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ABSTRACT 
When statistical models include categorical explanatory variables, you can specify them on the CLASS 
statement (if the procedure supports the CLASS statement), or you can create a set of "dummy" or 
"indicator" variables.  When you specify a categorical variable on the CLASS statement, there is a 
default parameterization that SAS® uses.  But the default parameterization may not produce what you 
expect (for example, the default parameterization for PROC LOGISTIC is different from the default for 
PROC GLM).  Beginning with Version 8, SAS provides more power and flexibility for categorical 
variables in the CLASS statement, specifically by allowing you to specify the method of parameterization 
and the reference category.  The selected parameterization method has a profound effect on how 
CONTRAST statements are specified and on the interpretation of the parameter estimates and the 
associated hypothesis tests.  An alternative to using the CLASS statement for categorical variables is to 
code your own indicator variables, which allows you even more control over the parameterization and 
associated hypotheses.  This paper provides a series of examples to allow you to become comfortable 
using the CLASS statement to specify and test desired hypotheses (using the new syntax in PROC 
LOGISTIC for the examples) and illustrates the corresponding indicator variables.  It also shows how the 
same principles can be used with modified continuous variables to construct piecewise linear models 
and test hypotheses about them.  Much of the material presented here is taken from an earlier paper by 
Michelle Pritchard and David Pasta, "Head of the CLASS: Impress your colleagues with a superior 
understanding of the CLASS statement in PROC LOGISTIC" (Pritchard and Pasta, 2004).   

INTRODUCTION 
Generally students are not taught very much about parameterization or how to code indicator (dummy) 
variables.  They are simply told, "this is how the model is parameterized," or are taught simple rules for 
creating indicator variables.  Occasionally there is some discussion of some alternative 
parameterizations, but generally the topic is treated as something that's not quite proper to discuss in 
polite company.  One book that covers this material in some detail, with an explicit example, is Hardy 
(1993). 
 
Even the name usually given – dummy variables – makes it sound like something you would not 
necessarily be proud of.  Perhaps the more mathematically-oriented term "indicator variables" makes it 
sound a little more respectable.  Strictly speaking, an indicator variable takes on the value 1 when the 
condition is true and the value 0 when the condition is not true.  In this context, we will use the term also 
for variables that may take on the value –1, which allows the variables to parameterize categorical 
variables in a different way than if only strict indicator variables were used. 
 
Because SAS has added convenient syntax to the CLASS statement (for PROC LOGISTIC and coming 
soon to other procedures) for specifying alternative parameterizations, it is more important than ever to 
understand the choices of parameterizations and the implications of each.  Understanding how the 
corresponding indicator variables are coded and how to interpret the results can be very useful in your 
modeling. 
 
Different parameterizations arise very naturally in the context of categorical variables, but choices about 
parameterizations arise in the context of continuous variables as well.  Adding or subtracting a constant 
from a continuous variable can change the hypotheses being tested.  Creating a set of modified 
continuous variables from a single original variable can be very useful in testing specific hypotheses 
about the structure of a relationship between that variable and others.  For example, using a set of 
modified continuous variables permits the construction of piecewise linear models, which are a natural 
generalization of the linear models most of you are familiar with.  Piecewise linear models can be fit 
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using the usual linear modeling procedures – they are not "nonlinear models" in the sense that they 
require special algorithms (the models are still linear in the parameters to be estimated).  I believe 
piecewise linear models are a better way to model deviations from linearity than the use of ordinary 
polynomials.  Piecewise constant and piecewise linear models are often very useful for answering the 
sorts of questions researchers have about their data and are underutilized.  They can be extended to the 
sophisticated cubic spline functions when smooth curves are wanted, but in my work I find that 
piecewise linear functions are more useful.  

THE CLASS STATEMENT IN PROC LOGISTIC 
Beginning in SAS Version 8, the CLASS statement in the LOGISTIC procedure enables programmers to 
specify a full-rank parameterization (with the choice of Effect, Reference, Polynomial, or Orthogonal 
Polynomial coding), or a less than full-rank parameterization (as in the GLM procedure).  This is a big 
step forward from the days of doing your own coding of indicator variables, like you would for regression. 
 
