
1

Paper 159-2012

New Features in SAS/OR® 12.1

Ed Hughes and Manoj Chari, SAS Institute Inc., Cary, NC, USA

ABSTRACT

SAS/OR 12.1 debuts a broad range of new capabilities and enhanced features in operations research. This paper
surveys these additions, emphasizing their benefits and their application to business problems, and especially to
large business problems.

Optimization improvements include faster problem generation and support for additional specialized solution methods
in the OPTMODEL procedure. SAS/OR 12.1 can also exploit multicore computing in an updated version of the
nonlinear programming multistart method and in underlying methods for the LP, QP, and NLP solvers.

Other updates include an expanded set of constraint classes for the CLP procedure and enhanced SAS® Simulation
Studio support for large models and large experiments (many factors and responses).

INTRODUCTION

This paper surveys many of the enhancements included with SAS/OR 12.1 and SAS Simulation Studio 12.1, which is
a graphical discrete-event simulation application that is part of SAS/OR 12.1 on the Windows operating system. The
practical implications of these improvements and additions are highlighted and selected examples illustrate some of
the new features.

This paper assumes that you possess a basic understanding of operations research problems and methods and thus
does not dwell on the basic concepts in any area, except as needed to establish the context for the new features.
Instead the paper focuses on how the new SAS/OR capabilities should prove useful in your operations research
modeling and analysis work.

This paper has been prepared in advance of the release of SAS/OR 12.1, so some details of the new features are not
included since they are still evolving. A more extensive version of this paper will be made available later in the
Knowledge Base area of the support.sas.com website.

NEW OPTIMIZATION CAPABILITIES

SAS/OR 12.1 enhances its capabilities in linear, mixed-integer linear, quadratic, and general nonlinear optimization.
These improvements range from the introduction of new solver methods to enhanced controls and new
implementations for current solvers to behind-the-scenes upgrades, all contributing to significant improvements in
optimization performance. Overall, these enhancements enable you to solve more optimization problems, tackle
larger and more complex problems, and spend less time solving them.

SUPPORTING TECHNOLOGIES

The SAS/OR 12.1 underlying improvements in optimization are chiefly related to multithreading, which denotes the
use of multiple computational cores to enable computations to be executed in parallel rather than in serial fashion.
Multithreading can provide dramatic performance improvements for optimization since these underlying computations
are performed many times in the course of an optimization process.

The underlying linear algebra operations for the linear (LP), quadratic (QP), and nonlinear (NLP) interior point
optimization algorithms are now multithreaded. The LP, QP, and NLP solvers can be used by PROC OPTMODEL,
PROC OPTLP, and PROC OPTQP in SAS/OR. For nonlinear optimization with PROC OPTMODEL, the evaluation
of nonlinear functions is multithreaded for improved performance.

Finally, PROC OPTMODEL itself benefits from multithreading in the process of creating an optimization model from
PROC OPTMODEL statements. PROC OPTMODEL contains powerful declarative and programming statements and
is adept at enabling data-driven definition of optimization models, with the result that a rather small section of PROC
OPTMODEL code can create a very large optimization model when it is executed. Multithreading is an ideal
improvement to this process and can dramatically shorten the time needed to create an optimization model.

SAS/OR users can use the NTHREADS= option in the PERFORMANCE statement in PROC OPTMODEL and other
SAS/OR optimization procedures to specify the number of cores to be used. Otherwise, SAS detects the number of
cores available and uses them.

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

2

NONLINEAR OPTIMIZATION

The nonlinear optimization solver used by PROC OPTMODEL builds on the introduction of multithreading for its two
most significant improvements in SAS/OR 12.1. First, in addition to the nonlinear solver options
SOLVER=ACTIVESET and SOLVER=INTERIORPOINT, SAS/OR 12.1 introduces the SOLVER=CONCURRENT
option, with which you can invoke both the Active Set and Interior Point solvers for the specified problem, running in
parallel on separate threads. The solution process terminates when either of the solvers terminates. If you are not
sure which method will perform best for your nonlinear optimization problem, the SOLVER=CONCURRENT option
should prove very useful and illuminating. If your task involves solving a large number of similarly structured
problems, either as a group or as part of a larger analytic flow that is invoked repeatedly, using the
SOLVER=CONCURRENT option with a representative problem can provide insights that are critical to more efficient
operations.

