complementary log-log model.   

Both the deviance and the Pearson chi-square have good properties when the expected number of events and the 
expected number of non-events for each profile is at least 5. But most contemporary applications of logistic 
regression use data that do not allow for aggregation into profiles because the model includes one or more 
continuous (or nearly continuous) predictors. That’s certainly true for the MROZ data when you include age, 
education, husband’s wage, and years of experience in the model. When there is only one case per profile, both the 
deviance and Pearson chi-square have distributions that depart markedly from a true chi-square distribution, yielding 
p-values that may be wildly inaccurate. In fact, with only one case per profile, the deviance does not depend on the 
observed values at all, making it utterly useless as a GOF test (McCullagh 1985).  

What can we do? Hosmer and Lemeshow (1980) proposed grouping cases together according to their predicted 
values from the logistic regression model. Specifically, the predicted values are arrayed from lowest to highest, and 
then separated into several groups of approximately equal size. Ten groups is the standard recommendation.  

For each group, we calculate the observed number of events and non-events, as well as the expected number of 
events and non events. The expected number of events is just the sum of the predicted probabilities for all the 
individuals in the group. And the expected number of non-events is the group size minus the expected number of 
events.  

Pearson’s chi-square is then applied to compare observed counts with expected counts. The degrees of freedom is 
the number of groups minus 2. As with the classic GOF tests, low p-values suggest rejection of the model.  

For the MROZ data, here is the code for a model with five predictors: 

proc logistic data=my.mroz; 
  model inlf(desc) = kidslt6 age educ huswage city exper / lackfit; 
run; 

The LACKFIT option is what requests the Hosmer-Lemeshow (HL) test.  Results are in Table 4.  
 

Partition for the Hosmer and Lemeshow Test

Group Total INLF = 1 INLF = 0 

Observed Expected Observed Expected 

1 75 14 10.05 61 64.95 

2 75 19 19.58 56 55.42 

3 75 26 26.77 49 48.23 

4 75 24 34.16 51 40.84 

5 75 48 41.42 27 33.58 

6 75 53 47.32 22 27.68 

7 75 49 52.83 26 22.17 

8 75 54 58.87 21 16.13 

9 75 68 65.05 7 9.95 

10 76 71 69.94 5 6.06 
 

Hosmer and Lemeshow Goodness-of-Fit
Test 

Chi-Square DF Pr > ChiSq

15.6061 8 0.0484
 

Table 4. Hosmer-Lemeshow Results from PROC LOGISTIC. 
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The p-value is just below .05, suggesting that we may need some interactions or non-linearities in the model.  

The HL test seems like a clever solution, and it has become the de facto standard for almost all software packages. 
But it turns out to have serious problems. The most troubling problem is that results can depend markedly on the 
number of groups, and there’s no theory to guide the choice of that number. This problem did not become apparent 
until some software packages (but not SAS) started allowing you to specify the number of groups, rather than just 
using 10.  

When I estimated this model in Stata, for example, with the default number of 10 groups, I got a HL chi-square of 
15.52 with 8 df, yielding a p-value of .0499—almost the same as what we just got in SAS. But if we specify 9 groups, 
the p-value rises to .11. With 11 groups, the p-value is .64. Clearly, it’s not acceptable for the results to depend so 
greatly on minor changes that are completely arbitrary. Examples like this are easy to come by.  

But wait, there’s more. One would hope that adding a statistically significant interaction or non-linearity to a model 
would improve its fit, as judged by the HL test. But often that doesn’t happen. Suppose, for example, that we add the 
square of EXPER (labor force experience) to the model, allowing for non-linearity in the effect of experience. The 
squared term is highly significant (p=.002). But with 9 groups, the HL chi-square increases from 11.65 (p=.11) in the 
simpler model to 13.34 (p=.06) in the more complex model. Thus, the HL test suggests that we’d be better off with the 
model that excludes the squared term.  