The GLM parameterization is only available as a global option (i.e., for all variables in the CLASS 
statement), but the full-rank parameterizations can be specified either globally or for individual variables. 
Global parameterization is specified by the PARAM= <EFFECT GLM ORTHPOLY POLYNOMIAL 
REFERENCE> option after the forward slash (/) in the CLASS statement, as follows:  
 
 

proc logistic data = temp01; 
  class <classvar1> <classvar2>/param = glm; 
  model <response> = <classvar1> <classvar2>; 
  title3 "Example 1: PARAM = GLM Global Option"; 
run; 
quit; 
 
proc logistic data = temp01; 
  class <classvar1> <classvar2>/param = ref; 
  model <response> = <classvar1> <classvar2>; 
  title3 "Example 2: PARAM = REF Global Option"; 
run; 
quit; 

 
 

Alternatively, parameterization for individual variables can be specified in parentheses immediately 
following the variable in the CLASS statement, as follows:  
 

proc logistic data = temp01; 
  class <classvar1> (param = ref) <classvar2> (param = effect); 
  model <response> = <classvar1> <classvar2>; 
  title3 "Example 3: Individual Variable Parameterization Options"; 
run; 
quit; 

 
As an extra bit of flexibility, the REF= option in the CLASS statement determines the reference level for 
the EFFECT and REFERENCE coding. As with the PARAM= option, the REF= option can be coded 
globally or separately for each classification variable.  To program the reference level for each variable 
individually, use the REF=" " option in parentheses immediately following the variable in the CLASS 
statement, or use the keyword FIRST or LAST (FIRST designates the first ordered category as the 
reference and LAST designates the last ordered category as the reference).  Unless you use FIRST or 
LAST, the reference level should be placed in either single or double quotation marks, as follows:  
 

proc logistic data = temp01; 
  class <classvar1> (param = ref ref = "<refcat>") <classvar2>      

(param = effect ref = last); 
  model <response> = <classvar1> <classvar2>; 
  title3 "Example 4: Individual Variable Parameterization Options with 

Individual Specification of Reference Category"; 
run; 
quit; 
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Alternatively, the reference category can be applied to all variables in the CLASS statement by using 
the keyword FIRST or LAST in the REF= option after the forward slash (/) in the CLASS statement: 
 

proc logistic data = temp01; 
  class <classvar1> (param = ref) <classvar2> (param = effect)/       

ref = first; 
  model <response> = <classvar1> <classvar2>; 
  title3 "Example 5: Individual Variable Parameterization Options with 

Global Specification of Reference Category"; 
run; 
quit; 
  

Noteworthy notes:  
1. If you neglect to specify a coding method and/or reference category, then the default 

parameterization method is PARAM=EFFECT and the default reference category is the last 
ordered category (REF=LAST).   

2. Individual parameterization trumps the global option, unless the global option is GLM. 
3. REF= is only valid when PARAM=EFFECT or PARAM=REF. 
4. If a format has been applied to the classification variables, then either the formatted value (or FIRST 

or LAST) must be used when specifying the reference category.  If the keyword FIRST or LAST is 
used in this situation, then it pertains to the first or last ordered formatted category. 

5. We recommend limiting the classification variables to no more than one parameterization method, 
unless there are specific multiple hypotheses that you want to test and you are confident in what you 
are doing and you won't be showing the output to anyone else and you are sure you'll remember 
later why you did what you did and … you get the idea. 

DATA 
Now that you have seen the new PARAM= and REF= syntax, let's consider a model with a dichotomous 
response and three classification variables. The variables involved are distributed as follows:  

 
  
                                     Cumulative    Cumulative 
response    Frequency     Percent     Frequency      Percent 
       0         329       59.82           329        59.82 
       1         221       40.18           550       100.00 
 
 
 
                                      Cumulative    Cumulative 
   female    Frequency     Percent     Frequency      Percent 
0. Male           259       47.09           259        47.09 
1. Female         291       52.91           550       100.00 
 
 
 
                                       Cumulative    Cumulative 
    smoker    Frequency     Percent     Frequency      Percent 
1. Never           261       47.45           261        47.45 
2. Past            214       38.91           475        86.36 
3. Current          75       13.64           550       100.00 
 
 
 
                                     Cumulative    Cumulative 
  agecat    Frequency     Percent     Frequency      Percent 
1. 18-34         210       38.18           210        38.18 
2. 35-49         167       30.36           377        68.55 
3. 50-64         117       21.27           494        89.82 
4. 65+            56       10.18           550       100.00 
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female    smoker    agecat    response    Frequency     Percent  
     0         1         1           0          34        6.18   
     0         1         1           1          21        3.82   
     0         1         2           0          16        2.91   
     0         1         2           1          10        1.82   
     0         1         3           0          15        2.73   
     0         1         3           1           9        1.64   
     0         1         4           0           7        1.27   
     0         1         4           1           3        0.55   
     0         2         1           0          26        4.73   
     0         2         1           1          19        3.45   
     0         2         2           0          27        4.91   
     0         2         2           1          17        3.09   
     0         2         3           0          10        1.82   
     0         2         3           1           5        0.91   
     0         2         4           0           1        0.18   
     0         2         4           1           1        0.18   
     0         3         1           0           3        0.55   
     0         3         1           1           2        0.36   
     0         3         2           0           6        1.09   
     0         3         2           1           6        1.09   
     0         3         3           0           6        1.09   
     0         3         3           1           6        1.09   
     0         3         4           0           5        0.91   
     0         3         4           1           4        0.73   
     1         1         1           0          28        5.09   
     1         1         1           1          18        3.27   
     1         1         2           0          22        4.00   
     1         1         2           1          20        3.64   
     1         1         3           0          25        4.55   
     1         1         3           1          17        3.09   
     1         1         4           0           8        1.45   
     1         1         4           1           8        1.45   
     1         2         1           0          26        4.73   
     1         2         1           1          20        3.64   
     1         2         2           0          25        4.55   
     1         2         2           1          12        2.18   
     1         2         3           0          15        2.73   
     1         2         3           1           7        1.27   
     1         2         4           0           2        0.36   
     1         2         4           1           1        0.18   
     1         3         1           0           7        1.27   
     1         3         1           1           6        1.09   
     1         3         2           0           5        0.91   
     1         3         2           1           1        0.18   
     1         3         3           0           1        0.18   
     1         3         3           1           1        0.18   
     1         3         4           0           9        1.64   
     1         3         4           1           7        1.27   

