
1
Copyright © 2010, SAS Institute Inc. All rights rese rved.

1

Traffic Lighting Your Multi-Sheet
Microsoft Excel Workbooks the
Easy Way with SAS

Vince DelGobbo

Web Tools Group, SAS Institute Inc.

SAS Global Forum 2010

April 11 – 14, 2010

Washington State Convention and Trade Center

Seattle, WA

A special "thank you" to Nancy Brucken and Zul Habib for inviting me to present this
topic, and to the following individuals for their valuable contributions to the
accompanying paper:

• Chris Barrett of SAS Institute Inc.

• Richard Allen of Peak Statistical Services

• Nancy Brucken of i3 Statprobe

• Susan Fehrer of BioClin Inc.

• John King of Ouachita Clinical Data Services Inc.

• Alissa Ruelle of PharmaNet Inc.

2
Copyright © 2010, SAS Institute Inc. All rights rese rved.

2

Goals

� Give you something you can use TODAY

� Integrate SAS output w/ Excel

3
Copyright © 2010, SAS Institute Inc. All rights rese rved.

3

Agenda

� Background information

� ODS basics

� Generating XML for Excel

� Opening output in Excel

� Fix formatting and make it pretty

Software Requirements

• Base SAS, any operating system.

• SAS 9.1.3 or later.

• Modified version of the ExcelXP tagset (see the accompanying paper for
details).

• Microsoft Excel XP (a.k.a. Microsoft Excel 2002) or later.

4
Copyright © 2010, SAS Institute Inc. All rights rese rved.

4

PROC PRINT Output→ Excel

This is the SAS output that has been incorporated into Excel. The workbook was
created using the PRINT and REPORT procedures, and contains fictional lab result
data for clinical trials "ABC 123" and "XYZ 987".

This worksheet serves as a legend, defining the meaning of the traffic light colors,
and was created using the PRINT procedure.

The techniques used to traffic light this data also work with the HTML, RTF and
PDF destinations.

5
Copyright © 2010, SAS Institute Inc. All rights rese rved.

5

PROC REPORT Output→ Excel

The remaining two worksheets were created using the REPORT procedure, and
contain traffic-lighted lab result data.

Cells with non-white backgrounds are used to traffic light values that are outside the
normal range.

Excel formats, not SAS formats, control the appearance of the date values. The
date values are SAS date values that have been converted to Excel date values,
without modifying the underlying SAS data.

This workbook was generated completely by ODS – there was no "hand-editing" of
the Excel workbook. Furthermore, SAS can generate this type of output regardless
of the platform – Windows, UNIX, OpenVMS, or z/OS.

The techniques used to traffic light this data also work with the HTML, RTF and
PDF destinations.

6
Copyright © 2010, SAS Institute Inc. All rights rese rved.

6

General Steps

1. Run SAS code to create output

2. Store output where Excel can access it

3. Open output with Excel

4. Modify SAS code to correct formatting problems

We use ODS to create an XML file that is stored in a location where Excel can
access it. In your production system, SAS and Excel may reside on two different
machines. Thus, you may have to make use of network drives, FTP or some other
means to move the SAS output to a location so that Excel can access it.

Then the ODS output is opened using Excel. If you have ever done this before, you
have probably encountered formatting problems. We fix those problems, and then
explore techniques to instruct ODS to create output that Excel is happy with.

7
Copyright © 2010, SAS Institute Inc. All rights rese rved.

7

ODS Basics

� Part of Base SAS

� Easily generate multiple output types (HTML, RTF,
PDF, XML, etc.)

� A "destination" creates the actual output

� A "style" controls the appearance

� Usage:
ods DestName style= StyleName file=... ;

* Your SAS procedure code here;

ods DestName close;

HTMLor RTFor PDF...

ODS is the part of Base SAS software that enables you to generate different types of output from
your procedure code. An ODS destination controls the type of output that is generated (HTML, RTF,
PDF, etc.). An ODS style controls the appearance of the output (colors, fonts, border lines, etc.).

Both a destination and a style are needed to generate output. If you do not specify a style, the style
named "Default", which is shipped with Base SAS software, will be used.

We use a type of ODS destination called a "tagset". ODS tagsets can be modified to meet your
specific needs using the TEMPLATE procedure. And you can use the TEMPLATE procedure to
create your own tagsets.

References:

SAS 9.1:

http://support.sas.com/onlinedoc/913/docMainpage.jsp?_topic=odsug.hlp/a001020001.htm

SAS 9.2:

http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/a001020001.htm

8
Copyright © 2010, SAS Institute Inc. All rights rese rved.

8

ODS Basics – Output for Excel

� Excel XP can open specially made XML files as
multi-sheet workbooks (graphics not supported)

� Use the ExcelXP tagset and XLsansPrinter style:
ods listing close;

ods tagsets.ExcelXP style= XLsansPrinter
file=... ;

* PROC PRINT code here;

* PROC REPORT code here;

ods tagsets.ExcelXP close;

We use the ODS tagset named ExcelXP to create XML output that can be opened
using Microsoft Excel XP and later. When opened with Excel, the XML file will be
rendered as a multi-sheet Excel workbook. Additionally, we will use a user-defined
ODS style named XLsansPrinter to provide a look similar to the sansPrinter style
that is shipped with Base SAS software.

Because the ExcelXP ODS tagset creates files that conform to the Microsoft XML
Spreadsheet Specification, you can create multi-sheet Excel workbooks containing
the output from almost any SAS procedure. The exception is that the Microsoft
XML Spreadsheet Specification does not support images, so the output from
SAS/GRAPH® software procedures cannot be used.

Reference:

http://msdn2.microsoft.com/en-us/library/aa140066(office.10).aspx

9
Copyright © 2010, SAS Institute Inc. All rights rese rved.

9

ODS Basics – Anatomy of an ODS Style

style header /
font_face = "Arial, Helvetica"
font_size = 11pt
font_weight = bold
font_style = roman
foreground = black
background = #bbbbbb;

Style Element (supplied by SAS)

Attribute Name Attribute Value

ODS styles control all aspects of the appearance of the output, and Base SAS software ships with
over 40 different styles. A style is composed of style elements, each of which controls a particular
part of the output. For example, styles supplied by SAS contain a style element named "header" that
controls the appearance of column headings.

Style elements consist of collections of style attributes, such as the background color and font size.
The definition of the "header" style element that is supplied by SAS might look like what is show here.

You can use the TEMPLATE procedure, which is part of Base SAS, to modify an existing style or to
create a new style.

