ETL: The Heavy Lifting That Makes BI Possible

Ralph Kimball
SAS - SUGI
April 13, 2005

The Challenge of ETL

- Build a cost effective, reliable, extensible, compliant, observable, secure, manageable system for bringing data into the data warehouse and making it ready for end user querying.

- Any questions ? !
The Back Room and Front Room in Restaurant Terms

- **Back Room (Kitchen)**
 - Ingredients are selected and approved
 - Recipes are cooked
 - Separate items are brought together harmoniously
 - Final deliverable is arranged on plate and carried out of the kitchen

- **Front Room (Dining Room)**
 - Final deliverable ready to be consumed with very simple tools
 - The back room chef is responsible for quality of the deliverable

The Back Room and Front Room in Data Warehouse Terms

- **Back Room (ETL System)**
 - Extract
 - Clean
 - Conform
 - Deliver (the model with its data)

- **Front Room (End User Environment)**
 - Present what is important (from the DW)
 - Investigate causes (using the DW)
 - Try what-ifs (using the DW)
 - Track decisions made (back to the DW !)
Everyone Understands “E”, “T”, and “L”

- **E:**
 - Get the data into the warehouse back room

- **T:**
 - Do something to it

- **L:**
 - Load it into the final presentation tables

But How Do You Break Down These Three Steps?

- **It depends…**
 - On the sources
 - On funny data idiosyncrasies
 - Which tools we have in the shop
 - The skills of our staff
 - The query and reporting tools

- **“It depends” is DANGEROUS!**
 - Excuse to be creative
 - Leads to spaghetti-mess of tables, modules, processes, scripts, triggers, alerts, job schedules
It’s Time for More Discipline and Structure in the Back Room

- Gather the familiar names, familiar tasks
- Tasks that you can’t leave out

- Challenge...
 - There are 38 of them

- Group them into 4 categories (E, T, L, and M)
 - E: Get the data into the DW
 - T: Clean and conform
 - L: Prepare for presentation
 - M: Manage all the processes

Before Diving In: Surround the Requirements

- Create high level direction statements for
 - Business Needs
 - Compliance
 - Use of Data Profiling
 - Security
 - Data Integration
 - Data Latency
 - Archiving and Lineage
 - End User Delivery Interfaces
 - Available IT and End User Support Skills
 - Legacy Licenses
E: Getting the Data Into the DW

Prepare to start

- Judge data
- Isolate changes
- Get into DW

Subsystem #1: Data Profiling

- Design Goals
 - Diagnose the accuracy, content, and relevance of potential source data
 - Warn of data that must be fixed BEFORE it is extracted
 - Provide as complete a list as possible of on-going checks and transformations that must take place AFTER the data is extracted
 - Generate these transformations directly from the data profiling tool
 - Embed these transformations in the ETL data flow
Subsystem # 2: Change Data Capture

- Design Goals
 - Isolate the changed source data to allow selective processing rather than complete refresh
 - Capture all changes made to the source data including through non-standard interfaces
 - Capture deletions, edits and insertions to source data
 - Tag changed data with reason codes
 - Support compliance tracking with additional metadata
 - Perform change data capture as early as possible, preferably before bulk data transfer to data warehouse

Subsystem # 3: Extract

- Design Goals
 - Copy source data into the data warehouse using library of highest possible throughput extractors
 - Push, pull, or stream data driven by job scheduler and alerts
 - Convert proprietary field formats into supported data warehouse formats
 - Populate flat files, normalized schemas, and dimensional schemas
 - Stage extracted data temporarily and permanently
Subsystem # 4: Data Cleansing System

- **Design Goals**
 - Overall system for managing data quality
 - Measure data quality: identify faulty data
 - Quality screens
 - Error event schema
 - Take appropriate corrective actions
 - Interfaces for faulty data intervention
 - Assemble time series description of faulty data and actions taken
 - Link quality metadata to actual data for direct quality reporting
 - Audit dimension
Subsystem #8: Data Conforming

- **Design Goals**
 - Enable drill across applications in multi fact table environments
 - Enforce common data domains for designated fields in conformed dimension tables
 - Enforce common business rules for designated fields in conformed fact tables
 - De-duplicate dimension members within and across dimension tables
 - Implement survivorship procedure for integrating data from multiple sources

L: Prepare for Presentation

- **keys**
- **time variance**
- **fact types**
- **bridges**

Third: Prepare for Delivery

- Surrogate Key Generator (6) & Pipeline (10)
- SCD Manager (11)
- Schema Builders
 - Transaction (12)
 - Periodic (13)
 - Accumulating (14)
 - Junk (15)
- OLAP Cubes (16)
- Multi-Valued Bridge Table Manager (17)
- Hierarchy Table Manager
 - Fixed (18)
 - Variable (19)
- Late Arriving Handler
 - Dimensions (20)
 - Facts (21)
- Aggregate Table Manager (22)
- Result Fact & Distr Tables Ready for Delivery
M: Manage All the Processes

Fourth: Manage

- Job Scheduler (23)
- Workflow Monitor (24)
- Backup (25)
- Recovery/Restart (26)
- Pipeline/Parallelize (27)
- Dimension Manager (28)
- Fact Provider (29)
- Version Control (30) & Migration (31)
- Security (32)
- Lineage & Dependency (33)
- Compliance (34)
- Metadata Repository (35)
- Project Manager (36)
- Problem Escalation (37)

Control

- Source
- Guard
- Trace
- Comply
- Centralize
- Manage
- Respond

Subsystem #34: Lineage, Compliance, and Impact Analysis

- Prove lineage of each final measure and KPI
- Prove complete dependency of any primary or intermediate data element
- Prove input data has not been changed
- Prove input data derives final measure or KPI
- Document all transforms, present and past
- Maybe: re-run old ETL pipelines
- Maybe: show all accesses of selected data
And (maybe) R: Adapt to Real Time

Subsystem 38: Real-Time ETL

- “Anything that is too fast for your current ETL”
- “Change from batch ETL to streaming ETL”

Generation 1—The Operational Data Store
- Physically separate system between OLTP and DW

Generation 2—The Real-Time Partition
- Physically separate extension of existing fact table(s) containing only new activity since the last load of static tables
- In memory, no indexes, no aggregations
What Have We Accomplished?

- Useful structure beyond the letters E, T, and L
 - 38 familiar subsystems with names
- Framework for defining best practices building the 38 subsystems
- Constructive pressure, particularly on the ETL tool vendors, to integrate these 38 subsystems rather than building them separately and without an overall architecture
- Recognition that the “roll your own” approach of implementing an ETL system is increasingly impractical

Kimball Group

- 1: Read the books, download 100 free articles
- 2: Sign up for Kimball University design tips
- 3: Come to a class:
 - DW Architects: Lifecycle Class
 - DW Modelers: Modeling Class
 - ETL Architects/Implementers: ETL Class
 - REQUIRES dimensional modeling familiarity
 - Covers the 38 subsystems of ETL
 - More than 150 vendor screen shots
- Articles, Design Tips, Class Schedules: www.kimballgroup.com