 

MODEL A: DEFAULT PARAMETERIZATION (EFFECT) 
 

 
proc logistic data = temp01  descending; 
  class female smoker agecat; 
  model response = female smoker agecat; 
  title3 "Model A: Logistic regression with three categorical predictors 

and default options PARAM=EFFECT and REF=LAST"; 
run; 
quit; 
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In Model A, the method of parameterization is not specified, so the default EFFECT parameterization will 
be used. (Also, by default the last ordered category is used as the reference category.)  The columns of 
the design matrix are created based on the EFFECT coding scheme, as follows: For each variable, c–1 
columns comprise the design matrix, where c is the number of levels of the classification variable.  For 
the non-reference levels, the columns represent group membership (1=member, 0 =non-member), and 
for the reference level, the row is populated with a–1. In our Model A, the reference level is the last 
ordered category, so the design matrix is: 
 

Class Level Information 
 
          Design Variables 
 
Class      Value      1      2      3 
 
female     0          1 
           1         -1 
 
smoker     1          1      0 
           2          0      1 
           3         -1     -1 
 
agecat     1          1      0      0 
           2          0      1      0 
           3          0      0      1 
           4         -1     -1     -1 
 
 

Using EFFECT coding, the beta estimates are estimating the difference in the effect of each non-
reference level compared to the average effect over all levels. 
 
 

Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -0.3705      0.1057       12.2880        0.0005 
female    0     1     -0.0170      0.0877        0.0374        0.8466 
smoker    1     1     -0.0120      0.1253        0.0091        0.9240 
smoker    2     1     -0.1098      0.1353        0.6578        0.4174 
agecat    1     1      0.0470      0.1431        0.1079        0.7425 
agecat    2     1     -0.0108      0.1524        0.0051        0.9433 
agecat    3     1     -0.0753      0.1677        0.2017        0.6534 
 
 
 
Therefore, the odds of having response = 1 for never vs. current smokers is: exp(-0.0120)/exp[-(-0.012 – 
0.1098)] = 0.875.    
 
 
 

Odds Ratio Estimates 
 
                    Point          95% Wald 
Effect           Estimate      Confidence Limits 
 
female 0 vs 1       0.967       0.685       1.363 
smoker 1 vs 3       0.875       0.511       1.499 
smoker 2 vs 3       0.793       0.451       1.397 
agecat 1 vs 4       1.008       0.536       1.897 
agecat 2 vs 4       0.951       0.498       1.818 
agecat 3 vs 4       0.892       0.456       1.745 
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MODEL B: GLM PARAMETERIZATION 
 

proc logistic data = temp01  descending; 
  class female smoker agecat/param = glm; 
  model response = female smoker agecat; 
  title3 "Model B: Logistic regression with three categorical predictors 

and PARAM = GLM option"; 
run; 
quit; 

 
 
In Model B, the GLM parameterization has been specified. With GLM parameterization, the programmer 
does not have control over the reference category using the REF= option; instead, SAS includes 
variables as long as they are linearly independent from those that went before.  This has the effect of 
making the last ordered category the omitted (reference) category. The columns of the design matrix are 
created based on the GLM coding scheme, as follows: For each variable, c columns comprise the design 
matrix, where c is the number of levels of the classification variable.  For all levels, the columns represent 
group membership (1=member, 0 =non-member). The design matrix for Model B is:  
 
 

Class Level Information 
 
                         Design Variables 
 
Class      Value      1      2      3      4 
 
female     0          1      0 
           1          0      1 
 
smoker     1          1      0      0 
           2          0      1      0 
           3          0      0      1 
 
agecat     1          1      0      0      0 
           2          0      1      0      0 
           3          0      0      1      0 
           4          0      0      0      1 
 
 
Using GLM coding, the beta estimates are estimating the difference in the effect of each non-reference 
level compared to the reference (last) level. 
 