References:

SAS 9.1:

http://support.sas.com/onlinedoc/913/docMainpage.jsp?_topic=odsug.hlp/a002565239.htm

SAS 9.2:

http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/a002565239.htm

10
Copyright © 2010, SAS Institute Inc. All rights rese rved.

10

ODS Basics – Anatomy of an ODS Style

proc template;

define style styles.XLsansPrinter;
parent = styles.sansPrinter;

end;

run; quit;

New Style Name

Existing Style Name

Although you can use the TEMPLATE procedure to create a new style without
copying an existing style, it is usually easier to copy an existing style that is close to
what you want, and then make modifications to the copy. This code creates the
user-defined XLsansPrinter style by copying the ODS style named sansPrinter,
which is supplied by SAS.

Because this TEMPLATE procedure code does not contain statements that change
any style elements, the XLsansPrinter style is an exact copy of the sansPrinter
style. That is, the XLsansPrinter style inherits all of the style elements and
attributes of the parent style, sansPrinter.

11
Copyright © 2010, SAS Institute Inc. All rights rese rved.

11

ODS Basics – Anatomy of an ODS Style

Syntax for creating style elements:

style new-element from existing-element /
style-attribute-specifications;

new-element inherits attributes from existing-element

Style elements are created using the "style" statement, which follows this general
format.

12
Copyright © 2010, SAS Institute Inc. All rights rese rved.

12

proc template;

define style styles.XLsansPrinter;
parent = styles.sansPrinter;
style header from header / ... ;

end;

run; quit;

ODS Basics – Anatomy of an ODS Style

Existing
(Parent) Style

Element

New Style
Element

Here is an example of how you would modify the "header" style element that is
supplied by SAS. The new "header" style element inherits all the style attributes of
the existing (parent) "header" style element shown earlier.

This style element is used to control the appearance of column headings in
procedure output. Thus, any time the XLsansPrinter style is used, the appearance
of the column headings will be controlled by the attributes specified in this style
element.

13
Copyright © 2010, SAS Institute Inc. All rights rese rved.

13

proc template;

define style styles.XLsansPrinter;
parent = styles.sansPrinter;
style header from header /

font_size = 10pt
just = center
vjust = bottom;

end;

run; quit;

ODS Basics – Anatomy of an ODS Style

Modified

Added

This code illustrates how you can change the value of an existing style attribute
("font_size"), and also add 2 new attributes ("just" and "vjust"). All other attributes
of this style element, such as the foreground color, are inherited from the parent
"header" style element, and remain unchanged.

14
Copyright © 2010, SAS Institute Inc. All rights rese rved.

14

vjust = bottom

just = center

background = #bbbbbb

foreground = black

font_style = roman

font_weight = bold

font_size = 10pt

font_size = 11pt

Helvetica"

font_face = "Arial,

New "header" style element

background = #bbbbbb

foreground = black

font_style = roman

font_weight = bold

font_size = 11pt

Helvetica"

font_face = "Arial,

Parent "header" style element

This is a graphical representation of the code listed on the previous slide.

The new "header" style element inherits all the attributes of the parent "header"
element. Then the font size is changed from "11pt" to "10pt", and new style
attributes are added to control the horizontal and vertical justification. All other
attributes inherited from the existing "header" style element, and remain unchanged.

15
Copyright © 2010, SAS Institute Inc. All rights rese rved.

15

proc template;

define style styles.XLsansPrinter;
parent = styles.sansPrinter;
style header from header / ... ;
style data_bold from data / ... ;
style data_center from data / ... ;
style data_date9 from data / ... ;
end;

run; quit;

ODS Basics – Anatomy of an ODS Style

New, User-Defined
Style Elements

This code creates 3 new, user-defined style elements, "data_bold", "data_center" and "data_date9".
Each of these style elements inherit all the style attributes of the "data" style element that is supplied
by SAS.

Further information about the attributes associated with these style elements will be presented later.

Because of their unique names, ODS does not use the se style elements until they are
specified by you via a style override.

We will now move on to the topic of style overrides.

References:

SAS 9.1:

http://support.sas.com/onlinedoc/913/docMainpage.jsp?_topic=odsug.hlp/a002565239.htm

SAS 9.2:
http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/a002565239.htm

16
Copyright © 2010, SAS Institute Inc. All rights rese rved.

16

ODS Basics – Style Overrides

� Supported by PRINT, TABULATE and REPORT

� Change any ODS style attribute via STYLE=

� Example:
style(Column) = [font_style=italic

background=blue]

� Refer to the ODS documentation for a list of
supported attributes

� Refer to PRINT, TABULATE and REPORT doc for
sample usage

ODS style overrides are used to override attributes of the ODS style you are using.
They are intended to be used to make small changes to the appearance of your
output, and should be used sparingly.

For example, you can use a style override to change the fonts or colors used by the
XLsansPrinter style for the "Column" location of PROC PRINT, as shown here.

17
Copyright © 2010, SAS Institute Inc. All rights rese rved.

17

ODS Basics – Style Overrides

Most popular style override syntax:

1. style (location) = [attribute-name1=value1
...]

2. style (location) = style-element-name

Use #1 sparingly

Example of #2:

style(Column) = data_bold;

�

☺

Style Element
NameLocation

Here is the syntax for using style overrides.

The first format uses individual style attributes defined inline, and is what you might
use to change the fonts or colors defined in a style element, as shown on the
previous slide. While this is the most commonly used format, it has some
disadvantages. To use the same style override for different variables, you must
apply it in multiple places, making your SAS code harder to read and maintain.
And, if you want to use the style overrides in other SAS programs, you must copy
the list of attribute name/value pairs to the new code. Style overrides of this type
should be avoided when possible. We use this method only to traffic light cells in
the PRINT and REPORT procedure output.

The second format overcomes these problems. Using this format involves creating
a new style element, setting the style attributes within the element, and then using
the style element name in your style override. This results in code that is easier to
read, maintain, and re-use.

The XLsansPrinter style defined in the "Setup.sas" file contains a number of
different style elements. Later, we associate these style elements with discrete
parts of the SAS output ("locations").

Locations will be discussed later.

18
Copyright © 2010, SAS Institute Inc. All rights rese rved.

18

Run Setup.sas

1. Start SAS using Desktop icon for this workshop

2. File > Open Program

3. Navigate to C:\HOW\DelGobbo

4. Select Setup.sas and click Open

5. Review code and press F3 to submit

6. Keep the editor window open for future reference

The SAMPDIR global macro variable specifies the directory containing our sample code and data, as
well as the ODS-generated XML output.

The program assigns a SAS library (SAMPLE) for the input data and one (MYLIB) for the output ODS
tagsets and styles that we create. While it is OK to use the WORK or SASUSER libraries to
temporarily store your tagsets and styles, it is a good idea use a different, permanent library that is
publicly accessible if you want to make them available to others, or want to reuse them in future
programs.