The reverse can also happen. Quite frequently, adding a non-significant interaction or non-linearity to a model will 
substantially improve the HL fit. For example, I added the interaction of EDUC and EXPER to the basic model above. 
The product term had a p-value of .68, clearly not statistically significant. But the HL chi-square (based on 10 groups) 
declined from 15.52 (p=.05) to 9.19 (p=.33). Again, unacceptable behavior.  

I am certainly not the first person to point out these problems. In fact, in a 1997 paper, Hosmer, Lemeshow and 
others acknowledged that the HL test had several drawbacks, although that hasn’t stopped other people from using it. 
But if the HL test is not good, then how can we assess the fit of the model? It turns out that there’s been quite a lot of 
work on this topic, and many alternative tests have been proposed--so many that it’s rather difficult to figure out which 
ones are useful.  In the remainder of this paper, I will review some of the literature on these tests, and I will 
recommend four of them that I think are worthy of consideration.   

NEW GOODNESS-OF-FIT TESTS 

Many of the proposed tests are based on alternative ways of grouping the data (Tsiatis 1980, Pigeon and Heyse 
1991, Pulkstenis and Robinson 2002, Xie et al. 2008, Liu et al. 2012).  Once the data have been grouped, a standard 
Pearson chi-square is calculated to evaluate the discrepancy between predicted and observed counts within the 
groups. The main problem with these kinds of tests is that the grouping process usually requires significant effort and 
attention by the data analyst, and there is a certain degree of arbitrariness in how it is done.  What most analysts 
want is a test that can be easily and routinely implemented.  And since there are several tests that fulfill that 
requirement, I shall restrict my attention to tests that can be calculated when there is only one case per profile and no 
grouping of observations. 

Based on my reading of the literature, I am prepared to recommend four statistics for widespread use: 

1. Standardized Pearson Test.  With ungrouped data, the formula for the classic Pearson chi-square test is: 
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where yi is the dependent variable with values of 0 or 1, and iπ̂ is the predicted probability that yi =1, based on the 
fitted model. 

As we’ve just discussed, the problem with the classic Pearson GOF test is that it does not have a chi-square 
distribution when the data are not grouped. But Osius and Rojek (1992) showed that X2 has an asymptotic normal 
distribution with a mean and standard deviation that they derived. Subtracting the mean and dividing by the standard 
deviation yields a test statistic that has approximately a standard normal distribution under the null hypothesis. 
McCullagh (1985) derived a different mean and standard deviation after conditioning on the vector of estimated 
regression coefficients . In practice, these two versions of the standardized Pearson are nearly identical, especially in 
larger samples. Farrington (1996) also proposed a modified X2 test, but his test does not work when there is only one 
case per profile. For the remainder of this paper, I shall refer to the standardized Pearson test as simply the Pearson 
test.  
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2.  Unweighted Sum of Squares.  Copas (1989) proposed the test statistic 
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This statistic also has an asymptotic normal distribution under the null hypothesis, and Hosmer et al. (1997) showed 
how to get its mean and standard deviation. As with the Pearson test, subtracting the mean and dividing by the 
standard deviation yields a standard normal test statistic.  

3.  Information Matrix Test.  White (1982) proposed a general approach to testing for model misspecification by 
comparing two different estimates of the covariance matrix of the parameter estimates (the negative inverse of the 
information matrix), one based on first derivatives of the log-likelihood function and the other based on second 
derivatives. If the fitted model is correct, the expected values of these two estimators should be the same.  Orme 
(1988, 1990) showed how to apply this method to test models for binary data. The test statistic is 
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where the xij’s are the p predictor variables in the model and xio=1. After standardization with an appropriate variance, 
this statistic has approximately a chi-square distribution with p+1 degrees of freedom under the null hypothesis.   