Multithreading is also central to the nonlinear optimization solver’s enhanced multistart capability, which now takes
advantage of multiple threads to execute optimizations from multiple starting points in parallel. The multistart
capability is essential for problems that feature nonconvex nonlinear functions in either or both of the objective and
the constraints since such problems might have multiple locally optimal points. Starting optimization from several
different starting points helps to overcome this difficulty, and multithreading this process helps to ensure that the
overall optimization process is as quick as possible.

In SAS/OR 12.1, the nonlinear optimization solver also expands the irreducible infeasible set (IIS) capability (which is
already present in the linear optimization solver) to include linear constraints that are specified for a nonlinear
optimization problem. For an infeasible optimization problem, the IIS feature identifies an irreducible infeasible set of
bounds, constraints, or both. For this set, removing any one of the constraints or bounds renders the remaining set
feasible. This feature can be very useful for identifying sources of infeasibility, especially in large optimization
problems. Since the concept of a set of constraints being collectively globally infeasible is valid only for linear
constraints, the IIS capability is limited to linear constraints when applied to nonlinear optimization. The syntax is
identical to that for linear optimization; the IIS= option in the SOLVE WITH NLP statement enables IIS detection if
IIS=ON and disables it if IIS=OFF (the default value).

LINEAR AND MIXED-INTEGER LINEAR OPTIMIZATION

SAS/OR 12.1 delivers a great number of additions and upgrades to linear and mixed-integer linear optimization,
improving performance on current features and expanding functionality. Mixed-integer linear optimization
performance benefits not only from its own improvements but also from improvements in the simplex-based linear
optimization algorithms, which are employed repeatedly as components of mixed-integer linear optimization.

Linear Optimization

Extensive improvements to the primal and dual simplex linear optimization solvers produce better performance and
better integration with the crossover algorithm, which converts solutions found by the interior point solver into more
usable basic optimal solutions. The crossover algorithm itself has undergone extensive enhancements that
dramatically improve its speed and stability. It’s also now possible to use the crossover algorithm with the network
simplex solver, which might identify a solution to a partial network problem that isn’t a basic optimal solution.

Paralleling developments in nonlinear optimization, SAS/OR 12.1 linear optimization introduces a concurrent solver,
invoked with the SOLVER=CONCURRENT option, in the SOLVE WITH LP statement for PROC OPTMODEL or in
the PROC OPTLP statement. The concurrent LP solver runs a selection of linear optimization solvers in parallel on
different threads, with settings determined to suit the problem at hand. The optimization process terminates when the
first solver identifies an optimal solution. As with nonlinear optimization, the concurrent LP solver has the potential to
produce significant reductions in the time needed to solve challenging problems and to provide insights that are
useful when you solve a large number of similarly structured problems.

In linear network optimization, improvements to the network simplex algorithm enhance its ability to identify networks
embedded in linear optimization problems. The network extraction process is now able to identify more network
elements and do so more quickly. A more fundamental change to network optimization is the introduction of PROC
OPTNET, which includes state-of-the-art algorithms for analyzing network structures and solving network-oriented
linear optimization problems. PROC OPTNET is covered in a later section of this paper.

Mixed-Integer Linear Optimization

Mixed-integer linear optimization in SAS/OR 12.1 builds on the advances in linear optimization and boasts its own
improved and expanded capabilities. Overall, solver speed has increased by over 50% (on a library of test problems)
compared to SAS/OR 9.3. The branch-and-bound algorithm, the central element of the mixed-integer optimization
solver, has approximately doubled its ability to evaluate and solve component linear optimization problems (which are

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

3

referred to as nodes in the branch-and-bound tree). These improvements have produced very significant reductions
in solution time for difficult problems.

The Decomposition Algorithm

The most fundamental change to both linear and mixed-integer linear optimization in SAS/OR 12.1 is the addition of
the decomposition (DECOMP) algorithm, which is invoked with a specialized set of options in the SOLVE WITH LP
and SOLVE WITH MILP statements for PROC OPTMODEL or in the PROC statement for PROC OPTLP and PROC
OPTMILP (with a modification of the MPS formatted input SAS data set). For many linear and mixed-integer linear
optimization problems, most of the constraints apply only to a small set of decision variables; the constraints are thus
“local” to these decision variables. Typically there are many such sets of local constraints, complemented by a small
set of global or linking constraints that apply to all or most of the decision variables. Optimization problems with these
characteristics are said to have a “block-angular” structure, since it’s easy to arrange the rows of the constraint matrix
so that the nonzero values, which correspond to the local sets of constraints, appear as blocks along the main
diagonal.