The ODS PATH statement specifies the locations of, and the order in which to search for, ODS
tagsets and styles. Notice that the access mode for mylib.tmplmst is specified as "update" and
the access mode for sashelp.tmplmst is specified as "read".

Because ODS searches the path in the order given, and the access mode for mylib.tmplmst is
"update", PROC TEMPLATE creates and store tagsets and styles in the directory that is associated
with the MYLIB library.

The ODS ExcelXP tagset has undergone many revisions since SAS 9.1 was released, so we will
import a newer copy and store it in the MYLIB library. Be sure to use a recent version of the ExcelXP
tagset in your production code. (See the accompanying paper for details.)

The user-defined XLsansPrinter style, which produces output similar in appearance to the
sansPrinter style that is supplied by SAS, is created. Note that the "header" and "notecontent" style
elements supplied by SAS are modified, and new, user-defined style elements "data_bold",
"data_center" and "data_date9" are created.

Finally, the SAS table "Legend" and SAS format "FlagFmt", which is used to perform traffic lighting,
are created.

19
Copyright © 2010, SAS Institute Inc. All rights rese rved.

19

Sample SAS Data – Lab Results

.
0, 1, 2, 3, or 4Haematocrit_Flag

2.0 – 6.0Haematocrit_Result

0, 1, 2, 3, or 4Haemoglobin_Flag

60 – 160Haemoglobin_Result

2001-06-17, 2001-06-19VisitDate

1 or 2Visit

S11, G51, A26LabSite

1 – 140Patient

Control – Active, Test – High Dose Treat

ABC 123 or XYZ 987Protocol

Typical ValuesVariable Name

The "LabResults" SAS table contains the lab result data that is displayed using
PROC REPORT.

The variable "Protocol" represents the name of the study plan for the clinical trial,
and contains the value "ABC 123" or "XYZ 987". This variable is used in a BY
statement in our PROC REPORT code, and the BY group values are used in the
resulting worksheet names.

"VisitDate" is a SAS date value with the SAS YYMMDD10. format applied.

Variables whose names end in "_Result" contain the lab result values to traffic light.
The table above lists 4 of the 10 such variables displayed in our Excel workbook.
The background color of the cell is determined by the value of the corresponding
"_Flag" variable. For example, the value of the variable "Haemoglobin_Flag"
determines the background color for "Haemoglobin_Result".

20
Copyright © 2010, SAS Institute Inc. All rights rese rved.

20

Traffic Lighting Criteria

#FF6600Clinically Significant High4

#FFCC00High2

#9999FFClinically Significant Low3

#CCFFFFLow1

whiteNormal0

Background ColorFlag MeaningFlag Value

This table shows the background colors corresponding to the values of the "_Flag"
variables.

21
Copyright © 2010, SAS Institute Inc. All rights rese rved.

21

Sample SAS Data – Range Flags

The "Legend" SAS table contains data that is used as a legend, defining the
meaning of the traffic light colors. This data is displayed using the PRINT
procedure.

The data values "LabFlag" will be traffic lighted using the criteria shown on the
previous slide.

22
Copyright © 2010, SAS Institute Inc. All rights rese rved.

22

Generating XML for Excel

1. Go to SAS

2. File > Open Program and select MakeXML.sas

3. Review code and press F3 to submit

4. Close the MakeXML.sas editor window

This is our first attempt to make an XML file that can be opened with Excel.

The ExcelXP tagset is used to generate XML output, and the XLsansPrinter style
controls the appearance of the output.

The XML created by ODS is stored in a file named "LabReport.xml", residing in the
directory specified by the SAMPDIR macro variable.

By default, the ExcelXP tagset creates a new worksheet each time a SAS
procedure creates new tabular output. The PRINT procedure creates the range
flags worksheet and the REPORT procedure is run with a BY statement to create
worksheets 2 and 3, one worksheet for each distinct value of the variable "Protocol".

The first COMPUTE block is used to traffic light the lab result data, and the second
one inserts white space between the different treatment values.

23
Copyright © 2010, SAS Institute Inc. All rights rese rved.

23

Opening the XML File with Excel

1. Open Excel: Start > Programs > . . .

2. File > Open

3. Navigate to C:\HOW\DelGobbo\LabReport.xml
and click Open

4. Examine workbook and note appearance and format

5. Close the document (child) window (leave Excel
running, but minimize it)

The XML file created by ODS can now be opened with Microsoft Excel.

When Excel reads the XML file, it renders it as a multi-sheet workbook. Thus you
can use all the editing and formatting features of Excel to modify the output and, if
desired, save it as a native Excel workbook in binary format.

To save a copy of the file in Excel binary format using Excel 2002 or Excel 2003,
select File ➨ Save As and then, from the Save as type drop-down list, select
Microsoft Excel Workbook (*.xls) .

If you're using Excel 2007, click the Microsoft Office Button, and then
select Save As ➨ Excel 97-2003 Workbook .

24
Copyright © 2010, SAS Institute Inc. All rights rese rved.

24

XML Output Viewed Using Excel

Problems with the output:

1. None of the values in any of the worksheets are traffic-lighted.

2. Data values in the "Treatment" column are not bold text.

3. Values in the "Subject", "Lab Site" and "Visit" columns are not centered.

4. The date values are displayed incorrectly.

5. Standard BY group text ("Protocol Identifier=ABC 123" or "Protocol
Identifier=XYZ 987") precedes the REPORT procedure output and is obscured.

6. Unattractive, default worksheet names are used.

7. Some of the columns created by REPORT procedure are too narrow.

8. If you were to scroll downward or to the right in this worksheet, you will "lose" the
column and row headings because by default, they are not "frozen".

25
Copyright © 2010, SAS Institute Inc. All rights rese rved.

25

XML Output Viewed Using Excel

One of the lab results worksheets.

26
Copyright © 2010, SAS Institute Inc. All rights rese rved.

26

Understanding and Using
ODS Style Overrides

The techniques described in this section work only with the PRINT, REPORT, and
TABULATE procedures.

27
Copyright © 2010, SAS Institute Inc. All rights rese rved.

27

Fix 1: Traffic Lighting – PROC PRINT

Have:

Want:

LabFlag

In order to achieve the desired result, the foreground and background colors of the
"LabFlag" column need to be the same. For example, we want white text ("0") on a
white background.

This can be accomplished using an ODS style override.

28
Copyright © 2010, SAS Institute Inc. All rights rese rved.

28

Fix 1: Traffic Lighting – PROC PRINT

Location

Style Attributes

General style override syntax:

style(location)= style-specification

For our code:

var LabFlag / style(Column)=
[foreground= color-value

background= color-value];

The syntax for a style override is shown above. Note that we are using method 1
from slide 17 (individual style attributes defined inline).