4.  Stukel Test.  Stukel (1988) proposed a generalization of the logistic regression model that has two additional 
parameters, thereby allowing either for asymmetry in the curve or for a different rate of approach to the (0,1) bounds. 
Special cases of the model include (approximately) the complementary log-log model and the probit model. The 
logistic model can be tested against this more general model by a simple procedure. Let gi be the linear predictor 
from the fitted model, that is, gi = xi’b where xi is the vector of covariate values for individual i and b is the vector of 
estimated coefficients. Then create two new variables:  

za = g2 if g>=0, otherwise za = 0 
zb = g2 if g<0, otherwise zb = 0. 

Add these two variables to the logistic regression model and test the null hypothesis that both of their coefficients are 
equal to 0. Stukel proposed a score test, but there’s no obvious reason to prefer that to a Wald test or a likelihood 
ratio test.  

IMPLEMENTING THE TESTS 

As we’ll see, Stukel’s test is easily performed in SAS without much difficulty. The others are not quite so easy.  
Fortunately, Oliver Kuss has written a SAS macro that will calculate these and other tests. In fact, he presented a 
paper on that macro at SUGI 25 in 2001.  Currently, the macro can be downloaded at  
https://github.com/friendly/SAS-macros/blob/master/goflogit.sas. Unfortunately, there is a major problem with this 
macro that I will explain later.   

Let’s apply these tests to the MROZ data used earlier. Recall that the HL test with ten groups yielded a p-value of 
.048, suggesting a need for interactions or non-linearities in the model.  Here’s the code for doing the Stukel test: 

proc logistic data=my.mroz; 
  model inlf(desc) = kidslt6 age educ huswage city exper; 
  output out=a xbeta=xb; 
data b; 
  set a; 
  za=xb**2(xb>=0); 
  zb=xb**2(xb<0); 
  num=1; 
proc logistic data=b; 
  model inlf(desc) = kidslt6 age educ huswage city exper za zb ; 
  test za=0,zb=0; 
run; 

We first fit the model of interest using PROC LOGISTIC.  The OUTPUT statement produces a new data set A that 
contains all the variables in the model plus the new variable XB, which is the linear predictor based on the fitted 
model. In the DATA step that follows, the two new variables needed for the Stukel test are created. In addition, 
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NUM=1 creates a new “variable” that will be needed for the GOFLOGIT macro. The second PROC LOGISTIC step 
estimates the extended model with the two new variables, and tests the null hypothesis that both ZA and ZB have 
coefficients of 0. This produced a Wald chi-square of .12 (2 df), yielding a p-value of .94.  A likelihood ratio chi-square 
(the difference in the -2logL for the two models) produced almost identical results.  Clearly there is no evidence 
against the model.  

To calculate the other GOF statistics, we call the GOFLOGIT macro with the following statement: 

%goflogit(data=b, y=inlf, xlist=kidslt6 age educ huswage city exper, trials=num) 

The macro fits the logistic regression model with the dependent variable specified in Y= and the independent 
variables specified in XLIST=.  The TRIALS=NUM is necessary because the macro is designed to calculate GOF 
statistics for either grouped or ungrouped data.  For ungrouped data, the number of trials must be set to 1, which is 
why I created the NUM=1 variable in the earlier DATA step. The output is shown in Table 5.  
 

 Results from the Goodness-of-Fit Tests TEST Value  p-Value 

 Standard Pearson Test 751.049 0.421 

  Standard Deviance 813.773 0.038 

  Osius-Test 0.003 0.499 

  McCullagh-Test 0.029 0.489 

  Farrington-Test 0.000 1.000 

  IM-Test 11.338 0.125 

 RSS-Test 136.935 0.876 

 
Table 5. Output from GOFLOGIT Macro 

The first two tests are the classic Pearson and Deviance statistics, with p-values that can’t be trusted with ungrouped 
data.  Osius and McCullagh are two different versions of the standardized Pearson. As noted earlier, the Farrington 
test is not appropriate for ungrouped data—it’s always equal to 0.  What the macro labels as the RSS test is what I’m 
calling the USS test.   