The DECOMP algorithm exploits this block-diagonal structure, decomposing the overall optimization problem into a
set of component problems that can be solved in parallel on separate computational threads. The algorithm
repeatedly solves these component problems and then cycles back to the overall problem to update key information
that is used the next time the component problems are solved. This process continues iteratively and in the end
produces a solution to the complete problem, with the linking constraints present. The combination of parallelized
solving of the component problems and the iterative coordination with the solution of the overall problem can result in
great reductions in solution time for problems that were previously regarded as time-consuming or practically
impossible to solve successfully.

To use the DECOMP algorithm, the blocks of the constraint matrix, which correspond to component problems, must
be identified either manually or automatically. The METHOD= option controls the means by which blocks are
identified. METHOD=USER enables you specify the blocks yourself, using the .block suffix to declare blocks. This is
by far the most common method for defining blocks. If your problem has a significant or dominant network structure,
you can use METHOD=NETWORK to identify the blocks in the problem automatically. Finally, if no linking
constraints are present in your problem, then METHOD=AUTO identifies the blocks automatically; in future releases
METHOD=AUTO will expand its capabilities to deal with linking constraints.

The DECOMP algorithm uses a number of detailed options that specify how the solution processes for the
component problems and the overall problem are configured and how they coordinate with each other. You can also
specify the number of computational threads to make available for processing component problems and the level of
detail in information that appears in the SAS log. Options specific to the linear and mixed-integer linear solvers used
by the DECOMP algorithm are largely identical to those for the respective solvers.

A simple example illustrates the use of the DECOMP algorithm with PROC OPTMODEL. The generalized
assignment problem (GAP) involves the assignment of agents to tasks, with the resource usage and the cost for
completing each task potentially differing according to the agent assigned. Each agent has a finite resource budget
that cannot be exceeded, and each task must be assigned to exactly one agent. The goal is to minimize the total
cost of the assignments.

The following SAS data sets indicate the assignment cost, assignment resource usage, and resource budgets for a
GAP that involves 15 tasks and 5 agents:

 /* for each agent i, cost of allocating job j to agent i */

 data cost;

 input c1-c15;

 datalines;

 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16

 23 16 21 16 17 16 19 25 18 21 17 15 25 17 24

 16 20 16 25 24 16 17 19 19 18 20 16 17 21 24

 19 19 22 22 20 16 19 17 21 19 25 23 25 25 25

 18 19 15 15 21 25 16 16 23 15 22 17 19 22 24

 ;

 /* for each agent i, the resource consumed in allocating job j to agent i */

 data resource;

 input r1-r15;

 datalines;

 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24

 15 7 23 22 11 11 12 10 17 16 7 16 10 18 22

 21 20 6 22 24 10 24 9 21 14 11 14 11 19 16

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

4

 20 11 8 14 9 5 6 19 19 7 6 6 13 9 18

 8 13 13 13 10 20 25 16 16 17 10 10 5 12 23

 ;

 /* resource capacity of agent i */

 data capacity;

 input b @@;

 datalines;

 36 34 38 27 33

 ;

The following PROC OPTMODEL staetments declare index sets and parameters, read in data for the problem
instance, and declare the constraints and objective for the problem:

 proc optmodel;

 num numJobs = 15;

 /* declare index sets */

 set AGENTS;

 set JOBS = 1..numJobs;

 /* declare parameters */

 num cost {AGENTS, JOBS};

 num resource {AGENTS, JOBS};

 num capacity {AGENTS};

 /* read data sets to populate data */

 read data capacity into AGENTS=[_n_] capacity=b;

 read data cost into [i=_n_] {j in JOBS} <cost[i,j]=col('c'||j)>;

 read data resource into [i=_n_] {j in JOBS} <resource[i,j]=col('r'||j)>;

 /* x[i,j] = 1 if we assign agent i to job j */

 var x {AGENTS,JOBS} >= 0 binary;

 /* minimize the total cost of assignment */

 min TotalCost =

 sum {i in AGENTS, j in JOBS} cost[i,j] * x[i,j];

 /* each agent i has a capacity on the resources consumed for its assigned jobs */

 con Capacity {i in AGENTS}:

 sum {j in JOBS} resource[i,j] * x[i,j] <= capacity[i];

