
Paper 034-31

Make the Invisible Visible: A Case Study of Importing Multiple Worksheet Files
By Using the SAS®9 LIBNAME Engine in Microsoft Excel

Zizhong Fan, Westat, Rockville, MD

ABSTRACT
When you need to import data from Microsoft Excel into SAS®, there are various methods available. For
example, you can use the IMPORT Wizard, PROC IMPORT, ODBC, PROC DBLOAD, PROC ACCESS,
PROC SQL, and the most powerful, flexible, and complex tool – DDE (Dynamic Data Exchange). When
multiple worksheets need to be imported, it adds more complexity to the already painful job. One of the
tedious things SAS programmers have to do is to specify the different sheet names by hard coding, so that
the sheet names are visible to the SAS system. Unfortunately, in most of the multi-sheet situations, the
number of worksheets and sheet names happen to be different. And, sometimes the sheet names are too
messy to be usable (e.g. sheet names containing quotation marks).

This paper provides a real–world, multi-book, multi-sheet importation situation, in which the new Excel
libname engine in SAS Version 9 helped retrieve Excel work sheet names and made the complex work
become a smooth ride.

INTRODUCTION
The Excel libname engine was introduced in SAS Version 9 as part of the enhancements in the
SAS/ACCESS package. It constructed a new route to connect SAS files and Microsoft Excel files. By
utilizing this new libname engine, along with data transfer tools such as PROC IMPORT, PROC EXPORT,
DDE, or even the DATA step, transferring data between Excel and SAS can be greatly improved. This paper
focuses on importing multi-sheet Excel files. The example is from the GAO (Government Accountability
Office) HOPD (Hospital Outpatient Drug Data) project conducted by Westat in 2005. All of the data file
names and data values have been altered for confidentiality purposes. The data values do not represent any
factual meanings.

THE PROBLEM
The simplified version of the task here is to import multiple Excel files with multiple worksheets. Figure 1
shows the multiple worksheets in one of the Excel files. And Figure 2 shows all the Excel files need to be
imported into SAS. In Figure 1, we can see the sheet names. But in Figure 2, the sheet names are invisible.
You may wish that all the Excel files had the same number of worksheets and with the same sheet names.
But unfortunately, that is not what we had. And I believe very few, if any, programmers will have such luck.

Figure 1: Multiple worksheets with different sheet names

 1

Coders’ CornerSUGI 31

Figure 2: Multiple Excel Files

The available tools for this importation job include the IMPORT Wizard, PROC IMPORT, ODBC, PROC
DBLOAD, PROC ACCESS, PROC SQL, and DDE. If we look at each of these tools, we find that we have to
specify the different sheet names by hard coding them, in order to retrieve the sheet names from each
workbook and pass them through a macro loop.

Here is an example of hard coding a sheet name using PROC IMPORT.

proc import datafile=’C:\My Documents\Excel Files\Hospital1.xls’
 out= hospital1 replace;
 sheet=’JAN, 2003’;
 getnames=yes;
run;

This is an example of hard coding using DDE. Note that we need to specify variable names start and end
numbers for the rows and columns, and some variable attributes.

filename sheet dde "Excel|Jan, 2004!r2.c1:r5000.c4" NOTAB;

data _null_ ;
 x=sleep (5);
run;

filename mydde dde "excel|system" ;
data _null_ ;
 file mydde ;
 put "[open(‘C:\My Documents\Excel Files\Hospital1.xls’)]";
run;

data H1200301;
 infile sheet dsd dlm='09'x truncover;
 length NDC $7 UNITS 8 AMMOUNT 8 DATE mmddyy8.;
 input NDC UNITS AMMOUNT DATE;
run;

data _null_;
 file mydde ;
 put '[quit]';
run;

 2

Coders’ CornerSUGI 31

In order to read in all of the sheets in the Excel file, work sheet names have to be explicitly spelled out for
each run. Of course, you can create your own macros to read Excel files with multiple worksheets. But, you
will still need to specify the worksheet names as a parameter in the macro. So you will end up having to
manually open all of the Excel files to copy the worksheet names and paste them into your programs. Now
our task becomes how to make the invisible sheet names visible to SAS without doing the hard coding work.
This is where the Excel libname engine in SAS Version 9 can give us a hand.

SOLUTIONS WITH THE EXCEL LIBNAME ENGINE IN SAS VERSION 9
Sample Code 1 shows how to read in all the worksheets in file Hospital1.xls and store them in SAS data
sets sheet1, sheet2 …, and eventually put them into the same master SAS file. By calling the macro multiple
times, we can retrieve data from the selected Excel files and put data from different sheets all into the same
SAS master file regardless of how many sheets are in each Excel file or what their sheet names are.