29
Copyright © 2010, SAS Institute Inc. All rights rese rved.

29

Location Values – PROC PRINT

Style overrides are used to apply style attributes or elements to specific parts of
SAS output called locations. Here you can see the locations that are pertinent to
the PROC PRINT output.

To change the appearance of the data cells in the "LabFlag" column, we apply a
style override to the "Column" location.

Reference:

http://support.sas.com/rnd/base/ods/scratch/reporting-styles-tips.pdf

30
Copyright © 2010, SAS Institute Inc. All rights rese rved.

We cannot simply specify a color value for the "foreground" and "background"
attributes, because all of the cells in the "LabFlag" column would have the same
foreground and background color. Instead, we need the colors to change based on
the value in the cell.

Specifying a SAS format instead of a color value causes the current value of the
data in the cell to be evaluated against the format to determine the attribute's value.
For example, cells containing the value "1" have a light turquoise (#CCFFFF)
foreground and background.

The "FlagFmt" format was constructed based on the criteria shown on slide 20.

30

Fix 1: Traffic Lighting – PROC PRINT

SAS Format Name

var LabFlag / style(Column)=
[foreground= FlagFmt.

background= FlagFmt.];

proc format;
value FlagFmt 0 = 'white'

1 = '#CCFFFF'
3 = '#9999FF'
2 = '#FFCC00'
4 = '#FF6600';

31
Copyright © 2010, SAS Institute Inc. All rights rese rved.

31

Fix 1: Traffic Lighting – PROC PRINT

�

�

�
�

�

Excel versions 2002 and 2003 have a limited color palette. The default colors are
shown above. If you plan to view your workbooks using one of these versions of
Excel, choose colors that are listed in the default palette, otherwise Excel maps the
unsupported color to a color that is supported.

The colors used by the "FlagFmt" format are indicated with a star (�)

However, specifying colors is not foolproof. Because each Excel user can
customize the color palette, colors are not guaranteed to exist in all instances of
Excel.

Note that Excel 2007 does not have this restricted color palette.

32
Copyright © 2010, SAS Institute Inc. All rights rese rved.

32

Fix 1: Traffic Lighting – PROC PRINT

proc print data=Legend noobs label;

var Range;

var LabFlag / style(Column)=
[foreground=FlagFmt.

background=FlagFmt.] ;

run; quit;

Here is the code needed to traffic light the PROC PRINT output.

This technique also works with the HTML, RTF and PDF destinations.

33
Copyright © 2010, SAS Institute Inc. All rights rese rved.

33

Fix 1: Traffic Lighting – PROC PRINT

1. Go to SAS

2. File > Open Program and select MakeXML-Fix1.sas

3. Follow instructions in TO DO comments

4. Press F3 to submit the code

5. Close the MakeXML-Fix1.sas editor window

TO DO:

Line 24: Specify the SAS format name for the FOREGROUND and
BACKGROUND style attributes.

Solution:

var LabFlag / style(Column)=[foreground=FlagFmt.
background=FlagFmt.];

34
Copyright © 2010, SAS Institute Inc. All rights rese rved.

34

Fix 1: Traffic Lighting – PROC PRINT

1. Go to Excel

2. File > \HOW\DelGobbo\LabReport.xml
- or -
LabReport.xml (from the recent file list)

3. Note traffic lighting

4. Close the document (child) window (leave Excel
running, but minimize it)

35
Copyright © 2010, SAS Institute Inc. All rights rese rved.

35

Fix 2: Traffic Lighting – PROC REPORT

This is what we have.

36
Copyright © 2010, SAS Institute Inc. All rights rese rved.

36

Fix 2: Traffic Lighting – PROC REPORT

This is what we want. The lab results are traffic-lighted based on the value of the
corresponding _Flag variable (not shown in the worksheets).

37
Copyright © 2010, SAS Institute Inc. All rights rese rved.

37

Fix 2: Traffic Lighting – PROC REPORT

Use CALL DEFINE:

call define(column-id,
' attribute-name',
attribute-value);

Example:

call define('Haemoglobin_Result',
'style',
'style=[background =color-value]');

Traffic lighting the lab result values using the REPORT procedure requires a slightly
different technique. This traffic lighting uses a CALL DEFINE statement within a
COMPUTE block. The CALL DEFINE statement assigns the "background" style
attribute to the cell containing the lab result value.

References:

SAS 9.1:
http://support.sas.com/onlinedoc/913/getDoc/en/proc.hlp/a002473624.htm

SAS 9.2:
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/a002473624.htm

38
Copyright © 2010, SAS Institute Inc. All rights rese rved.

38

Fix 2: Traffic Lighting – PROC REPORT

0, 1, 2, 3, 4 #CCFFFF
#9999FF
#FFCC00
#FF6600

100, 110, 150, ...

Traffic light based on value of _Flag variable

if (Haemoglobin_Flag gt 0) then
call define('Haemoglobin_Result',

'style',
'style=[background =' ||

put(Haemoglobin_Flag, FlagFmt.) ||
']'

Recall that each lab result value has its own flag variable that is used to determine
whether the result is in or out of range. We need to examine the value of the
pertinent flag variable, and use that value to determine the color value. The
"FlagFmt" format is used to determine the color value based on the flag value. For
example, here is the code to traffic light "Haemoglobin_Result" cells.

This technique also works with the HTML, RTF and PDF destinations.

39
Copyright © 2010, SAS Institute Inc. All rights rese rved.

39

Fix 2: Traffic Lighting – PROC REPORT

style=[background=#FF6600]4

style=[background=#FFCC00]2

style=[background=#9999FF]3

style=[background=#CCFFFF]1

Code not executed0

Value of Style Attribute_Flag Variable Value

'style=[background=' || put(Haemoglobin_Flag, FlagF mt.) || ']'

This table shows the various style attribute values generated, based on the value of
the "_Flag" variable.

40
Copyright © 2010, SAS Institute Inc. All rights rese rved.

40

Fix 2: Traffic Lighting – PROC REPORT

Use arrays instead of repeating code:

array name(10) $31 ('Haemoglobin_Result'
'Haematocrit_Result' ...);

array flag(10) Haemoglobin_Flag
Haematocrit_Flag ...;

do i = 1 to dim(name);
if (flag(i) gt 0) then

call define(name(i),
'style',
'style=[background' ||

put(flag(i), FlagFmt.) || ']');
end;

You could repeat the previous code for each of the remaining result/flag
combinations, or you can make use of arrays. Using arrays provides more compact
code.

41
Copyright © 2010, SAS Institute Inc. All rights rese rved.

Solution:

'style=[background=' || put(flag(i), FlagFmt.) || ']'

41

Fix 2: Traffic Lighting – PROC REPORT

1. Go to SAS

2. File > Open Program and select MakeXML-Fix2.sas

3. Follow instructions in TO DO comments

4. Press F3 to submit the code

5. Close the MakeXML-Fix2.sas editor window

TO DO:

Line 117: Specify the SAS format name for the BACKGROUND style attribute.