 /* each job j must be assigned to exactly one agent */

 con Assignment {j in JOBS}:

 sum {i in AGENTS} x[i,j] = 1;

Note that each of the Capacity constraints defined in the preceding statements involves only the decision variables
that correspond to the resource for which it is defined; thus each Capacity constraint forms a distinct block of
coefficients in the overall constraint matrix. These blocks are declared with the following OPTMODEL statements, in
which the ith

Capacity constraint becomes the ith

block:

 /* each capacity constraint defines a block */

 for {i in AGENTS}

 Capacity[i].block = i;

Finally the SOLVE statement uses the DECOMP algorithm in solving this problem:

 /* solve with decomp (knapsack decomposition) */

 solve with milp /

 decomp =(method=user);

The CREATE DATA statement creates an output data set for the problem that is then printed with PROC PRINT:

 /* write solution to data set */

 create data soldata from [i j] =

 {i in AGENTS, j in JOBS: x[i,j] > 0.5} x=(round(x[i,j])) cost[i,j];

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

5

 quit;

 proc print data=soldata; sum cost; run;

Output 1 shows the SAS data set soldata, which contains the optimal assignment of agents to tasks. The total cost of
the assignment is 261.

Obs i j x cost

 1 1 9 1 19

 2 1 15 1 16

 3 2 2 1 16

 4 2 11 1 17

 5 2 14 1 17

 6 3 3 1 16

 7 3 8 1 19

 8 3 13 1 17

 9 4 5 1 20

 10 4 6 1 16

 11 4 7 1 19

 12 4 10 1 19

 13 5 1 1 18

 14 5 4 1 15

 15 5 12 1 17

 ====

 261

Output 1. Optimal (Least-Cost) Assignment of Agents to Tasks

Setting the Cutting Plane Strategy

Cutting planes are a major component of the mixed-integer linear optimization solver; they help speed its progress by
removing fractional (not integer feasible) solutions. SAS/OR 12.1 adds the CUTSTRATEGY= option in the PROC
OPTMILP statement and in the SOLVE WITH MILP statement for PROC OPTMODEL, enabling you to determine the
aggressiveness of your overall cutting plane strategy. This option complements the individual cut class controls
(CUTCLQUE=, CUTGOMORY=, CUTMIR=, and so on), which enable you to enable or disable certain cut types, and
the ALLCUTS= option, which enables or disables all cutting planes. In contrast, the CUTSTRATEGY= option
controls cuts at a higher level, creating a profile for cutting plane use. As the cut strategy becomes more aggressive,
more effort is directed toward creating cutting planes and more cutting planes are applied. The available values of
the CUTSTRATEGY= option are AUTOMATIC, BASIC, MODERATE, and AGGRESSIVE, with AUTOMATIC as the
default. The precise cutting plane strategy that corresponds to each of these settings can vary from problem to
problem, because the strategy is tuned to suit not only the chosen aggressiveness level but also the problem at hand.
For example, if a certain class of cutting planes is known to be inappropriate for the problem, then the strategy (at any
level of aggressiveness) omits that class. The purpose of the CUTSTRATEGY= option is to provide a simple control
that creates a sophisticated cutting plane approach.

Conflict Search

Another means of accelerating the solution process for mixed-integer linear optimization takes information from
infeasible linear optimization problems that are encountered during an initial exploratory phase of the branch-and-
bound process. This information is analyzed and ultimately is used to help the branch-and-bound process proceed
more efficiently and avoid combinations of decision variable values that are known to lead to infeasibility. This
approach, known as conflict analysis or conflict search, thus shortens the overall solution process by influencing
presolve operations on branch-and-bound nodes, generation of cutting planes, computation of decision variable
bounds, and branching. Although the approach is complex, its application in SAS/OR 12.1 is straightforward. The
CONFLICTSEARCH= option in the PROC OPTMILP statement or the SOLVE WITH MILP statement in PROC
OPTMODEL enables you to specify the level of conflict search to be performed. The available values for the
CONFLICTSEARCH= option are NONE, AUTOMATIC, MODERATE, and AGGRESSIVE. A more aggressive
strategy explores more branch-and-bound nodes initially before the branch-and-bound algorithm is restarted with
information from infeasible nodes included. The default value is AUTOMATIC, which in general computes the best
strategy based on the characteristics of the problem being solved.