Sample Code 1: Processing selected Excel files

%let dir=C:\My Documents\Excel Files;

%m

acro ReadXls (inf);

li

bname excellib excel "&dir.\&inf"; /* STEP 1 */

proc sql noprint; /* STEP 2 */
 create table sheetname as
 select tranwrd(memname, "''", "'") as sheetname
 from sashelp.vstabvw
 where libname="EXCELLIB";
 select count(DISTINCT sheetname) into :cnt_sht
 from sheetname;
 select DISTINCT sheetname into :sheet1 - :sheet%left(&cnt_sht)
 from sheetname;
qu

it;

libname excellib clear; /* STEP 3 */

%do i=1 %to &cnt_sht;

 proc import datafile="&dir.\&inf" /* STEP 4 */
 out=sheet&i replace;
 sheet="&&sheet&i";
 getnames=yes;
 mixed=yes;
 run;

proc append base=master data=sheet&i force; /* STEP 5 */
 run;
%end;
%mend ReadXls;

%ReadXls (Hospital1.xls)
%ReadXls (Hospital2.xls)
%ReadXls (Hospital3.xls)
 …

Let’s take a closer look at Sample Code 1:

• Step 1: First we use the libname statement to define libref excellib. When the macro variable &dir
resolves, the libname statement becomes:

libname excellib excel "C:\My Documents\Excel Files\Hospital1.xls";

 3

Coders’ CornerSUGI 31

Here excellib is the libref. The word excel is the engine name, which constructs a direct access to
the Excel file. At this point, if we look at the SAS Explore window, we can see a library folder
Excellib (Figure 3). If we open it, we can see worksheets are listed as separate data views (Figure
4).

Figure 3: Excel library

Figure 4: Work sheets in the Excel library

• Step 2: Once the library is established, the worksheet names become values of variable memname

in the SASHELP dictionary view VSTABVW (Figure 5). By using PROC SQL, we create a list of
macro variables from SASHELP view VSTABVW. Now, the sheet names are values for &sheet1,
&sheet2, &sheet3 and &sheet4 correspondingly resolved to be 'APR 2004$',
'FEB ’’HOSPITAL 1’’ 2004$', 'JAN, 2004$' and 'March 2004$'.

Please note that the TRANWRD function is used here to convert two consecutive single quotation
marks to be one single quotation mark. This is a critical step needed to deal with single quotation
marks in sheet names. It is necessary because one quotation mark is converted to two consecutive
single quotation marks in SASHELP dictionary view VSTABVW. They must be converted back to a

 4

Coders’ CornerSUGI 31

single quotation for correct reading. For example, in the SASHELP dictionary view VSTABVW, the
value of memname for sheet FEB ‘HOSPITAL 1’ 2004 is 'FEB ’’HOSPITAL 1’’ 2004$'.
It is changed back to be ‘FEB ‘HOSPITAL 1’ 2004$' as the value for macro variable &sheet2.
In Step 4, PROC IMPORT is smart enough to read it in.

Figure 5: SASHELP dictionary view VSTABVW

• Step 3: Now we clear the libname. This is necessary to free up the Excel file for future use.

• Step 4: PROC IMPORT is used to read in the data from multiple sheets by using the %do loop.
This section could be replaced by your own favorite procedure such as DDE. The benefit of using
PROC IMPORT in this case is that you don’t need to specify the variable names, attributes, start
and end numbers for the columns and rows, and informats. PROC IMPORT does a good job of
preserving formats from Excel to SAS.

Please note that the new mixed=yes option is used here to avoid losing mixed data (numeric and
character in the same column). This is a new enhancement in SAS Version 9. The following link
has the full reference http://support.sas.com/techsup/unotes/SN/006/006123.html

• Step 5: Data are appended onto the master data set.

Sample Code 2 shows a more automated process to import all of the data in multiple sheets, from multiple
Excel files, into the master data set in only one macro call.