 

Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
intercept       1     -0.1927      0.3163        0.3712        0.5423 
female    0     1     -0.0339      0.1754        0.0374        0.8466 
female    1     0           0           .         .             . 
smoker    1     1     -0.1337      0.2747        0.2368        0.6266 
smoker    2     1     -0.2315      0.2887        0.6431        0.4226 
smoker    3     0           0           .         .             . 
agecat    1     1     0.00790      0.3226        0.0006        0.9805 
agecat    2     1     -0.0500      0.3304        0.0229        0.8798 
agecat    3     1     -0.1144      0.3424        0.1117        0.7382 
agecat    4     0           0           .         .             . 
 
 
Therefore, the odds of having response = 1 for never vs. current smokers is: exp(-0.1337) = 0.875.    
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Odds Ratio Estimates 
 
                    Point          95% Wald 
Effect           Estimate      Confidence Limits 
 
female 0 vs 1       0.967       0.685       1.363 
smoker 1 vs 3       0.875       0.511       1.499 
smoker 2 vs 3       0.793       0.451       1.397 
agecat 1 vs 4       1.008       0.536       1.897 
agecat 2 vs 4       0.951       0.498       1.818 
agecat 3 vs 4       0.892       0.456       1.745 
 

One of the reasons this parameterization may be desirable is that it corresponds to the behavior of GLM 
and MIXED and is therefore familiar to long-time users of those procedures.  One disadvantage is that in 
order to control which category is omitted (treated as the reference category), it is necessary to order the 
categories so the category to be omitted is last. 

MODEL C: REFERENCE PARAMETERIZATION 
The REFERENCE parameterization is similar to GLM except you actually omit one of the categories (so 
the resulting design matrix is full rank), and you have explicit control over which category is to be omitted 
— it need not be the last category. 
 

proc logistic data = temp01  descending; 
  class female smoker agecat/param = ref; 
  model response = female smoker agecat; 
  title3 "Model C: Logistic regression with three categorical predictors 

and PARAM = REF option"; 
run; 
quit; 

 
 
In Model C, the REFERENCE parameterization has been specified.  (Also, by default the last ordered 
category is used as the reference category.)  The columns of the design matrix are created based on the 
REFERENCE coding scheme, as follows: For each variable, c–1 columns comprise the design matrix, 
where c is the number of levels of the classification variable.  For the non-reference levels, the columns 
represent group membership (1=member, 0 =non-member), and for the reference level, the row is 
populated with a 0. In our Model C, the reference level is the last ordered category, so the design matrix 
is: 
 
 

Class Level Information 
 

                     Design Variables 
 
Class      Value      1      2      3 
 
female     0          1 
           1          0 
 
smoker     1          1      0 
           2          0      1 
           3          0      0 
 
agecat     1          1      0      0 
           2          0      1      0 
           3          0      0      1 
           4          0      0      0 
 

Using REFERENCE coding, the beta estimates are estimating the difference in the effect of each non-
reference level compared to the effect of the reference level.  
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Analysis of Maximum Likelihood Estimates 

 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -0.1927      0.3163        0.3712        0.5423 
female    0     1     -0.0339      0.1754        0.0374        0.8466 
smoker    1     1     -0.1337      0.2747        0.2368        0.6266 
smoker    2     1     -0.2315      0.2887        0.6431        0.4226 
agecat    1     1     0.00790      0.3226        0.0006        0.9805 
agecat    2     1     -0.0500      0.3304        0.0229        0.8798 
agecat    3     1     -0.1144      0.3424        0.1117        0.7382 
 
 

Therefore, as with the GLM parameterization, the odds of having response = 1 for never vs. current 
smokers is: exp(-0.1337) = 0.875.    
 
 

Odds Ratio Estimates 
 
                    Point          95% Wald 
Effect           Estimate      Confidence Limits 
 
female 0 vs 1       0.967       0.685       1.363 
smoker 1 vs 3       0.875       0.511       1.499 
smoker 2 vs 3       0.793       0.451       1.397 
agecat 1 vs 4       1.008       0.536       1.897 
agecat 2 vs 4       0.951       0.498       1.818 
agecat 3 vs 4       0.892       0.456       1.745 
 

MODEL D: REFERENCE PARAMETERIZATION WITH REFERENCE CATEGORY 
SPECIFICATION 
In this model we use the reference parameterization but specify REF=FIRST.  This changes the design 
matrix and the odds ratios are inverted for binary variables. 

 
proc logistic data = temp01  descending; 
  class female smoker agecat/ param = ref ref = first ; 
  model response = female smoker agecat; 
  title3 "Model D: Logistic regression with three categorical predictors 

and PARAM=REF and REF=first"; 
run; 
quit; 