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

6

Parameter Tuning

The final SAS/OR 12.1 improvement to the mixed-integer linear optimization solver is parameter tuning, which helps
you determine the best option settings when you use PROC OPTMILP. There are many options available (and often
many choices for each option) for mixed-integer linear optimization, including controls on the presolve process,
branching, heuristics, and cutting planes. The TUNER statement for PROC OPTMILP enables you to investigate the
effects of the many possible combinations of option settings on solver performance and determine which option
values should produce the best performance. The PROBLEMS= option enables you to submit several problems for
tuning at once. The OPTIONMODE= option specifies the parameters that are to be tuned. OPTIONMODE=USER
indicates that you will supply a set of parameters and initial values via the OPTIONVALUES= data set,
OPTIONMODE=AUTO (the default) tunes a small set of predetermined parameters, and OPTIONMODE=FULL tunes
a much more extensive parameter set.

Parameter tuning starts with an initial set of parameter values and uses those settings to solve the problem. The
problem is solved repeatedly with different parameter values, with a local search algorithm guiding the choices for
parameter values. When the tuning process terminates, the best parameter values are output to a data set specified
by the SUMMARY= option. You can control the amount of time used by this process with the MAXTIME= option. You
can multithread this process by using the NTHREADS= option in the PERFORMANCE STATEMENT for PROC
OPTMILP, permitting analysis of various settings to occur simultaneously.

NETWORK OPTIMIZATION WITH PROC OPTNET

PROC OPTNET, new in SAS/OR 12.1, provides a wealth of algorithms for investigating the characteristics of
networks and solving network-oriented optimization problems. A network, sometimes also referred to as a graph,
consists of a set of nodes that are connected by a set of arcs, edges, or links. There are many applications of
network structures in real-world problems, including supply chain analysis, communications, transportation, and
utilities problems. Table 1 shows the PROC OPTNET statement that corresponds to each class of network problem
that it addresses.

Problem Type PROC OPNET Statement

Minimum-cost network flow NETFLOW_MINCOST

Shortest path SHORTPATH

Minimum-cost linear assignment LINEAR_ASSIGNMENT

Traveling salesman (TSP) TSP

Minimum spanning tree MINSPANTREE

Minimum cut MINCUT

Cycle detection CYCLE

Connected components CONCOMP

Biconnected components BICONCOMP

Transitive closure TRANSITIVE_CLOSURE

Maximal cliques CLIQUE

Table 1. Network Problem Types Addressed by PROC OPTNET

The formats of PROC OPTNET input data sets are designed to fit network-structured data, easing the process of
specifying network-oriented problems. The underlying algorithms are highly efficient and can successfully address
problems of varying levels of detail and scale. PROC OPTNET is a logical destination for users who are migrating
from some of the legacy optimization procedures in SAS/OR. Former users of PROC NETFLOW can turn to
OPTNET to solve shortest path and minimum-cost network flow problems, and former users of PROC ASSIGN can
instead use the LINEAR_ASSIGNMENT statement in PROC OPTNET to solve assignment problems.

A simple example illustrates the use of PROC OPTNET in solving a shortest path problem. In this problem a SAS
employee wants to find the shortest path (in time traveled) from SAS in Cary, NC (SAS Campus Drive) to her home in
Raleigh, NC (614 Capital Boulevard) at 5:00 p.m. The following SAS data set details the approximate travel
distances and speed limits between these two points and several intermediate locations during the evening rush
hour:

 data LinkSetInRoadNC5pm;

 input start_inter $1-20 end_inter $20-40 miles miles_per_hour;

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

7

 datalines;

 614CapitalBlvd Capital/WadeAve 0.6 25

 614CapitalBlvd Capital/US70W 0.6 25

 614CapitalBlvd Capital/US440W 3.0 45

 Capital/WadeAve WadeAve/RaleighExpy 3.0 25 /*high traffic*/

 Capital/US70W US70W/US440W 3.2 60

 US70W/US440W US440W/RaleighExpy 2.7 60

 Capital/US440W US440W/RaleighExpy 6.7 60

 US440W/RaleighExpy RaleighExpy/US40W 3.0 60

 WadeAve/RaleighExpy RaleighExpy/US40W 3.0 60

 RaleighExpy/US40W US40W/HarrisonAve 1.3 55

 US40W/HarrisonAve SASCampusDrive 0.5 25

 ;