42
Copyright © 2010, SAS Institute Inc. All rights rese rved.

42

Fix 2: Traffic Lighting – PROC REPORT

1. Go to Excel

2. File > \HOW\DelGobbo\LabReport.xml
- or -
LabReport.xml (from the recent file list)

3. Note traffic lighting

4. Close the document (child) window (leave Excel
running, but minimize it)

43
Copyright © 2010, SAS Institute Inc. All rights rese rved.

43

Fix 3: Bold, Center, SAS Dates → Excel Dates

User-defined style element in XLsansPrinter style:

style data_bold from data /

font_weight = bold;

As mentioned earlier, ODS styles control the appearance of your output. Here you
see a subset of the code used to create the XLsansPrinter style. Refer to the
"Setup.sas" file for a complete listing of the code.

The "data_bold" style element has all the attributes of the "data" style element that
is supplied by SAS, the difference being that text is bold.

A style override is used to apply the "data_bold" style element to the "Treat"
column.

44
Copyright © 2010, SAS Institute Inc. All rights rese rved.

44

Location Values – PROC REPORT

Recall that style overrides are used to apply style attributes or elements to specific
parts of SAS output called locations. Here you can see the locations that are
pertinent to the PROC REPORT output.

To change the appearance of the data cells in the "Treat" column, we apply a style
override to the "Column" location.

Reference:

http://support.sas.com/rnd/base/ods/scratch/reporting-styles-tips.pdf

45
Copyright © 2010, SAS Institute Inc. All rights rese rved.

45

Fix 3: Bold, Center, SAS Dates → Excel Dates

Style Element
Name

Location

X

Style Attribute

proc report ... ;

by protocol

define Treat / display order
style(Column)=data_bold ;

...

run; quit;

define Treat / display order
style(Column)= [font_weight=bold] ;

Adding this style override causes the values in the data cells for the "Treat" column
to be displayed with bold text.

The style element name, which contains the style attribute setting, is used

style(Column)=data_bold

instead of the less-preferred format, which uses the style attribute setting

style(Column)=[font_weight=bold]

(Slide 17 shows the syntax for style overrides.)

46
Copyright © 2010, SAS Institute Inc. All rights rese rved.

46

Fix 3: Bold, Center, SAS Dates → Excel Dates

User-defined style element in XLsansPrinter style:

style data_center from data /

just = center;

The XLsansPrinter style contains a style element named "data_center". It inherits
all the attributes of the "data" style element that is supplied by SAS, but centers text
within the cells.

The "data_center" style element is applied to the "Patient", "LabSite", and "Visit"
columns using a style override.

47
Copyright © 2010, SAS Institute Inc. All rights rese rved.

47

Fix 3: Bold, Center, SAS Dates → Excel Dates

define Patient / display order
style(Column)=data_center ;

define LabSite / display order
style(Column)=data_center ;

define Visit / display order
style(Column)=data_center ;

Adding this style override causes the text in the data cells for the "Patient",
"LabSite", and "Visit" columns to be centered.

48
Copyright © 2010, SAS Institute Inc. All rights rese rved.

48

Fix 3: Bold, Center, SAS Dates → Excel Dates

� SAS and Excel use different date systems

� Can convert your data in SAS

� Better to leave your data alone!

� Excel wants dates in ISO 8601 format
YYYY-MM-DD

1. Use SAS YYMMDD or IS8601DA format

2. Use Excel format to display as DDMMMYYYY

�

☺

SAS and Microsoft Excel use different date systems. Consequently, you often encounter problems
when Excel reads SAS output containing date values.

One way to correct this behavior is to write SAS code to convert SAS date values to Excel date
values, but this approach is problematic because you must alter your original SAS data. While you
can create a new SAS view or table that contains the new date values, this is a vector for errors and
becomes inefficient as your data grows.

A better solution, one that does not require you to alter the underlying data, is to use a combination of
SAS and Excel formats. First you specify a SAS format using a FORMAT statement, and then you
specify an Excel format using a style override. The SAS format changes what is physically written
into the XML file, and the Excel format changes the way the value is displayed.

References:

SAS 9.1 – IS8601DA Format:

http://support.sas.com/kb/11/206.html

SAS 9.2 – E8601DA Format:

http://support.sas.com/documentation/cdl/en/lrdict/61724/HTML/default/a003169814.htm

49
Copyright © 2010, SAS Institute Inc. All rights rese rved.

49

Fix 3: Bold, Center, SAS Dates → Excel Dates

User-defined style element in XLsansPrinter style:

style data_date9 from data /

tagattr='type:DateTime format:ddmmmyyyy';

09Jun1997ddmmmyyyy

6/9/97m/d/yy

June 9, 1997mmmm, d, yyyy

Jun 9, 1997mmm d, yyyy

06/09/1997mm/dd/yyyy

06/9/1997mm/d/yyyy

6/9/1997m/d/yyyy

Display ValueExcel Format

The "XLsansPrinter" style contains the style element "data_date9", which inherits all
the attributes of the "data" style element that is supplied by SAS. The "tagattr"
attribute is used to apply an Excel format to the data, and also to instruct Excel to
interpret the value as an Excel datetime value.

This table shows how the date June 9, 1997 is displayed in Excel using different
formats, including the format used by the "data_date9" style element
("ddmmmyyyy").

Reference:

To find out more about Excel date formats, type "display numbers as dates or
times" into the Excel help system or refer to a book that covers this topic.

50
Copyright © 2010, SAS Institute Inc. All rights rese rved.

50

Fix 3: Bold, Center, SAS Dates → Excel Dates

X

define VisitDate / display
style(Column)=data_date9 ;

YYMMDD10. format stored in SAS table

define VisitDate / display
style(Column)=[tagattr = 'type:DateTime

format:ddmmmyyyy'] ;

Because Excel expects dates to be represented using the ISO 8601 format
(YYYY-MM-DD), SAS date values should be formatted using the YYMMDD or
IS8601DA formats. The YYMMDD10. format was applied to the "VisitDate" column
when the SAS table was created, providing Excel with dates in the correct format.
No additional FORMAT statement is needed in this case.

The Excel format, applied as a result of using the "data_date9" style element,
causes the date values to be displayed according to the format DDMMMYYYY,
instead of YYYY-MM-DD.