 
Class Level Information 

 
                     Design Variables 
 
Class      Value      1      2      3 
 
female     0          0 
           1          1 
 
smoker     1          0      0 
           2          1      0 
           3          0      1 
 
agecat     1          0      0      0 
           2          1      0      0 
           3          0      1      0 
           4          0      0      1 
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Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -0.3524      0.1915        3.3869        0.0657 
female    1     1      0.0339      0.1754        0.0374        0.8466 
smoker    2     1     -0.0978      0.1920        0.2597        0.6103 
smoker    3     1      0.1337      0.2747        0.2368        0.6266 
agecat    2     1     -0.0579      0.2121        0.0745        0.7850 
agecat    3     1     -0.1223      0.2376        0.2650        0.6067 
agecat    4     1    -0.00790      0.3226        0.0006        0.9805 
 
 
 
Therefore, the odds of having response = 1 for current vs. never smokers is: exp(0.1337) = 1.143.    
 
 

Odds Ratio Estimates 
 
                    Point          95% Wald 
Effect           Estimate      Confidence Limits 
 
female 1 vs 0       1.035       0.734       1.459 
smoker 2 vs 1       0.907       0.622       1.321 
smoker 3 vs 1       1.143       0.667       1.958 
agecat 2 vs 1       0.944       0.623       1.430 
agecat 3 vs 1       0.885       0.555       1.410 
agecat 4 vs 1       0.992       0.527       1.867 
 
 

MODEL E: DEFAULT WITH INTERACTIONS 
One thing that analysts new to the CLASS statement find mysterious is that when they specify 
interactions, sometimes SAS changes the order of the variables.  They specified FEMALE*SMOKER, for 
example, but in the output they see SMOKER*FEMALE.  What is SAS doing?  It turns out SAS is paying 
attention to the order of the variables in the CLASS statement.   

 
 
proc logistic data = temp01  descending; 
  class female smoker agecat; 
  model response = female smoker agecat female*smoker female*agecat 

smoker*agecat; 
  title3 "Model E1: Logistic regression with three categorical 

predictors plus two-way interactions, default options"; 
run; 
quit; 
 
proc logistic data = temp01  descending; 
  class smoker agecat female; 
  model response = female smoker agecat female*smoker female*agecat 

smoker*agecat; 
  title3 "Model E2: Logistic regression with three categorical 

predictors plus two-way interactions, default options"; 
run; 
quit; 

Statistics and Data AnalysisSUGI 30

 



 10

MODEL F: PARAM=GLM WITH INTERACTIONS 
 
proc logistic data = temp01  descending; 
  class female smoker agecat/param = glm; 
  model response = female smoker agecat female*smoker female*agecat 

smoker*agecat; 
  title3 "Model F: Logistic regression with three categorical predictors 

plus two-way interactions, with PARAM = GLM option"; 
run; 

 

HYPOTHESIS TESTING IN PROC LOGISTIC WITH CONTRAST STATEMENTS 
The CONTRAST statement in PROC LOGISTIC works much like the corresponding statement in other 
procedures such as GLM and MIXED.  It allows you to specify one or more linear combinations of the 
parameters to test against zero.  You can test each of the linear combinations against zero or specify that 
several linear combinations be tested against zero simultaneously (a multiple-degrees-of-freedom test).  
In order to correctly specify the CONTRAST statement, you need to pay close attention to the 
parameterization.  For example, consider the AGECAT variable as parameterized in Model A, the default 
EFFECT coding.  To test group 1 against group 2, the contrast statement would be: 
 
   contrast '1 vs. 2' agecat 1 –1 0 / e; 
 
The 0 at the end is not necessary but is a good reminder that there are three parameters for the AGECAT 
variable.  The E option is extremely useful: it requests that the linear combination be displayed, giving you 
a chance to make sure the coefficients are lined up with the proper parameters.  I strongly recommend 
using the E option when testing new CONTRAST statements.   
 
Testing that groups 1, 2, and 3 are simultaneously equal requires a two-degree-of-freedom test: 
 
   contrast '1 = 2 = 3' agecat 1 –1 0 , agecat 1 0 -1 / e; 
 
or, equivalently,  
 
   contrast '1 = 2 = 3' agecat 1 –1 0 , agecat 0 1 -1 / e; 
 
or 
 
   contrast '1 = 2 = 3' agecat 1 0 –1 , agecat 0 1 -1 / e; 
 
all of which test the same hypothesis, that the first three AGECAT groups are equal. 
 
Because the fourth AGECAT group is coded as the negation of the first three, contrasts involving that 
group look rather different.  If you label the parameters for the first three groups A1, A2, and A3, then the 
parameter for the fourth group is -A1-A2-A3.  Thus, if you want to compare group 1 to group 4, you want 
to test (A1)–(-A1-A2-A3)=0, or 2*A1+A2+A3=0: 
 
   contrast '1 vs. 4' agecat 2 1 1 / e; 
 
It is clear how useful it is to label each contrast — it would be easy to forget what this contrast is designed 
to test! 
 