A simple DATA step transforms speed limit and distance data into traversal time for each link:

 data LinkSetInRoadNC5pm;

 set LinkSetInRoadNC5pm;

 time_to_travel = miles * 1/miles_per_hour * 60;

 run;

With the SAS data set LinkSetInRoadNC5pm as input, the PROC OPTNET code for solving this problem is as
follows:

 proc optnet

 data_links = LinkSetInRoadNC5pm;

 data_links_var

 from = start_inter

 to = end_inter

 weight = time_to_travel;

 shortpath

 outpaths = ShortPath

 source = "SASCampusDrive"

 sink = "614CapitalBlvd";

 run;

The DATA_LINKS statement specifies the input SAS data set, and the options in the DATA_LINKS_VAR statement
indicate the variables in the input data set that carry the start location, end location, and weight (in this case, travel
time) information for each link. The SHORTPATH statement and its options indicate the output SAS data set and the
start and finish points for the desired shortest path. The output SAS data set, which indicates the shortest path, is
shown in Output 2.

 time_to_

order start_inter end_inter travel

 1 SASCampusDrive US40W/HarrisonAve 1.2000

 2 US40W/HarrisonAve RaleighExpy/US40W 1.4182

 3 RaleighExpy/US40W US440W/RaleighExpy 3.0000

 4 US440W/RaleighExpy US70W/US440W 2.7000

 5 US70W/US440W Capital/US70W 3.2000

 6 Capital/US70W 614CapitalBlvd 1.4400

 ========

 12.9582

Output 2. Shortest Path for Road Network at 5:00 p.m.

The diverse network optimization and analysis capabilities of PROC OPTNET provide value in their own right and can
also serve as components in larger analytic and optimization processes that possess one or more significant network
elements.

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

8

NEW FEATURES IN CONSTRAINT PROGRAMMING

The CLP procedure in SAS/OR provides finite-domain constraint programming for solving constraint satisfaction
problems (CSPs). The procedure has the ability to address both general and scheduling-oriented CSPs, and with the
recent addition of the ability to specify an objective function, also provides an alternate method for solving
optimization problems.

In SAS/OR 12.1, PROC CLP adds two classes of constraints that expand its capabilities and can accelerate its
solution process. The LEXICO statement is used to impose a lexicographic ordering between pairs of variable lists.
Lexicographic order is essentially analogous to alphabetic order but expands the concept to include numeric values.
One vector (list) of values is lexicographically less than another if the corresponding elements are equal up to a
certain point and immediately after that point the next element of the first vector is numerically less than the second.
Thus the vector (1, 2, 4, 7, 3) is lexicographically less than the vector (1, 2, 4, 8,1). Lexicographic ordering can be
very useful in eliminating certain types of symmetry that can arise among solutions to constraint satisfaction
problems. Imposing a lexicographic ordering eliminates many of the mutually symmetric solutions, reducing the
number of permissible solutions to the problem and in turn shortening the solution process.

Another constraint class added to PROC CLP for SAS/OR 12.1 is the bin-packing constraint, imposed via the PACK
statement. A bin-packing constraint directs that a specified number of items must be placed into a specified number
of bins, subject to the capacities (expressed in numbers of items) of the bins. The PACK statement provides a
compact way to express such constraints, which can often be useful components of larger CSPs or optimization
problems.

ADVANCES IN SAS SIMULATION STUDIO

SAS Simulation Studio 12.1, a component of SAS/OR 12.1 for Windows environments, adds several features that
improve your ability to build, explore, and work with large, complex discrete-event simulation models. Large models
present a number of challenges to a graphical user interface such as that of SAS Simulation Studio. Connection of
model components, navigation within a model, identification of objects or areas of interest, and management of
different levels of modeling are all tasks that can become more difficult as the model size grows significantly beyond
what can be displayed on one screen. An indirect effect of model growth is an increased number of factors and
responses that are needed to parameterize and investigate the performance of the system being modeled.

Improvements in SAS Simulation Studio 12.1 address each of these issues. In SAS Simulation Studio, you connect
blocks by dragging the cursor to create links between output and input ports on regular blocks and Connector blocks.
SAS Simulation Studio 12.1 automatically scrolls the display of the Model window as you drag the link being created
from its origin to its destination, thus enabling you to create a link between two blocks that are located far apart.
Automatic scrolling also enables you to navigate a large model more easily. Instead of using the horizontal and
vertical scroll bars of the Model window to move to a new area, in SAS Simulation Studio 12.1 you can simply hold
the left mouse button and drag the visible region of the model to the desired area. This works for simple navigation
and for moving a block to a new, remote location in the model.