The only test yielding a p-value less than .05 is the “standard deviance” but, as I said earlier, this test is useless for 
ungrouped data because it doesn’t depend on the observed values of y.  The Farrington test is also useless because, 
with ungrouped data, it’s always equal to 0. Notice that the Osius and McCullagh tests are very close, which has 
been the case with every data set that I’ve looked at. As reported here, the IM test is a chi-square statistic with df=7 
(the number of covariates in the model). The RSS value is just the sum of the squared residuals. Calculation of its p-
value requires subtracting its approximate mean and dividing by its approximate standard deviation, and referring the 
result to a standard normal table.   

PROPERTIES OF THE TESTS 

Simulation results show that all these tests have about the right “size”.  That is, if a correct model is fitted, the 
proportion of times that the model is rejected is about the same as the chosen alpha level, say, .05. So, in that sense, 
all the tests are properly testing the same null hypothesis. But then we must ask two related questions: what sorts of 
departures from the model are these tests sensitive to, and how much power do they have to detect various 
alternatives?  We can learn a little from theory and a little from simulation results.  

Theory. When the data are naturally grouped, the classic Pearson and deviance tests are truly omnibus tests. That 
is, they respond to any non-linearity, interaction or deviation from the specified link function. The newer tests appear 
to be more specific.  For example, by its very design, the Stukel test will tend to detect departures from the logit link 
function. Similarly, Osius and Rojek (1992) showed that the Pearson test can be derived as a score test for a 
parameter in different generalization of the logit model. They describe this test as “a powerful test against particular 
alternatives concerning the link [function]”. 

For the IM test, Chesher (1984) demonstrated that it is equivalent to a score test for the alternative hypothesis that 
the regression coefficients vary across individuals in the sample, rather than being the same for everyone. Similarly, 
Copas (1989) showed that the USS test can be derived as a score test for the alternative hypothesis that that the πi’s 
are independent random draws from a distribution with constant variance and means determined by the x’s. These 
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results suggest that both the IM and USS tests should be particularly sensitive to unobserved heterogeneity. 

Simulation. There have been three major simulation studies designed to assess the power of goodness-of-fit tests 
for logistic regression:  Hosmer et al. (1997), Hosmer and Hjort (2002) and Kuss (2002). For convenience, I’ll refer to 
them as H+, HH, and K.  Of the four statistics under consideration here, H+ includes the Pearson, USS and Stukel.  
HH only considers the Pearson and USS.  K includes Pearson, USS and IM.  

All three studies use only sample sizes of 100 and 500. Here’s a summary of their results for various kinds of 
departure from the standard logistic model: 

Quadratic vs. linear effect of a covariate. H+ report that Pearson and USS have moderate power for N=100 and very 
good power (above 90% under most conditions) for N=500.  Power for Stukel is similar but somewhat lower. HH get 
similar results for Pearson and USS.  K, on the other hand, found no power for Pearson, and moderate to good power 
for USS and IM, with USS noticeably better than IM for N=100. 

Interaction vs. linear effects of two covariates. H+ found virtually no power for all tests under all conditions.  But they 
set up the simulation incorrectly, in my judgment.  HH reported power of about 40% for both Pearson and USS at 
N=100 for a very strong interaction.  At N=500, the power was over 90%.  For weaker interactions, power ranged 
between 5% and 70%.  K did not examine interactions. None of the simulations examined the power of Stukel or IM 
for testing interactions.   

Alternative link functions. H+ found that Pearson, USS and Stukel generally had very low power at N=100 and only 
small to moderate power at N=500.  Stukel was the best of the three. HH report similar results for USS and Pearson.  
Comparing logistic with complementary log-log, K found no power for Pearson and moderate power for IM and USS, 
with IM somewhat better.   

Missing covariate and overdispersion.  K found that neither Pearson, USS or IM had any appreciable power to detect 
these kinds of departures.  

Discussion.  The most alarming thing about these simulation studies is the inconsistency between Kuss and the other 
two studies regarding the performance of the Pearson test.  H+ and HH found that Pearson had reasonably good 
power to test several different kinds of specifications.  Kuss, on the other hand, found that the Pearson test had 
virtually no power to test either a quadratic model or a misspecified link function.  