The construction of CONTRAST statements can be very tricky in the presence of many interactions.  To 
be sure you are testing the hypothesis you want to test, use the E option and write down the resulting 
equation separately.  It may be worth seeking advice from a statistician for especially complex models. 

INTERACTIONS OF CATEGORICAL AND CONTINUOUS VARIABLES 
Another time where parameterization is important is when there is a mix of categorical and continuous 
variables and you are interested in interactions between them.  The continuous variable could be 
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anything, but often it is time or something that varies systematically over time (such as age).  For 
convenience, we will assume the variable TIME has been added to our dataset.  If TIME is added to the 
model along with FEMALE, SMOKER, and AGECAT (plus interactions among those categorical 
variables), this implicitly assumes that the TIME effect is the same for all individuals, regardless of their 
values for the categorical variables.  That is, the model fits parallel lines, with the slope of the lines given 
by the parameter estimate for TIME, and the distance between the lines corresponding to the estimated 
difference between the corresponding subgroups (male smokers, say, compared to female nonsmokers).   
 
In order to have different slopes for different groups, the categorical variables need to be interacted with 
TIME.  Consider the model that includes FEMALE, TIME, and FEMALE*TIME.  How are the coefficients 
of these three terms interpreted?  It turns out the coefficient of TIME is the slope of the line for males, and 
the coefficient for FEMALE*TIME is the difference between the slope for males and slope for females.  
Thus, the latter coefficient tests the hypothesis that there is no difference in slope between males and 
females.  There is no convenient test of the overall question of whether both slopes are zero (that test 
would be a combined test of TIME and FEMALE*TIME).  If you included a model that had just FEMALE 
and FEMALE*TIME, then the test for FEMALE*TIME (which would have two degrees of freedom) would 
be a test that both slopes were zero. 
 
But how do you interpret the coefficient of FEMALE in the model with FEMALE, TIME, and 
FEMALE*TIME?  When you just have FEMALE and TIME, the coefficient of FEMALE represents the 
difference between the (parallel) male and female lines, but when we add the FEMALE*TIME interaction, 
the lines are no longer parallel.  The coefficient of FEMALE still represents the difference between the 
two lines, but now we need to specify at what time.  The answer is: at TIME=0.  Thus the FEMALE 
variable tests whether the intercepts of the two lines are the same.   
 
Sometimes this test is very instructive; other times, it is meaningless.  Consider when TIME is measured 
in years.  We are then testing whether the lines have the same intercept back in the Year 0.  (OK, the 
year 1 BCE if you want to get technical.)  Not necessarily riveting.  But if we measure TIME as the year 
minus 2002, say, then we are measuring whether the two lines have approximately the same value in 
2002, potentially a much more interesting hypothesis to test. 
 
More complicated interactions produce similarly complicated interpretation.  Consider a model with 
FEMALE, AGECAT, TIME, FEMALE*AGECAT, FEMALE*TIME, AGECAT*TIME.  We allow the eight 
gender-by-age categories to have any intercept they want, but we are imposing some structure on the 
slopes (because we omitted the FEMALE*AGECAT*TIME term).  There is hardly anything to do about 
understanding the model except to draw some graphs.  Look at Silva (2003) for guidance on making this 
process less painful.  But what are the hypotheses being tested?  You need to think hard about what 
each of the terms is contributing and about what the model looks like if that term is omitted in order to 
figure it out.  And remember that the categorical variables and their interactions are looking at the lines at 
the intercept, i.e., when TIME=0. 

PIECEWISE CONSTANT AND PIECEWISE LINEAR MODELS 
Extensions to the linear model that are very useful to consider include piecewise constant and piecewise 
linear models.  These extensions are easily implemented by coding what are called basis functions 
(special variables that capture a piece of the final functional form), and then fitting a linear model using 
those new variables.  The book by Hastie, Tibshirani, and Friedman (2001) provides a reasonably clear 
although somewhat mathematical treatment of this in Chapter 5, "Basis Expansions and Regularization."  
The basic idea is as follows.  Define some points on the X axis (we will continue to assume that variable 
is TIME) at which the fitted function is allowed to change.  These are called "knots" but you can think of 
them simply as boundaries between pieces of the piecewise function.  Define variables that have nonzero 
values only between pairs of knots or which change slopes (for example) at the knots.  These variables 
are then put together into a fitted function made up of the pieces. 
 