In addition, SAS Simulation Studio 12.1 enables you to search among the blocks in a model and identify the blocks
that have a specified type and a certain character string in their label (or both). From the listing of identified blocks
you can open the Properties Dialog box for each identified block and edit its settings. Thus, if you can identify a set of
blocks that need similar updates, then you can execute these updates without manually searching through the model
for qualifying blocks and editing them individually. For very large models this capability not only makes the update
process easier but also makes it more thorough because you can identify qualifying blocks centrally.

Figure 1 shows the results of a search for block types. In this case Numeric Source blocks are identified.

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

9

Figure 1. Searching for Block Types

Figure 2 shows the results of a search for a character string “Gate” in block labels.

Figure 2. Searching for Character Strings in Block Labels

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

10

When you design experiments for large simulation models, it’s often true that you need a large number of factors to
parameterize the model and a large number of responses to track system performance with sufficient detail. This
was a challenge prior to SAS Simulation Studio 12.1 because the Experiment window displayed factors and
responses in the header row of a table, with design points and their replications’ results displayed in the rows below.
A very large number of factors and responses did not fit on one screen in this display scheme and you had to scroll
across the Experiment window to view all of them.

SAS Simulation Studio 12.1 provides you with two alternate configurations for the Experiment window. The Design
Matrix tab presents the tabular layout described above. The Design Point tab presents each design point in its own
display. Factors and responses (summarized over replications) are displayed in separate tables, each with the factor
or response names appearing in one column and the respective values in a second column. This layout enables a
large number of factors and responses to be displayed. Response values for each replication of the design point can
be displayed in a separate window. Figure 3 shows the Design Point layout of the Experiment window for SAS
Simulation Studio 12.1, including the Replicates window for individual response values.

Figure 3. Design Point View of the SAS Simulation Studio 12.1 Experiment Window

SAS Simulation Studio 12.1 enhances its multilevel model management features by introducing the submodel
component. Like the compound block, the submodel encapsulates a group of SAS Simulation Studio blocks and their
connections, but the submodel outpaces the compound block in some important ways. The submodel, when
expanded, opens in its own window. This means that a submodel in its collapsed form can be placed close to other
blocks in the Model window without allowing space for its expanded form (as must be done for compound blocks).
The most important property of the submodel is the fact that it can be copied and instantiated in several locations
simultaneously, whether in the same model, in different models in the same project, or across different projects.
Each such instance is a direct reference to the original submodel, not a disconnected copy. This means that you can
edit the submodel by editing any of its instances; changes made to any instance are propagated to all current and
future instances of the submodel. This feature enables you to maintain consistency across your models and projects.

CONCLUSION

SAS/OR 12.1, including SAS Simulation Studio 12.1, introduces many new features and enhancements of current
capabilities in optimization, constraint programming, and discrete-event simulation. Optimization improvements and

Operations ResearchSAS Global Forum 2012

New Features in SAS/OR® 12.1

11

additions expand the range of problem types that you can model, take advantage of multithreading and other
advances for better performance and scalability, and give you more options in choosing solution methods. New
constraint classes for constraint programming enhance its performance and versatility. Additions to SAS Simulation
Studio enable you to build and manage larger simulation models much more easily and to reuse and update model
elements more easily and consistently. Overall, SAS/OR 12.1 provides you with better, more diverse tools to address
the strategic, tactical, and operational planning problems that are central to operations research.

ACKNOWLEDGMENTS

The authors thank Matthew Galati, Rob Pratt, Melanie Gratton, Ben-Hao Wang, Yan Xu, Phillip Meanor, Emily Lada,
Anup Mokashi, Imre Polik, Philipp Christophel, Leo Lopes, Tao Huang, and Joshua Griffin for their assistance with
source material, examples, and screen shots. The authors also express their gratitude to Anne Baxter for her
invaluable contributions as editor.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Ed Hughes
SAS Institute, Inc.
SAS Campus Drive
Cary, NC 27513
Ed.Hughes@sas.com

Manoj Chari
SAS Institute, Inc.
SAS Campus Drive
Cary, NC 27513
Manoj.Chari@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Operations ResearchSAS Global Forum 2012

mailto:Ed.Hughes@sas.com
mailto:Manoj.Chari@sas.com

	2012 Table of Contents

