Paper 123-30

ETL: The Heavy Lifting That Makes BI Possible

Ralph Kimball SAS - SUGI April 13, 2005

© 2005 Kimball Group / Kimball University All rights reserved

The Challenge of ETL

- ☐ Build a cost effective, reliable, extensible, compliant, observable, secure, manageable system for bringing data into the data warehouse and making it ready for end user querying.
- ☐ Any questions?!

The Back Room and Front Room in Restaurant Terms

- □ Back Room (Kitchen)
 - Ingredients are selected and approved
 - Recipes are cooked
 - Separate items are brought together harmoniously
 - Final deliverable is arranged on plate and carried out of the kitchen
- ☐ Front Room (Dining Room)
 - Final deliverable ready to be consumed with very simple tools
 - The back room chef is responsible for quality of the deliverable

© 2004 Kimball Group / Kimball University. All rights reserved.

The Back Room and Front Room in Data Warehouse Terms

- ☐ Back Room (ETL System)
 - Extract
 - Clean
 - Conform
 - Deliver (the model with its data)
- ☐ Front Room (End User Environment)
 - Present what is important (from the DW)
 - Investigate causes (using the DW)
 - Try what-ifs (using the DW)
 - Track decisions made (back to the DW!)

Everyone Understands "E", "T", and "L" □ E: • Get the data into the warehouse back room

- □ T:
 - Do something to it
- □ L:
 - Load it into the final presentation tables

2004 Kimball Group / Kimball Haivoroity All rights recoved

But How Do You Break Down These Three Steps?

- ☐ It depends...
 - On the sources
 - On funny data idiosyncrasies
 - Which tools we have in the shop
 - The skills of our staff
 - The query and reporting tools
- ☐ "It depends" is DANGEROUS!
 - Excuse to be creative
 - Leads to spaghetti-mess of tables, modules, processes, scripts, triggers, alerts, job schedules

It's Time for More Discipline and Structure in the Back Room

- ☐ Gather the familiar names, familiar tasks
- ☐ Tasks that you can't leave out
- Challenge...
 - There are 38 of them
- ☐ Group them into 4 categories (E, T, L, and M)
 - E: Get the data into the DW
 - T: Clean and conform
 - L: Prepare for presentation
 - M: Manage all the processes

© 2004 Kimball Group / Kimball University. All rights reserved

Before Diving In: Surround the Requirements

- ☐ Create high level direction statements for
 - Business Needs
 - Compliance
 - Use of Data Profiling
 - Security
 - Data Integration
 - Data Latency
 - Archiving and Lineage
 - End User Delivery Interfaces
 - Available IT and End User Support Skills
 - Legacy Licenses

Subsystem #1: Data Profiling

□ Design Goals

- Diagnose the accuracy, content, and relevance of potential source data
- Warn of data that must be fixed BEFORE it is extracted
- Provide as complete a list as possible of on-going checks and transformations that must take place AFTER the data is extracted
 - → Generate these transformations directly from the data profiling tool
 - → Embed these transformations in the ETL data flow

GROUP KIMBALL UNIVERSITY

Subsystem # 2: Change Data Capture

Design Goals

- Isolate the changed source data to allow selective processing rather than complete refresh
- Capture all changes made to the source data including through non-standard interfaces
- Capture deletions, edits and insertions to source data
- Tag changed data with reason codes
- Support compliance tracking with additional metadata
- Perform change data capture as early as possible, preferably before bulk data transfer to data warehouse

© 2004 Kimball Group / Kimball University. All rights reserved

Subsystem # 3: Extract

□ Design Goals

- Copy source data into the data warehouse using library of highest possible throughput extractors
- Push, pull, or stream data driven by job scheduler and alerts
- Convert proprietary field formats into supported data warehouse formats
- Populate flat files, normalized schemas, and dimensional schemas
- Stage extracted data temporarily and permanently

Subsystem # 4: Data Cleansing System

□ Design Goals

- Overall system for managing data quality
- Measure data quality: identify faulty data
 - → Quality screens
 - → Error event schema
- Take appropriate corrective actions
 - → Interfaces for faulty data intervention
- Assemble time series description of faulty data and actions taken
- Link quality metadata to actual data for direct quality reporting
 - → Audit dimension

Subsystem #8: Data Conforming

□ Design Goals

- Enable drill across applications in multi fact table environments
- Enforce common data domains for designated fields in conformed dimension tables
- Enforce common business rules for designated fields in conformed fact tables
- De-duplicate dimension members within and across dimension tables
- Implement survivorship procedure for integrating data from multiple sources

Compliance, and Impact Analysis □ Prove lineage of each final measure and KPI □ Prove complete dependency of any primary or intermediate data element □ Prove input data has not been changed □ Prove input data derives final measure or KPI □ Document all transforms, present and past □ Maybe: re-run old ETL pipelines

☐ Maybe: show all accesses of selected data

© 2004 Kimball Group / Kimball University. All rights reserved

Subsystem #34: Lineage,

9

Subsystem 38: Real-Time ETL

- ☐ "Anything that is too fast for your current ETL"
- ☐ "Change from batch ETL to streaming ETL"
- ☐ Generation 1—The Operational Data Store
 - Physically separate system between OLTP and DW
- ☐ Generation 2—The Real-Time Partition
 - Physically separate extension of existing fact table(s) containing only new activity since the last load of static tables
 - In memory, no indexes, no aggregations

What Have We Accomplished?

- ☐ Useful structure beyond the letters E, T, and L
 - 38 familiar subsystems with names
- ☐ Framework for defining best practices building the 38 subsystems
- ☐ Constructive pressure, particularly on the ETL tool vendors, to integrate these 38 subsystems rather than building them separately and without an overall architecture
- ☐ Recognition that the "roll your own" approach of implementing an ETL system is increasingly impractical

2004 Kimball Group / Kimball University. All rights reserved

Kimball Group

- ☐ 1: Read the books, download 100 free articles
- ☐ 2: Sign up for Kimball University design tips
- ☐ 3: Come to a class:
 - DW Architects: Lifecycle Class
 - DW Modelers: Modeling Class
 - ETL Architects/Implementers: ETL Class
 - → REQUIRES dimensional modeling familiarity
 - → Covers the 38 subsystems of ETL
 - → More than 150 vendor screen shots
- ☐ Articles, Design Tips, Class Schedules: www.kimballgroup.com