The style element name, which contains the style attribute settings, is used

style(Column)=data_date9

instead of the less-preferred format, which uses the style attribute settings

style(Column)=[tagattr='type:DateTime
format:ddmmmyyyy]

51
Copyright © 2010, SAS Institute Inc. All rights rese rved.

Solution:

define Patient / ... style(Column)=data_center;
define LabSite / ... style(Column)=data_center;
define Visit / ... style(Column)=data_center;
define VisitDate / ... style(Column)=data_date9;

TO DO:

Line 65: Note the style override applied to the Treat column to cause the text to be
bold.

Line 66-68: Specify the name of the style element to the Patient, LabSite and Visit
columns to cause the text to be centered.

Line 69: Specify the name of the style element that applies the Excel format
comparable to the SAS DATE9. format.

51

Fix 3: Bold, Center, SAS Dates →
Excel Dates

1. Go to SAS

2. File > Open Program and select MakeXML-Fix3.sas

3. Follow instructions in TO DO comments

4. Press F3 to submit the code

5. Close the MakeXML-Fix3.sas editor window

52
Copyright © 2010, SAS Institute Inc. All rights rese rved.

52

Fix 3: Bold, Center, SAS Dates →
Excel Dates

1. Go to Excel

2. File > \HOW\DelGobbo\LabReport.xml
- or -
LabReport.xml (from the recent file list)

3. Note formatting and dates

4. Close the document (child) window (leave Excel
running, but minimize it)

53
Copyright © 2010, SAS Institute Inc. All rights rese rved.

53

Understanding and Using
the ExcelXP Tagset Options

Unlike style overrides discussed in the previous section, the following techniques
apply to all SAS procedure output.

54
Copyright © 2010, SAS Institute Inc. All rights rese rved.

54

Fix 4: Custom Worksheet Names

� ExcelXP supports tagset options

� Syntax: options(option-name=' option-value')

� Can control worksheet name:
options(sheet_name=' worksheet-name')

� Can have multiple ODS statements

� Options remain in effect until changed !

The ExcelXP tagset supports many options that control both the appearance and
functionality of the Excel workbook. Many of these tagset options are simply tied
straight into existing Excel options or features. Tagset options are specified in an
ODS statement using the OPTIONS keyword, as shown above.

ODS generates a unique name for each worksheet, as required by Microsoft Excel.
These names are generally unappealing. There are, however, several tagset
options that you can use to alter the names of the worksheets.

Use the SHEET_NAME option to explicitly specify a worksheet name. We use this
method to name the range flags worksheet, but use a different technique to name
the lab results worksheets.

IMPORTANT NOTE: Tagset options remain in effect until they are changed !

55
Copyright © 2010, SAS Institute Inc. All rights rese rved.

55

ods tagsets.ExcelXP style=XLsansPrinter ... ;
...

ods tagsets.ExcelXP options(sheet_name='Range Flags ');

proc print ... ;

ods tagsets.ExcelXP options(sheet_name='none');

proc report ...;

ods tagsets.ExcelXP close;

Fix 4: Custom Worksheet Names

Specify the SHEET_NAME option prior to the procedure code that creates the
worksheet.

We reset the value of the option to "none" because we do not want the option
setting ("Range Flags") to affect subsequent worksheets.

56
Copyright © 2010, SAS Institute Inc. All rights rese rved.

56

ods tagsets.ExcelXP style=XLsansPrinter ... ;
...

ods tagsets.ExcelXP options(sheet_name='Range Flags ');

proc print ... ;

ods tagsets.ExcelXP options(sheet_name='none');

ods tagsets.ExcelXP options(sheet_interval='bygroup '
sheet_label='16.2');

proc report ...;

ods tagsets.ExcelXP close;

Fix 4: Custom Worksheet Names

The SHEET_INTERVAL option controls the interval at which SAS output is placed
into worksheets, and the SHEET_LABEL option is used to specify the prefix to use
for the worksheet names.

When used together as shown here, the current value of the first BY group variable
is prefixed with "16.2", and used as the worksheet name.

The BY variable (Protocol) in our REPORT procedure code contains 2 distinct
values, "ABC 123" and "XYZ 987", resulting in worksheets named "16.2 ABC 123"
and "16.2 XYZ 987".

The worksheet names are based on the International Committee on Harmonisation
(ICH) Guideline E6 for clinical study report submissions. The guideline details the
content and order of data collected in clinical trials. Patient data listings are found in
section 16.2; hence, the naming of the worksheets.

If you do not want any text to prefix the BY value, specify sheet_label=' ' (note
the blank space between the quotation marks).

57
Copyright © 2010, SAS Institute Inc. All rights rese rved.

57

Fix 4: Custom Worksheet Names

1. Go to SAS

2. File > Open Program and select MakeXML-Fix4.sas

3. Follow instructions in TO DO comments

4. Press F3 to submit the code

5. Close the MakeXML-Fix4.sas editor window

TO DO:

Line 26: Specify the name to use for the range flags worksheet.

Line 35: Note that the SHEET_NAME option has been reset to prevent unexpected
worksheet names.

Line 39: Specify the text to precede the BY group values.

Solution:

ods tagsets.ExcelXP options(sheet_name='Range Flags');

ods tagsets.ExcelXP options(sheet_interval='bygroup'
sheet_label='16.2');

58
Copyright © 2010, SAS Institute Inc. All rights rese rved.

58

Fix 4: Custom Worksheet Names

1. Go to Excel

2. File > \HOW\DelGobbo\LabReport.xml
- or -
LabReport.xml (from the recent file list)

3. Note worksheet names

4. Close the document (child) window (leave Excel
running, but minimize it)

59
Copyright © 2010, SAS Institute Inc. All rights rese rved.

59

Fix 5: Suppress BY Line Text

� BY line text before REPORT output

� Redundant – Included in worksheet names

� Use the SUPPRESS_BYLINES tagset option

� DO NOT use the NOBYLINE system option

BY line text appears in the lab results worksheets because the REPORT procedure
is executed with a BY statement. The text is obscured because the first column is
narrow, but it is also redundant because the BY value is displayed in the worksheet
names. To omit the BY line text, specify the SUPPRESS_BYLINES option in the
ODS statement that precedes the PROC REPORT code.

Do not attempt to use the NOBYLINE system option, as this disables BY group
processing in the ExcelXP tagset when the SHEET_INTERVAL option is set to
"bygroup".

60
Copyright © 2010, SAS Institute Inc. All rights rese rved.

60

ods tagsets.ExcelXP style=XLsansPrinter ... ;
...

ods tagsets.ExcelXP options(sheet_name='Range Flags ');

proc print ... ;

ods tagsets.ExcelXP options(sheet_name='none');

ods tagsets.ExcelXP options(sheet_interval='bygroup '
sheet_label='16.2'
suppress_bylines='yes');

proc report ...;

ods tagsets.ExcelXP close;

Fix 5: Suppress BY Line Text

The SUPPRESS_BYLINES option is used to prevent the BY line text from being
included in the worksheets.