Sample Code 2: Processing all the Excel files

options noxwait;

%macro ReadXls (dir=);
%sysexec cd &dir; %sysexec dir *.xls /b/o:n > flist.txt;

data _indexfile;
 length filen $200;
 infile "&dir./flist.txt";
 input filen $;
run;

 5

Coders’ CornerSUGI 31

proc sql noprint;
 select count(filen) into :cntfile from _indexfile;
 %if &cntfile>=1 %then %do;
 select filen into :filen1-:filen%left(&cntfile)
 from _indexfile;
 %end;
quit;

%do i=1 %to &cntfile;
libname excellib excel "&dir.\&&filen&i";
proc sql noprint;
 create table sheetname as
 select tranwrd(memname, "''", "'") as sheetname
 from sashelp.vstabvw
 where libname="EXCELLIB";
 select count(DISTINCT sheetname) into :cnt_sht
 from sheetname;
 select DISTINCT sheetname into :sheet1 - :sheet%left(&cnt_sht)
 from sheetname;
 quit;

%do j=1 %to &cnt_sht;
 proc import datafile="&dir.\&&filen&i"
 out=sheet&j replace;
 sheet="&&sheet&j";
 getnames=yes;
 mixed=yes;
 run;

 data sheet&j;
 length _excelfilename $100 _sheetname $32;
 set sheet&j;
 _excelfilename="&&filen&z";
 _sheetname="&&sheet&j";
 run;

 proc append base=master data=sheet&j force;
 run;

 %end;
libname excellib clear;

%end;
%mend ReadXls;

%readxls (dir=c:\my documents\excel files)

Sample Code 2 has the same concept, except it is more automated to read in all the Excel files in the same
folder. First, all the Excel file names in the same folder are put into file flist.txt. Then, the file names (variable
filen) in flist.txt are read into data set _indexfile. PROC SQL is used to put the file names into a list of macro
variables: fname1 to fname&cntfile. Then, each file goes through the same process as in sample code 1 to
get sheet names retrieved by using SASHELP dictionary view VSTABVW. And data are imported by the
PROC IMPORT procedure. At the end, all the data are appended to the master data set. So one macro call
imports all the data.

ABOUT SHEET NAMES
One of the benefits of using libname excel engine is the ability to handle messy sheet names. The sample
codes provided in this paper can handle all the possible special characters and symbols in sheet names
including commas and quotation marks. Both single and double quotation marks can be read correctly. Even
open quotation marks in the sheet names will not be a problem. The step 2 in sample code 1 is where the
sheet names get retrieved and manipulated for correct reading. So there is no need to go through all the
Excel files to check and correct messy sheet names.

Please note that when extracting sheet names, the SASHELP dictionary view VSTABVW must be used. The
SASHELP dictionary view VSTABBLE or SQL dictionary table TABLES may not have all the sheet names in
the memname column when there are quotation marks in sheet names.

 6

Coders’ CornerSUGI 31

The only precaution is that sheet names usually should not exceed 29 characters even though Excel allows
31 characters. This is because when there are blank spaces in the sheet name, or if the sheet name starts
with a non-SAS standard character for SAS data set name (SAS standard being letters or underscores),
SAS will put a $ sign at the end of the sheet name and surround the sheet name with single quotes. This
takes three spaces. In the SASHELP dictionary view VSTABVW, the memname has a length of 32.

ABOUT EXCEL FILE TYPES
The Excel libname engine can be only used for Excel (5, 97, 2000, 2002) files. CSV files are not compatible
with this engine.

CONCLUSION
The Excel libname engine is a great enhancement to SAS/ACCESS software. With the conjunctional use of
the SASHELP dictionary view VSTABVW, Excel worksheet names can be retrieved and used in the
importation process. This eliminates the time consuming work of pre-importation, screening, and
manipulation of worksheet names.

REFERENCES:
SAS online document V9.
http://support.sas.com/91doc/docMainpage.jsp

SN-006123 Importing Excel file into SAS can result in missing data
http://support.sas.com/techsup/unotes/SN/006/006123.html

You Could Look It Up: An Introduction to SASHELP Dictionary View
http://www2.sas.com/proceedings/sugi26/p017-26.pdf

SAS Guide to the SQL procedure: Usage and Reference, Version 6, First Edition;
SAS Institute, Cary, NC, USA

ACKNOWLEDGEMENT
I would like to thank Michael Raithel and Duke Owen for reviewing and editing this paper.

CONTACT INFORMATION
Zizhong Fan
Westat
1650 Research Boulevard
Rockville, MD 20850
(240) 314 -2486
E-mail: JamesFan@westat.com

DISCLAIMER
The contents of this paper are the work of the author and do not necessarily represent the opinions,
recommendations, or practices of Westat.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are registered trademarks or trademarks of their respective companies.

 7

Coders’ CornerSUGI 31

	SUGI 31 Proceedings Table of Contents