Unfortunately, I believe that Kuss’s simulations, which were based on his GOFLOGIT macro, have a major flaw. For 
the standardized Pearson statistics, he used a one-sided test rather than the two-sided test recommended by Osius 
and Rojek, and also by Hosmer and Lemeshow in the 2013 edition of their classic text, Applied Logistic Regression.  
When I replicated Kuss’s simulations using a two-sided test, the results (shown below) were consistent with those of 
H+ and HH.  There is also a flaw in the H+ simulations. For their interaction models, the fitted models removed the 
interaction and the main effect of one of the two variables. This does not yield a valid test of the interaction.   

NEW SIMULATIONS 

To address problems with previous simulations, I ran new simulations that included all the GOF tests recommended 
here.  Whenever appropriate, I tried to replicate the basic structure of the simulations used in previous studies. As 
reported in those studies, all the tests rejected the null hypothesis at about the nominal level when the fitted model 
was correct. So I shall only report the power of the tests to reject the null hypothesis when the fitted model is 
incorrect.  For each condition, 500 samples were drawn.  

Linear vs. quadratic.  The correct model was 2
210)(logit xxi βββπ ++= .Values of the coefficients were the same 

as those used by Hosmer and Hjort. Coefficients were varied to emphasize or deemphasize the quadratic 
component, in four configurations: very low, low, medium and high. The variable x was uniformly distributed between 
-3 and 3. The fitted model deleted x2.  Sample sizes of 100 and 500 were examined. The linear model was “rejected” 
if the p-value for the GOF test fell below .05.  In addition to the new GOF tests, I checked the power of the standard 
Wald chi-square test for β2, the coefficient for x2.Table 6 shows the proportion of times that the linear model was 
rejected, i.e., estimates of the power of each test.  

When the quadratic effect is “very low”, none of the tests had any appreciable power. For the “low” quadratic effect, 
we see pretty good power at N=500, and some power at N=100.  For the “medium” quadratic effect, N=500 gives 
near perfect power for all tests, but just moderate power N=100.  In this condition, the Stukel test seems noticeably 
weaker than the others.  For the “high” quadratic effect, we see very good power at N=100, and 100 percent rejection 
at N=500.  The Wald chi-square for the interaction generally does better than the GOF tests, especially at N=500.     
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Quadratic 
Effect Very Low Low Medium High 

N 100 500 100 500 100 500 100 500 

Osius 0.068 0.106 0.328 0.840 0.604 0.990 0.832 1.000 

McCullagh 0.072 0.108 0.344 0.844 0.616 0.990 0.842 1.000 

USS 0.064 0.066 0.348 0.890 0.654 0.994 0.858 1.000 

IM 0.048 0.070 0.292 0.872 0.584 0.994 0.826 1.000 

Stukel 0.030 0.064 0.192 0.866 0.436 0.992 0.708 1.000 

Wald X2 .0440 0.104 0.380 0.912 0.636 1.000 0.980 1.000 

Table 6. Power Estimates for Detecting a Quadratic Effect 

Linear vs. interaction. The correct model was xddxi 3210)(logit ββββπ +++= . For the predictor variables, x was 
uniformly distributed between -3 and +3, d was dichotomous with values of -1 and +1, and the two variables were 
independent.  Coefficients were chosen to represent varying levels of interaction.  The fitted model deleted the 
product term xd.  Sample sizes of 100 and 500 were examined. The linear model was “rejected” if the p-value for the 
GOF test fell below .05.  Table 7 shows the proportion of times that the linear model was rejected. 