61
Copyright © 2010, SAS Institute Inc. All rights rese rved.

Solution:

ods tagsets.ExcelXP options(sheet_interval='bygroup'
sheet_label='16.2'
suppress_bylines='yes');

61

Fix 5: Suppress BY Line Text

1. Go to SAS

2. File > Open Program and select MakeXML-Fix5.sas

3. Follow instructions in TO DO comments

4. Press F3 to submit the code

5. Close the MakeXML-Fix5.sas editor window

TO DO:

Line 36: Specify the tagset option to suppress the BY line text.

62
Copyright © 2010, SAS Institute Inc. All rights rese rved.

62

Fix 5: Suppress BY Line Text

1. Go to Excel

2. File > \HOW\DelGobbo\LabReport.xml
- or -
LabReport.xml (from the recent file list)

3. Note BY values are not in worksheet

4. Close the document (child) window (leave Excel
running, but minimize it)

63
Copyright © 2010, SAS Institute Inc. All rights rese rved.

63

Fix 6: Adjusting Column Widths

� Some columns too narrow

� Use absolute_column_width=' number-of-characters'

� Specify comma-separated values

� Values repeat as needed

Some of the column widths of the lab results worksheets are too narrow, causing
data to be obscured, or unattractive wrapping of column headings. The
ABSOLUTE_COLUMN_WIDTH option is used to correct this problem.

The ExcelXP tagset approximates column widths, sometimes resulting in less than
perfect widths.

The ABSOLUTE_COLUMN_WIDTH option accepts a list of comma-separated
values that specify the width, in characters, of the columns. If you specify fewer
values than the number of columns in the worksheet, the values you specify will
repeat, and are used for the remaining columns.

64
Copyright © 2010, SAS Institute Inc. All rights rese rved.

64

Fix 6: Adjusting Column Widths

Examples assuming 7 columns of data

5,10,15,5,10,15,55,10,15

5,10,5,10,5,10,55,10

10,10,10,10,10,10,1010

Column WidthsABSOLUTE_COLUMN_WIDTH

These examples show how the specified value(s) repeat where there are more
columns than option values.

65
Copyright © 2010, SAS Institute Inc. All rights rese rved.

65

Fix 6: Adjusting Column Widths

First guess:

ods tagsets.ExcelXP options(sheet_interval='bygroup '
sheet_label='16.2'
suppress_bylines='yes'
absolute_column_width='10');

To approximate the values needed for the option, we start by specifying an arbitrary
value of "10", which causes all of the columns to be the same size.

66
Copyright © 2010, SAS Institute Inc. All rights rese rved.

66

Fix 6: Adjusting Column Widths

Have:

The width of all the columns containing the lab result values are reasonable, but
data in the "Treatment" column is still obscured, and the "Subject", "Lab Site",
"Visit", and "Visit Date" columns are all wider than they need to be.

Also, the column headings are too tall. This is corrected using the
AUTOFIT_HEIGHT option.

67
Copyright © 2010, SAS Institute Inc. All rights rese rved.

67

Fix 6: Adjusting Column Widths

Want:

The "Treatment" column is wider, the "Subject", "Lab Site", "Visit", and "Visit Date"
columns are narrower, and the column headings are not too tall.

68
Copyright © 2010, SAS Institute Inc. All rights rese rved.

68

Fix 6: Adjusting Column Widths

ods tagsets.ExcelXP options(sheet_interval='bygroup '
sheet_label='16.2'
suppress_bylines='yes'
absolute_column_width='15,7,7,7,7,

10,10,10,10,10,10,10,10,10,10'
autofit_height='yes');

(ignore line wrapping above)

This code specifies more appropriate widths for each of the columns in the
worksheet, and also corrects the row heights.

69
Copyright © 2010, SAS Institute Inc. All rights rese rved.

69

Fix 6: Adjusting Column Widths

1. Go to SAS

2. File > Open Program and select MakeXML-Fix6.sas

3. Follow instructions in TO DO comments

4. Press F3 to submit the code

5. Close the MakeXML-Fix6.sas editor window

TO DO:

Line 39: Specify the tagset option to set the column widths.

Line 40: Note the AUTOFIT_HEIGHT option.

Solution (ignore line wrapping):

ods tagsets.ExcelXP options(...
absolute_column_width='15,7,7,7,7,

10,10,10,10,10,10,10,10,10,10'
autofit_height='yes');

70
Copyright © 2010, SAS Institute Inc. All rights rese rved.

70

Fix 6: Adjusting Column Widths

1. Go to Excel

2. File > \HOW\DelGobbo\LabReport.xml
- or -
LabReport.xml (from the recent file list)

3. Note new column widths and heading heights

4. Close the document (child) window (leave Excel
running, but minimize it)

71
Copyright © 2010, SAS Institute Inc. All rights rese rved.

71

Homework: Frozen Headings

� Column headings "lost" when scrolling

� Row headings "lost" when scrolling

� Tagset options are available

When you scroll down in a workbook that contains a lot of data, the column
headings can scroll off the top of the viewable screen. You can correct this problem
by using the FROZEN_HEADERS tagset option to "freeze" the rows you want to
use as column headings.

Similarly, scrolling to the right causes the "Treatment", "Subject", "Lab Site", "Visit",
and "Visit Date" columns to move off the left of the viewable screen. This problem
is corrected by using the FROZEN_ROWHEADERS option.

72
Copyright © 2010, SAS Institute Inc. All rights rese rved.

72

Homework: Frozen Headings

Have:

Column and row headings are not visible.

73
Copyright © 2010, SAS Institute Inc. All rights rese rved.

73

Homework: Frozen Headings

Want:

Visible column and row headings.

74
Copyright © 2010, SAS Institute Inc. All rights rese rved.

74

Homework: Frozen Headings

ods tagsets.ExcelXP options(sheet_interval='bygroup '
sheet_label='16.2'
suppress_bylines='yes'
absolute_column_width='...'
autofit_height='yes'
frozen_headers='yes'
frozen_rowheaders='5');

Valid values for both of these options are either "yes" or an integer. If you specify
"yes", the tagset will attempt to automatically determine the columns or rows to
freeze.

If you do not like the results, you can explicitly specify the rows or columns to
freeze. For example, to freeze rows 1-3, specify frozen_headers='3' .

Specifying a value of "5" for FROZEN_ROWHEADERS ensures that Excel columns
"A-E" are frozen when scrolling to the right.

75
Copyright © 2010, SAS Institute Inc. All rights rese rved.

75

Homework: Frozen Headings

1. Go to SAS

2. File > Open Program and select MakeXML-Fix7.sas

3. Follow instructions in TO DO comments

4. Press F3 to submit the code

5. Close the MakeXML-Fix7.sas editor window

TO DO:

Lines 39-40: Specify the tagset options to "freeze" the column and row headings.