PIECEWISE CONSTANT MODELS 
Consider a model where TIME is measured in months since surgery.  We might be interested in looking 
at six-month time intervals going out two years.  So we would have data from TIME=0 to TIME=24, with 
knots at TIME=6, 12, and 18.  If we wanted to fit a piecewise constant function, we could calculate new 
variables as follows: 
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tcon0006=(0 le time le 6); 
tcon0612=(6 lt time le 12); 
tcon1218=(12 lt time le 18); 
tcon1824=(18 lt time le 24); 
 

These indicator variables would take on the value 1 when the expression was true (i.e., TIME was within 
the bounds given) and 0 otherwise.  Coding I would be more comfortable with would go along the 
following lines: 
 

if (time lt 0) then error 'error: time lt 0'; 
else if (time le 6) then per=1; 
else if (time le 12) then per=2; 
else if (time le 18) then per=3; 
else if (time le 24) then per=4; 
else error 'error: time gt 24'; 
tcon0006=(per eq 1); 
tcon0612=(per eq 2); 
tcon1218=(per eq 3); 
tcon1824=(per eq 4); 
 

This code has the advantage of creating a variable PER (for time period) that is likely to be useful.  It also 
creates the variable with checks that TIME is never outside the range 0 to 24 and makes it easy to ensure 
consistent coding of the indicator variables. 
 
By using these four variables in a model, a piecewise constant model would be fit.  Each coefficient tests 
whether that particular time period has a zero value (see Figure 1).  It may be more useful to fit an overall 
mean and include deviations from that mean so that you are testing deviations from the global mean 
rather than deviations from zero. 
 

Piecewise constant (tconxxyy)
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FIGURE 1 
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PIECEWISE LINEAR 1: CHANGE IN SLOPE 
A similar approach can be used to fit piecewise linear functions, except now the variable is not a 
constant. There are two main ways to parameterize piecewise linear functions.  The first way is designed 
to test for a change in slope.  The variables are defined to be nonzero over its assigned piece and all later 
pieces.  Consider the variables defined by: 
 

time00on=max(time-00,0); 
time06on=max(time-06,0); 
time12on=max(time-12,0); 
time18on=max(time-18,0); 
 

The variable TIME00ON is exactly the same as TIME if TIME never takes on negative values (as we are 
assuming here).  The other variables are zero up to the time indicated by their name, and then rise 
linearly thereafter (see Figure 2).  Why is this form convenient?  Consider a model with TIME00ON, 
TIME06ON, and TIME12ON.  The coefficient of TIME06ON is the difference in the slope from 00 to 06 
compared to the slope from 06 to 12.  The test of that coefficient is a test of whether the slope changes at 
time 06.  The test of the coefficient of TIME12ON is the test that the slope changes at time 12. 
 

Piecewise linear 1: change in slope

0

6

12

18

24

Month

0 6 12 18 24

 
FIGURE 2 

 
PIECEWISE LINEAR 2: NONZERO SLOPE 
Sometimes you are more interested, not in a change of slope, but whether the slope is zero.  Then the 
basis functions might be: 
 

time0006=min(max(time-00,0),06); 
time0612=min(max(time-06,0),06); 
time1218=min(max(time-12,0),06); 
time1824=min(max(time-18,0),06); 
 

Then the coefficient of TIME1218 in a model with TIME0006, TIME0612, and TIME1218 asks whether the 
slope is nonzero from time 12 to time 18.  Figure 3 shows the separate functions.  It is worth convincing 
yourself that these coefficients add up to the overall slope at each time for specific individuals.  
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There are many variations on these ways of parameterizing piecewise linear models.  This same 
approach can be used with cubic splines to fit smooth curves; Hastie, Tibshirani, and Friedman (2001) 
have details. 
 

Piecewise linear 2: nonzero slope
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FIGURE 3 

 
AN EXAMPLE OF FITTING WITH PIECEWISE LINEAR FUNCTIONS 
How do you actually go about fitting these functions in practice?  Consider the following artificial example.  
Two sets of data were generated, one from a piecewise linear function, and one from a quadratic function 
designed to be very similar.  Figures 4 and 5 show the actual data to be fitted and Figure 6 shows the two 
underlying functions.  We can fit a piecewise constant that fits surprisingly well, but a piecewise linear 
function fits better and is much smoother (Figure 7).  The difference between a fitted piecewise linear 
function and a fitted quadratic is negligible (Figure 8). 
 
If you fit a full model, you get the same piecewise linear function whether you use the first 
parameterization (XXON, which tests change in slope) or the second (XXYY, which tests slopes against 
zero).  However, you do get different parameter estimates (and associated tests) and if you decide to 
simplify the model you can get different models.   
 