 

Interaction Very Low Low Medium High Very High 

N 100 500 100 500 100 500 100 500 100        500 

Osius 0.083 0.086 0.130 0.262 0.211 0.414 0.338 0.570 0.497 0.639 

McCullagh 0.093 0.086 0.138 0.264 0.215 0.416 0.348 0.574 0.501 0.639 

USS 0.079 0.086 0.130 0.254 0.211 0.406 0.340 0.566 0.499 0.631 

IM 0.032 0.054 0.077 0.310 0.168 0.518 0.320 0.658 0.545 0.745 

Stukel 0.059 0.214 0.114 0.664 0.274 0.906 0.421 0.952 0.634 0.964 

Wald X2 0.120 0.426 0.342 0.950 0.666 1.000 0.864 1.000 0.966 1.000 

Table 7. Power Estimates for Detecting an Interaction 

 

In Table 7, we see that power to detect interaction with GOF tests is generally on the low side. Of the five new tests, 
Stukel clearly outperforms the others, especially at N=500.  IM generally comes in second. But by comparison, the 
standard Wald chi-square test for the interaction is far superior to any of these tests. This illustrates the general 
principle that, while GOF tests may be useful in detecting unanticipated departures from the model, tests that target 
specific departures from the model are often much more powerful.   

Incorrect Link Function.  Most software packages for binary regression offer only three link functions: logit, probit and 
complementary log-log. So the practical issue is whether GOF tests can discriminate among these three.  Logit and 
probit curves are both symmetrical so it’s very hard to distinguish them. Instead, I’ll focus on logit vs. complementary 
log-log (which is asymmetrical).  The true model was linear in the complementary log-log:  

xi 10))1(log(-log ββπ +=− , 

with x uniformly distributed between -3 and 3, β0 = 0 and β1 = .81.  The fitted model was a standard logistic model.  
Results for the GOF tests are shown in Table 8. 

For N=100, none of the tests is any good.  For N=500, the standardized Pearson tests are awful, USS is marginal, 
and IM and Stukel are half decent.  

Things look a little different in the last column, however, where I increased the sample size to 1,000 and reduced the 
coefficient of x by half.  Now the Pearson statistics look better than IM and Stukel.  Why the reversal?  As others have 
noted, the Pearson statistic may be particularly sensitive to cases where the predicted value is near 1 or 0 and the 
observed value is in the opposite direction.  That’s because each residual gets weighted by 
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which will be large when the predicted values are near 0 or 1.  When β1 = .81—the condition for the smaller sample 
sizes—many of the predicted values are near 0 or 1.  But when β1 = .405 and N=1000, a much smaller fraction of the 
predicted values are near 0 or 1. This suggests that the earlier simulations should also allow for variation in the range 
of predicted values.  

 

N 
100  

(β1 = .81) 
500  

(β1 = .81) 
1000 

(β1 =.405) 

Osius 0 0.112 0.428 

McCullagh 0 0.092 0.428 

USS 0.054 0.290 0.430 

IM 0.076 0.552 0.350 

Stukel 0.036 0.478 0.352 

Table 8. Power Estimates for Detecting an Incorrect Link Function 

CLOSING POINTS 

• All of the new GOF tests with ungrouped data are potentially useful in detecting misspecification.  

• For detecting interaction, the Stukel test was markedly better than the others. But it was somewhat weaker 
for detecting quadratic effects.  

• None of the tests was great at distinguishing a logistic model from a complementary log-log model. The 
Pearson tests were much worse than the others when many predicted probabilities were close to 1 or 0, and 
better than the others when predicted probabilities were concentrated in the midrange. This suggests that 
much more elaborate simulations are needed for a comparative evaluation of these statistics.  

• Tests for specific kinds of misspecification may be much more powerful than global GOF tests. This was 
particularly evident for interactions. For many applications a targeted approach may be the way to go.  

• I recommend using all these GOF tests. If your model passes all of them, you can feel relieved.  If any one 
of them is significant, it’s probably worth doing targeted tests.  

• As with any GOF tests, when the sample size is quite large, it may not be possible to find any reasonably 
parsimonious model with a p-value greater than .05. 

• If you use the GOFLOGIT macro, modify it to calculate two-sided p-values for the Osius and McCullagh 
versions of the standardized Pearson statistic.   
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