Solution:

ods tagsets.ExcelXP options(...
frozen_headers='yes'
frozen_rowheaders='5');

76
Copyright © 2010, SAS Institute Inc. All rights rese rved.

76

Homework: Frozen Headings

1. Go to Excel

2. File > \HOW\DelGobbo\LabReport.xml
- or -
LabReport.xml (from the recent file list)

3. Note frozen column and row headings

4. Close the document (child) window (leave Excel
running, but minimize it)

77
Copyright © 2010, SAS Institute Inc. All rights rese rved.

77

Summary: Creating Multi-Sheet Workbooks

� Use ExcelXP tagset to create XML file

� Resulting XML file can be viewed with Excel

� Apply ODS style overrides carefully

� Make use of tagset options

� Use Excel formats instead of SAS formats

78
Copyright © 2010, SAS Institute Inc. All rights rese rved.

78

Using SAS/IntrNet®

and

SAS Stored Processes

79
Copyright © 2010, SAS Institute Inc. All rights rese rved.

79

SAS/IntrNet® and SAS Stored Processes

� SAS code is run from non-SAS client

� SAS is on any platform

� Client needs only a Web browser

� SAS output is delivered in "real time"

� Web-enable the code we've been using

The purpose of the SAS/IntrNet® Application Dispatcher or SAS Stored Processes
are to allow you to execute SAS programs from a client machine that does not have
SAS installed. The client machine may have SAS installed, but that is not required.

A typical client-server model is followed. The SAS server can reside on any
hardware platform (Windows, UNIX, z/OS, etc.) and is standing by, waiting to
execute a SAS program. The most common client is a Web browser, again,
running on any platform.

When the "OK" button of the Web page is clicked, input parameters, if any, are sent
to the SAS server. Your SAS code executes, and the output is delivered in "real
time" to the Web browser.

The following slides illustrate this process, using a "Web-enabled" version of the
SAS code we have been working with.

80
Copyright © 2010, SAS Institute Inc. All rights rese rved.

80

Dynamically-Generated XML

Here is a simple Web page that is used to execute SAS code stored on a server
using the SAS/IntrNet® Application Dispatcher.

The code that is executed is substantially similar to the final version of the code that
we used to generate XML file, with a few changes to "Web-enable" it.

Clicking "Download to Excel" causes the SAS program to execute on the server.

81
Copyright © 2010, SAS Institute Inc. All rights rese rved.

81

Dynamically-Generated XML

Once the SAS program executes, the results are sent back to the Web browser.

Note that you are presented with a "File Download" dialog box, instead of the results
being displayed in the Web browser. Clicking "Open" causes the SAS output to be
displayed in Excel, provided that Excel is installed on the client machine.

This code, specific to SAS/IntrNet®, must be specified before any ODS statements.
It causes the SAS output to be displayed in Excel instead of the Web browser:

%let RV =%sysfunc(appsrv_header(Content-type,application/vnd.ms-excel));

This code will also work with SAS Stored Processes.

82
Copyright © 2010, SAS Institute Inc. All rights rese rved.

82

Dynamically-Generated XML

Here is the SAS output, created in "real time", and delivered to the client. Note that Excel is used to
view the SAS output, not the Web browser.

Refer to the accompanying paper for more information about this topic.

References:

SAS/IntrNet® Application Dispatcher 9.1:
http://support.sas.com/onlinedoc/913/docMainpage.jsp?_topic=dispatch.hlp/main_contents.htm

SAS/IntrNet® Application Dispatcher 9.2:

http://support.sas.com/documentation/cdl/en/dispatch/59547/HTML/default/main_contents.htm

SAS Stored Processes 9.1:
http://support.sas.com/rnd/itech/doc9/dev_guide/stprocess/index.html

SAS Stored Processes 9.2:

http://support.sas.com/documentation/cdl/en/stpug/61271/HTML/default/titlepage.htm

83
Copyright © 2010, SAS Institute Inc. All rights rese rved.

83

Conclusion

� The ExcelXP tagset creates much sought-after multi-
sheet workbooks from SAS output

� Use tagset options to increase functionality of
workbooks

� SAS/IntrNet® and SAS Stored Processes can be
used to deliver dynamic SAS output over an intranet
or the Internet

Using ODS to generate specially-formatted XML output is an effective method of
incorporating SAS output in Excel documents.

The SAS®9 ExcelXP ODS tagset provides an easy way to export your SAS data to
Excel workbooks that contain multiple worksheets. By using ODS styles, style
overrides, and a tagset that complies with the Microsoft XML Spreadsheet
Specification, you can customize the output to achieve your design goals.

SAS Institute continues to work toward better Microsoft Office integration, and
future releases of SAS software will provide even more robust means of using SAS
content with Microsoft Office applications.

84
Copyright © 2010, SAS Institute Inc. All rights rese rved.

84

References and Further Reading

� Paper and Sample Code ("download package"):

support.sas.com/rnd/papers/index.html#excel2010

support.sas.com/events/sasglobalforum/2010/handson

� ExcelXP Tagset Paper Index:

www.sas.com/events/cm/867226/ExcelXPPaperIndex.pdf

The sample programs and data used in this workshop as well as a copy of the
accompanying paper are available at the SAS Presents Web site. Go to
http://support.sas.com/rnd/papers/index.html#excel2010 and find the entry "Traffic
Lighting Your Multi-Sheet Microsoft Excel Workbooks the Easy Way with SAS".

IMPORTANT NOTE: Be sure to install a recent version of the ExcelXP tagset on
your system. See the accompanying paper for details and instructions.

Review the "Installation" and "Usage" sections of the file named "ReadMe.txt" in the
ZIP archive for important information on using the sample files.

85
Copyright © 2010, SAS Institute Inc. All rights rese rved.

85

Contact Information

Please send questions, comments and feedback to:

Vince DelGobbo

sasvcd@SAS.com

If your registered in-house or local SAS users group would like
to request this presentation as your annual SAS presentation (as
a seminar, talk or workshop) at an upcoming meeting, please
submit an online User Group Request Form
(support.sas.com/usergroups/namerica/lug-form.html) at least
eight weeks in advance.

About the author:

Vince DelGobbo is a Senior Systems Developer in the Web Tools group at SAS.
This group is responsible for developing the SAS/IntrNet Application Dispatcher and
SAS Stored Processes. He is the developer of the HTML Formatting Tools and the
SAS Design-Time Controls, and is developing other new Web- and server-based
technologies, as well as integrating SAS output with Microsoft Office. He is also
involved in the development of the ExcelXP ODS tagset. Vince has been a SAS
Software user since 1982, and joined SAS in 1992.