When we fit using the first parameterization, TIMEXXON, we get the following results for a full model: 
  
            Parameter  Standard 
Variable    Estimate    Error    t Value  P-value 
Intercept   0.11813     0.64896    0.17   0.8562 
time00on    1.07358     0.15751    6.82   <.0001 
time06on   -0.68941     0.25940   -2.66   0.0102 
time12on   -0.18266     0.23624   -0.77   0.4427 
time18on   -0.02919     0.25940   -0.10   0.9108             
 
If we remove the least significant variable, TIME18ON, the variable TIME12ON is still nonsignificant.  
Omitting both those variables leads to the following reduced model: 
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            Parameter  Standard 
Variable    Estimate    Error    t Value  P-value 
Intercept  -0.06120     0.62812   -0.10   0.9227 
time00on    1.16965     0.13406    8.72   <.0001 
time06on   -0.91829     0.15674   -5.86   <.0001 
 
We have found that we cannot reject the null hypothesis that the slope is the same from time 06 onward, 
i.e., that there is no "kink" at time 12 or at time 18. 
 
When instead we fit using the second parameterization, TIMEXXYY, we get the following full and reduced 
models: 
 
            Parameter  Standard 
Variable    Estimate    Error    t Value  P-value 
Intercept   0.11813     0.64896    0.17   0.8562 
time0006    1.07358     0.15751    6.82   <.0001 
time0612    0.38418     0.13092    2.93   0.0048 
time1218    0.20152     0.13092    1.54   0.1294 
time1824    0.17233     0.15751    1.10   0.2786   
  
            Parameter  Standard 
Variable    Estimate    Error    t Value  P-value 
Intercept   0.10408     0.64995    0.17   0.8733 
time0006    1.08111     0.15764    6.86   <.0001 
time0612    0.36045     0.12933    2.79   0.0072 
time1218    0.28952     0.10347    2.80   0.0070 
 
And here we cannot reject the null hypothesis that the slope is nonzero from time 18 onward.  Note that 
once we drop the variable TIME1824, which has the highest p-value, the variable TIME1218 becomes 
statistically significant. 
 
How different are these two models and the conclusions you would reach based on them?  Figure 9 
shows the two models.  The model with TIMEXXON shows a steady linear increase from time 06 onward, 
but the model with TIMEXXYY shows a plateau beginning with time 18.  Both fit the data well, but lead to 
very different extrapolations beyond time 24 and perhaps lead to a different theoretical interpretation. 
 
Maybe even more interesting is that when you apply the same approach to the Z data, the two partial 
piecewise linear functions come out a little bit different — and both now with a kink at month 12, where 
neither did before (see Figure 10).  What this illustrates is that very slight differences in the data can 
make a differences in the fit you obtain, just as differences in the parameterizations can:  both the Y and 
Z data could have dome from either model. 
 
Is this potential instability a major drawback of fitting piecewise linear functions?  I don't think so.  I think it 
is something you need to be aware of and pay particular attention to the null hypothesis that you are 
testing.  This example is also a good reminder of the dangers of extrapolation fitted models beyond the 
edge of the data – we really do not know if the data beyond time 24 stays level (as implied by the fitted 
functions with zero slope from 18 to 24), rises (as implied by the fitted functions with a positive slope from 
18 to 24), or declines (as would be implied by a fitted quadratic function). 
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Data (y) to be fitted

0

6

12

18

Month

0 6 12 18 24

 
FIGURE 4 

 
 

Data (z) to be fitted
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Comparison of underlying functions
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Fitted piecewise constant and linear
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Fitted piecewise linear and quadratic
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FIGURE 8 

 
 

Fitted partial piecewise linear (xxon and xxyy)
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Fitted Z partial piecewise linear (xxon and xxyy)
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FIGURE 10 

 

CONCLUSION 
Different model parameterizations are a powerful tool for specifying models and testing hypotheses.  With 
that power comes responsibility – responsibility to be sure the results you get are what you intended, so 
you should:  
• Pay attention to the order of the levels of the class variables 
• Pay attention to the order of the variables in the CLASS statement 
• Pay attention to the design matrix, especially in the presence of interactions 
• Understand the beta estimates and hypothesis tests 
• Understand the syntax and defaults, and what options are and are not available for each method of 

parameterization 
• Be aware of how formatted data are treated 
 
You can fit non-parallel lines by interacting continuous and categorical variables.  When you do that, the 
parameter test that a categorical variable is not statistically significant is a test of whether the lines cross 
(approximately) at X=0 (the intercept).  You may want to consider redefining "zero" for continuous 
variables to test more interesting hypotheses. 
 
Consider fitting piecewise constant or piecewise linear models.  To do so, you need to: 
• Decide on a set of "knots" (boundaries) for the pieces 
• Define variables that change level or slope at the knots 
• Construct the model from these variables using ordinary fitting methods 
 
It is my view that piecewise constant and piecewise linear models are greatly underutilized.  I think they 
are far more valuable in practice than polynomial models.  They are a natural stepping-stone to smooth 
functions defined by cubic splines but are easier to work with and can be used to test very natural 
hypotheses.   
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